• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of flow stress of 7017 alum inium alloy under high strain rate compression at elevated temperatures

    2015-11-08 07:31:14RavindranadhBOBBILIRAMAKRISHNAMADHUGOGIA
    Defence Technology 2015年1期

    Ravindranadh BOBBILI*,B.RAMAKRISHNA,V.MADHU,A.K.GOGIA

    Defence Metallurgical Research Laboratory,Hyderabad 500058,India

    Received 27 June 2014;revised 28 August2014;accepted 28 August2014 Available online 29October 2014

    Prediction of flow stress of 7017 alum inium alloy under high strain rate compression at elevated temperatures

    Ravindranadh BOBBILI*,B.RAMAKRISHNA,V.MADHU,A.K.GOGIA

    Defence Metallurgical Research Laboratory,Hyderabad 500058,India

    Received 27 June 2014;revised 28 August2014;accepted 28 August2014 Available online 29October 2014

    An artificialneuralnetwork(ANN)constitutivemodeland Johnson-Cook(J-C)modelwere developed for 7017 alum inium alloy based on high strain rate data generated from split Hopkinson pressure bar(SHPB)experiments at various temperatures.A neural network configuration consistsof both training and validation,which iseffectively employed to predict flow stress.Temperature,strain rateand strain are considered as inputs,whereas flow stress is taken as output of the neural network.A comparative study on Johnson-Cook(J-C)model and neural network modelwas performed.Itwas observed that the developed neural network model could predict flow stress under various strain rates and temperatures.The experimental stress-strain data obtained from high strain rate compression tests using SHPB over a range of temperatures(25°-300°C),strains(0.05-0.3)and strain rates(1500-4500 s-1)wereemployed to formulate J-Cmodel to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading.The J-Cmodel and the back-propagation ANNmodelwere developed to predict the flow stress of 7017 aluminium alloy under high strain rates,and their predictability was evaluated in terms of correlation coefficient(R)and average absolute relative error(AARE).R and AARE for the J-Cmodelare found to be 0.8461 and 10.624%,respectively,w hile R and AARE for the ANN model are 0.9995 and 2.58%,respectively.The predictions of ANN model are observed to be in consistentw ith the experimental data for all strain rates and temperatures.

    Aluminium alloy;Artificial neural network;Johnson-Cook model

    1.In troduction

    Themechanical properties aswellas deformation and fracturemechanisms at high strain rates are quite different from those exhibited under quasi-static loading.Hence the accurate predictionsmay notbedrawn from thequasi-static stress-strain data(10-3-10-1s-1)athighstrain rates(102-107s-1),and the useofsuchdatain theanalysisand designofdynam ically loaded structuresmay lead to erroneous conclusionsand designs.It is therefore essential to study the material deformation characteristicsathighstrain rates forapplicationsinvolvinghighstrain rate deformations.The data obtained ishelpful for the purpose of design of productsaswellas for developing the constitutive strengthmodelsof thematerials.In order to developm ore robust strength models and failure criteria under dynam ic loading,more andmore experimental data obtained overw ide range of strain rates is required.An iterative procedure involving dynamicmaterial testing and computermodellingmay reduce the time and expense required for the development of advanced materials for applications such asarmour.Characterization of deformation,fracture and load carrying capability ofmaterials subjected to high strain rate isparamount foroptimum material selection fordesign ofarmourmaterialswhich experiencehigh strain rate dynam ic deform ation during impact of projectiles,blast loading,explosive form ing and other impactevents.

    Various high strain rate testmethods,such as drop weight,split Hopkinson pressure bar(SHPB),gasgun,Taylor impact and expanding ring,were reported in Refs.[1-5].SplitHopkinson pressure bar testmethod has been extensively used fortesting in thestrain rate regimeof102-104s-1in tensionand compression modes[2,3].The three important considerations intrinsic to high strain rate testing arewavepropagation,influenceofstrain rateondeformationofmaterials,andeffectofhigh strain rate and temperature on propertiesofmaterials[2].

    The effect of strain rate on material properties,viz.,flow stress,strain rate sensitivity,etc.,varies for eachmaterial.An increase in ductility of Al 7075 alloy was also reported by M agd et al.[2].Metallographic investigations of thematerial showed ductile shear failure.Existence of two regionsof strain rate sensitivity in A l 7075 over a range of strain rates was exp lained by Lee et al.[6].Itwas reported that the strain rate hasonly slighteffecton flow stress in the strain rate regime of 102-103s-1,which is higher than 103s-1at strain rates,and the flow stress increasesmore rapidly w ith strain rate having an approximate linear relationship.Hou et al.[7]carried out the high strain rate experiments on Mg-Gd-Y alloy using SHPB over a range of temperatures.A modified J-Cmodel was proposed to predict the dynamic response of thismaterial over aw ide range of strain rates and temperatures.

    Ji et al.[8]carried out the hot com pression tests on Aerm et100 steel using Gleeble-3800 thermo-mechanical simulator to generate stress-strain data in a temperature range from 1073 to 1473 K and a strain rate range from 0.01 to 50 s-1. The Arrhenius constitutivemodel and feed forward artificial neural network(ANN)model were developed to predict the high temperaturedeformation behaviourof theabovematerial. ANN was found to be superior formodelling the high temperature deformation behaviours ofmaterials.Han et al.[9]performed a comparative study on constitutive relationship of 904L Austenitic steel during hot deformation based on A rrheniusand ANN models.Experim ental datawere gathered from hot compression tests on Gleeble-1500D thermo-mechanical simulator to generate stress-strain data,in a temperature range from 1000 to 1150°C and a strain rate from 0.01 to 10 s-1.The back-propagation neural network model was proved to bemore accurate and efficient in investigating the compressive deformation behaviour of material at higher temperatures.Sun etal.[10]employed ANNmodel to develop a constitutivemodel for the hot compression of Ti600 alloy. These tests were performed on Gleeble-1500 thermo-mechanical simulator in a temperature range from 800 to 1100°C and a strain rate range from 0.001 to 10 s-1to generate stressstrain data.ANNmodel provided a simple and efficientway to develop constitutive relationship for Ti600 alloy.Lin etal.[11]studied the compressive behaviour of 2124-T851 alum inium alloy under the strain rate from 0.01 to 10 s-1and the temperature from 653 to 743 K using Gleeble-1500 thermo-mechanical simulation machine.A modified constitutivemodel accommodating the effects of material behaviour was proposed.Gupta[12]developed various sem i-empiricalmodels(Johnson-Cook model,modified Zerilli-Armstrong model and A rrheniusmodel)to study the effects of strain,strain rate and temperature.The tensiles of Austenitic stainless steel 316 were test using UTM machine at various strain rates(0.1-0.0001 s-1)and temperatures(323-623 K).A comparative study was undertaken among various constitutive models and ANN model.

    The available literature has so far dealtw ith dynamicmaterial characterization of variousmaterials and their testing methodologies under different loading conditions,and microstructural analysis of various steels.So far no attempt has been made to study the effect of temperatures of 7017 alum inium alloy on dynamic properties using J-C and ANN models.The objective of the present study is to develop ANN model for predicting the dynam ic flow stress of 7017 alum inium alloy under high strain rate loading conditions.

    Fig.1.Schematic diagram of Split Hopkinson pressure bar(SHPB).

    2.Experim en talm ethods

    2.1.Materials and test setup

    The present alloy under study is Al-4.5 Zn-2.5 Mg-0.3Si-0.40 Fe(by weight%),commercially named as 7017 alum inium alloy.The quasi-static yield and ultimate tensile strengthsof the alloy are 458MPa and 508MPa,respectively. Ductilitymeasured as percentage elongation is13%in 25mm gage length.High strain rate compression testing of 7017 alum inium alloy sam ples w ith 3,4,5 mm in length and 6,8,10 mm in diameter was carried out using SHPB apparatus(Fig.1).The specimenswere prepared w ith L/D ratio of 0.5,so as tom inimize the errors due to inertia and friction.Fig.2 shows the dimensions and surface finish of compressed specimen used for 20mm pressure bars.Length and diameter of the sampleswere changed to vary the strain rate.

    The experimental stress-strain data were obtained from high strain rate compression tests using split Hopkinson pressure bar(SHPB),over aw ide range of strains(0.05-0.3),strain rates(1500-4500 s-1)and temperatures(25°-300°C). The whole SHPB setup consists of pressure bars,gas gun which propels a striker bar for producing the compressive wave,strain gage for measuring the waves,associated mounting and alignment hardware,and associated instrumentation and data acquisition system.SHPB apparatus has two-pressure bars,one is called input or incident bar and another is called outputor transmitted bar[7].These pressure bars aremade ofmaterials having yield strength higher than that of thematerial to be tested.The specimen to be tested is sandw iched between the 2 bars.The yield strength of the pressure bar determ ines themaxim um stress attainable w ithin the deform ed specimen,because the cross section of the specimen approaches to that of the pressure bar duringdeformation(Fig.3).A rectangular compression wave w ith well-defined amplitude and length isgenerated in the incident barwhen the striker bar strikes it.

    The pressure wave was generated by having a striker bar(projectile)to impact the input(incident)pressure bar.The striker bar was propelled by a gas gun system attached at one end.The strain gages in conjunction w ith the amplifiers and associated instrumentation were used to record these wave pulses.Since the specimen deforms uniform ly,the strain rate w ithin the specimen is directly proportional to the amplitude of the reflected wave(εr).

    Strain rate in the specimen is

    Hence strain in the specimen is

    Stress in the specimen can be calculated as

    where A and Asare the areas of the bar and specimen,respectively;l is the length of specimen;c iswave speed;εtis the strain in the transm itted bar;and E is the elasticmodulus of the pressure bar.

    2.2.Johnson-Cookmodel

    High strain rate plastic deform ation of materials can be described by various constitutive equations that basically attempt to address the dependence of stress on strain,strain rate and temperature.In this regard,thestress can bepresented as

    Thereare anumberof equations thathavebeen proposed to describe the plastic behaviour of materials as a function of strain rate and temperature.At low strain rates,themetals are known to work hardening along thewell-known relationship,which is known as parabolic hardening and expressed as σ=σo+kεn,whereσois the yield stress,n is the work hardening exponent,and k is the pre-exponential factor.

    The effect of strain rate on strength is generally expressed as:σ∝ln.ε.But the above relationship breaks down at strain rate above 102s-1.

    The effects of temperature on the flow stress can be represented by

    where Tmis the m elting temperature;Tris the reference tem perature atwhichσris the reference stress.

    The dynam ic flow stress depicting the effects of various parameters is expressed by Johnson-Cook model as

    where A is the yield stress;B and n represent the effect of strain hardening;C is the strain rate constant;εis the equivalent plastic strain;.εis the strain rate;.ε*is the dimensionless p lastic strain rate represented as.ε/.εofor.εo=1 s-1;T*is the homologous temperature referred as(T-Troom)/(Tmelt-Troom);and m is the thermal softening factor.Thus,the terms presented in first,second and third brackets in Eq.(6)represent strain,strain rate and temperature effect,respectively.The J-Cmodel is independent of pressure.

    e strain rate and reference temperature,the functions of strain rate hardening and thermal softening are equal to unity,J-Cmodel is simplified as follows

    where A is the yield stresswhich can be directly obtained from the strain-stress curve.

    Plotting a line between lnεand ln(σ-A)at the reference strain rate and reference tem perature gives B and n in Eq.(7). Strain rate sensitivity C is determ ined as the slope of linear fit of log(strain rate)vs the dynam ic flow stress/static stress using high strain rate data corresponding to a strain of 10%. The above constantsare provided in the Table 1.

    Fig.2.Typical dimensions of high strain rate test samples.

    Fig.3.Schematic of the deformed specimen tested at a strain rate of 4500/s.

    2.3.Artificial neural network approach

    Neural networks are commonly employed in data prediction,categorization and data filtering app lications.A rtificial neural networks(ANN)im itate human brains to know the interaction between inputs and outputs through training.Multi-layer ANN possesses input layers,hidden layers and output layers.The hidden layers located between input and output layers.The input layer first receives data and conveys it to the hidden layer for processing.The processed data is delivered as response to the output layer.Each layer can geta number of neurons connected by linksw ith adaptableweights. These weights are adjusted during training.The inputs into a neuron aremultiplied by their respective connection weights,and summed together,and abias isadded to thesum.Thissum is converted through a transfer function to produce a single output.The nonlinear logarithm ic sigmoid activation function wasadopted in thehidden and output layers.Theactualoutput obtained is compared to the required output to compute an error.The error for hidden layers is calculated by propagating back the error found out for the output layer;this technique is called back-propagation algorithm.

    The experimental data were sp lit into three sets,70%for the training set,15%for the verification set and 15%for the test set in ANN model.The input data(strain rate,strain and temperature)and outputdata(flow stress)were standardized in the range.Thenetworkmodel consistsof ten hidden layers.To demonstrate the influence of network variables,the number of hidden layer neurons were varied from 10 to 40.It has been noticed that the predicted results are reasonable and accurate,w ith 15 neurons in each hidden layer.

    Table 1 Johnson-Cook M odel constants for A l 7017 alloy.

    Fig.4.True stress-strain curves of aluminium 7017 alloy at temperatures 25°C and 300°C.

    3.Resu lts and discussion

    The experimental data obtained from the high strain rate compression tests(Fig.4)on splitHopkinson pressure bar in a w ide range of temperatures(25°-300°C)and strain rates(1500-4500 s-1)were employed to develop J-Cmodel and ANN model for 7017 alum inium alloy.Fig.5 depicts the comparison of the experimental results w ith the predicted values at various strain rates and temperatures based on J-C strength model.It is observed that the predicted flow stress values obtained on J-C model are not consistent w ith the experimental values,particularly at high temperatures;the predicted valuesare smaller than the experimental results.So,J-C model is not so adequate in predicting the flow stress value in high temperature region.The predicting performance of the J-C model was evaluated by comparing the experimental and predicted data,as shown in Fig.5.Itwas noticed that the J-Cmodel could predict the experimental data only in the interm ediate temperature range.This variation may be attributed to the error introduced by the fitting of them aterial constants at som e conditions and the adiabatic temperature increment due to plastic deformation.Since J-C model is a phenomenologicalmodel,which does not consider the physical aspects of materials like theory of thermodynam ics,thermally activated dislocation movement,and kinetics of slipswhile predicting the flow stress.

    The J-C model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates and their predictability was evaluated in terms of correlation coefficient R and average absolute relative error(AARE).The predicted flow stresses of J-Cmodelare given in Fig.5.Fig 6 illustrates the flow stress predicted by ANN model versusmeasured value for testing set.R and AARE for the J-Cmodelare found to be0.8461 and 10.624%,respectively(Fig.7),while R and AARE for the ANNmodel are 0.9995 and 2.58%,respectively(Fig.8).It is found that the relative error obtained from the ANN model was observed to vary from 1.2%to 4.5%,while itwas in the range of 4.2%-10.6%for J-C model.The performance of the network also relies on learning parameters,such as the number of training epochs and the momentum,etc.To understand the significance of these parameters,the number of epochs is varied from 1000 to 10,000,the learning rate is varied from 0.1 to 0.9,and themomentum rate is varied from 0.1 to 0.8.Itshows that themomentum rate doesnotexhibita substantial influence on the performance of the network.It is established that the optimum number of epochs is about 12,000,the number of neurons in each hidden layer is15,thenumber of hidden layers is 10,and the learning rate is 0.8,w ith a momentum of 0.7 in all layers.Mean square errors(MSEs)of desired and predicted data have been determ ined when MSE attained am inimum value of 0.001.

    Fig.5.Comparison between J-C M odel and experimental flow stress of alum inium 7017 alloy by J-C model at strain rates.

    Fig.6.Comparison between ANN Model and experimental flow stress of alum inium 7017 alloy at strain rates.

    Hence,the data obtained in the ANN m odel were better compared to the J-Cm odel.Itshow s that the developed ANN model can offer an efficient prediction of flow stress in the temperatures from 25°C to 300°C and strain rates from 1500 to 4500 s-1.

    Fig.7.Plotof predicted vs.experimental formodified J-Cmodel.

    Fig.8.Plotof predicted vs.experimental for ANN model.

    4.Conclusions

    This paper hasmade an attempt to study the comparison of the results obtained from J-C model and ANN model with experimental values.The follow ing conclusions are drawn:

    1)The J-C model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy underhigh strain rates,and their predictability wasevaluated in termsof correlation coefficient R and averageabsolute relative error(AARE).R and AARE for the J-C model are found to be 0.8461 and 10.624%,respectively,while R and AARE for the ANNmodelare 0.9995 and 2.58%,respectively.

    2)The established ANN model can effectively predict the experimental data over a w ider range of temperatures and strain rates.This represents that ANN model has superior capability tomodel the dynam ic behaviour ofmaterials.This method circumvents the problems related to the constitutive models that involve the determination of more number of constants.

    3)The validation tests have also been conducted to verify the resultsobtained by ANN technique.The predictionsof the ANN m odel were in good agreement w ith the experimental data obtained from SHPB tests.

    Acknow ledgem en ts

    The authors would like to thank Defence Research and DevelopmentOrganization,India for financialhelp in carrying out the experiments.

    References

    [1]LeeWS,Lin CF.Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded w ith high strain rate under various temperatures.Mat Sci Eng A 1998;241(1-2):48-59.

    [2]El-M agd E,Abouridouane A.Characterization,modeling and simulation of deformation and fracture behaviourof the lightweightw roughtalloys under high strain rate loading.Int JImpact Eng 2006;32:741-58.

    [3]MousaviASH,M adaah-HosseiniHR,Bahram i.Flow stress optim ization for 304 stainless steel under cold and warm compression by artificial neuralnetwork and genetic algorithm.JMater Design 2007;28:609-15.

    [4]Odeshi AG,Al-Ameeri S,Bassim MN.Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact.J Mat Process Tech 2005;162-163:162-3.

    [5]Mohr D,Gary G,Lundberg B.Evaluation of stress-strain curve estimates in dynamic experiments.Int J Impact Eng 2010;37:161-9.

    [6]Lee WS,Sue WC,Lin CF,Wu CJ.The strain rate and temperature dependence of the dynam ic impactproperties of 7075 alum inium alloy.J Mat Process Tech 2000;100:116-22.

    [7]Hou QY,Wang JT.A modified Johnson-Cook constitutivemodel for Mg-Gd-Y alloy extended to aw ide range of temperatures.ComputMater Sci 2010;50:147-52.

    [8]Ji G,Li F,Li Q,Li H,Li Z.A comparative study on Arrhenius-type constitutivemodel and artificial neural network model to predict hightemperature deformation behavior in Aermet100 steel.J Mater Sci Engg A 2011;528:4774-82.

    [9]Han Y,Qiao G,Sun J,Zou D.A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Comput Mater Sci 2013;67:93-103.

    [10]Sun Y,Zeng WD,Zhao YQ,Qi YL,Ma X,Han YF.Development of constitutive relationship model of Ti600 alloy using artificial neural network.ComputMater Sci2010;48:686-91.

    [11]Lin YC,Xia YC,Chen XM,Chen MS.Constitutive descriptions for hot pressed 2124-T851 alum inium alloy over a wide range of temperature and strain rate.ComputMater Sci2010;50:227-33.

    [12]Gupta AK,Anirudh VK,Singh SK.Developmentof constitutivemodels for dynam ic strain aging regime in Austenitic stainless steel 304.M ater Des 2013;43:410-8.

    .Tel.:+40 24346332;fax:+40 24342252.

    E-mail address:ravindranadhbobbili@gmail.com(R.BOBBILI).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.08.004

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    欧洲精品卡2卡3卡4卡5卡区| 免费看a级黄色片| 日韩人妻高清精品专区| 中文字幕av成人在线电影| av在线观看视频网站免费| 欧美在线黄色| 色吧在线观看| 国产精品自产拍在线观看55亚洲| 男女之事视频高清在线观看| 男人的好看免费观看在线视频| 欧美成狂野欧美在线观看| 别揉我奶头~嗯~啊~动态视频| 免费搜索国产男女视频| 成人性生交大片免费视频hd| 国产成人影院久久av| www.www免费av| 给我免费播放毛片高清在线观看| 99久久精品国产亚洲精品| 极品教师在线视频| 免费人成在线观看视频色| 亚洲国产日韩欧美精品在线观看| 国产伦在线观看视频一区| 成人高潮视频无遮挡免费网站| 波野结衣二区三区在线| av中文乱码字幕在线| 99在线人妻在线中文字幕| 高清毛片免费观看视频网站| 亚洲在线自拍视频| 悠悠久久av| 美女大奶头视频| 五月玫瑰六月丁香| 嫩草影院新地址| 亚洲成av人片免费观看| 亚洲avbb在线观看| 一级黄色大片毛片| 亚洲18禁久久av| 午夜免费激情av| 亚洲avbb在线观看| 国产伦精品一区二区三区四那| 久久久久免费精品人妻一区二区| 伊人久久精品亚洲午夜| 成人av一区二区三区在线看| 不卡一级毛片| 久久欧美精品欧美久久欧美| 国产伦精品一区二区三区视频9| 精品一区二区三区视频在线观看免费| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕日韩| 长腿黑丝高跟| 午夜精品久久久久久毛片777| 亚洲第一欧美日韩一区二区三区| 美女被艹到高潮喷水动态| 亚洲欧美日韩东京热| 久久国产精品影院| 丁香欧美五月| 亚洲内射少妇av| 一夜夜www| 一边摸一边抽搐一进一小说| 成人鲁丝片一二三区免费| 国产综合懂色| 99国产精品一区二区三区| 伦理电影大哥的女人| 亚洲成人免费电影在线观看| 色在线成人网| 少妇的逼好多水| 精品免费久久久久久久清纯| 国产成人aa在线观看| 国产精品久久久久久久久免 | 99国产精品一区二区三区| 久久精品91蜜桃| 2021天堂中文幕一二区在线观| 国内揄拍国产精品人妻在线| 国产精品一区二区三区四区久久| 亚洲国产精品成人综合色| 最近在线观看免费完整版| 免费在线观看亚洲国产| 成人av在线播放网站| 免费在线观看亚洲国产| 国产精品国产高清国产av| 精品国产亚洲在线| 国产高清激情床上av| 欧美精品国产亚洲| 99riav亚洲国产免费| 美女高潮的动态| 观看免费一级毛片| 亚洲在线观看片| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 午夜福利欧美成人| av在线天堂中文字幕| 男插女下体视频免费在线播放| 欧美中文日本在线观看视频| 看黄色毛片网站| 午夜视频国产福利| 国产高清视频在线播放一区| 国产精品免费一区二区三区在线| 啪啪无遮挡十八禁网站| 非洲黑人性xxxx精品又粗又长| 色尼玛亚洲综合影院| 免费一级毛片在线播放高清视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文字幕日韩| 国产一区二区在线观看日韩| 欧美性感艳星| 亚洲人成伊人成综合网2020| 国产在线男女| 日韩精品青青久久久久久| 97碰自拍视频| 亚洲自偷自拍三级| 国产黄色小视频在线观看| 在线观看午夜福利视频| 欧美极品一区二区三区四区| 亚洲欧美日韩东京热| 一区二区三区高清视频在线| 波多野结衣高清无吗| 男女床上黄色一级片免费看| 亚洲精品久久国产高清桃花| 色尼玛亚洲综合影院| 亚洲国产日韩欧美精品在线观看| 国产视频一区二区在线看| 亚洲精品一区av在线观看| 九九久久精品国产亚洲av麻豆| or卡值多少钱| 搡老妇女老女人老熟妇| 日韩欧美精品免费久久 | 亚洲乱码一区二区免费版| 欧美黄色片欧美黄色片| 性色avwww在线观看| 首页视频小说图片口味搜索| 怎么达到女性高潮| 熟女电影av网| 日韩中字成人| 90打野战视频偷拍视频| 男人的好看免费观看在线视频| 内地一区二区视频在线| 757午夜福利合集在线观看| 神马国产精品三级电影在线观看| 国产亚洲欧美在线一区二区| a在线观看视频网站| 国产又黄又爽又无遮挡在线| 成人美女网站在线观看视频| 少妇高潮的动态图| 精品久久久久久,| 久久久久久久午夜电影| 99精品久久久久人妻精品| 国产在视频线在精品| 亚洲最大成人中文| 午夜福利在线观看免费完整高清在 | 国产精品一区二区免费欧美| 日本成人三级电影网站| 婷婷六月久久综合丁香| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久久久免 | 动漫黄色视频在线观看| 99国产极品粉嫩在线观看| 亚洲精品一区av在线观看| 亚洲无线在线观看| av天堂在线播放| 亚洲国产高清在线一区二区三| 成人永久免费在线观看视频| 午夜视频国产福利| 91午夜精品亚洲一区二区三区 | 欧美又色又爽又黄视频| 女生性感内裤真人,穿戴方法视频| 俺也久久电影网| 欧美另类亚洲清纯唯美| 91狼人影院| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区三| 丝袜美腿在线中文| 中出人妻视频一区二区| 欧美精品啪啪一区二区三区| 日韩成人在线观看一区二区三区| 久久久成人免费电影| 91在线精品国自产拍蜜月| 久久亚洲真实| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美人成| 国产真实乱freesex| 乱码一卡2卡4卡精品| 国产黄片美女视频| 亚洲精品在线观看二区| 日本精品一区二区三区蜜桃| 99国产精品一区二区蜜桃av| 亚洲av第一区精品v没综合| 国产精品美女特级片免费视频播放器| 久久久精品大字幕| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 亚洲av熟女| 国产精品久久久久久久久免 | 欧美日韩黄片免| 色综合亚洲欧美另类图片| 国产黄色小视频在线观看| 欧美中文日本在线观看视频| 国产熟女xx| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 两人在一起打扑克的视频| 怎么达到女性高潮| 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 久久久久久久精品吃奶| 亚洲精品456在线播放app | 亚洲天堂国产精品一区在线| 黄色日韩在线| 久久国产乱子伦精品免费另类| 亚洲av日韩精品久久久久久密| 国产精品嫩草影院av在线观看 | 18禁裸乳无遮挡免费网站照片| 欧美另类亚洲清纯唯美| 久久久久国产精品人妻aⅴ院| 国产真实伦视频高清在线观看 | 51午夜福利影视在线观看| 99久久成人亚洲精品观看| 1000部很黄的大片| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 国产成人欧美在线观看| 搡老熟女国产l中国老女人| 亚洲精品日韩av片在线观看| 国内毛片毛片毛片毛片毛片| 成年女人毛片免费观看观看9| 亚洲av电影不卡..在线观看| 最近最新免费中文字幕在线| 久久久久久久精品吃奶| 成年女人毛片免费观看观看9| 久久精品国产亚洲av涩爱 | 欧美最新免费一区二区三区 | 亚洲精品色激情综合| 免费搜索国产男女视频| 国产久久久一区二区三区| 免费av不卡在线播放| 久久久久亚洲av毛片大全| 国产一区二区三区在线臀色熟女| 欧美中文日本在线观看视频| 国产探花极品一区二区| 亚洲精品成人久久久久久| 亚洲最大成人av| 在线免费观看不下载黄p国产 | 亚洲色图av天堂| 美女免费视频网站| 超碰av人人做人人爽久久| 日本黄色片子视频| 欧美精品啪啪一区二区三区| www.色视频.com| 天天躁日日操中文字幕| 欧美高清性xxxxhd video| 黄色一级大片看看| 久久久成人免费电影| 俺也久久电影网| 夜夜躁狠狠躁天天躁| 成人永久免费在线观看视频| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 一本精品99久久精品77| 国产精品久久久久久久电影| 亚洲av成人av| 国产精品美女特级片免费视频播放器| 国产激情偷乱视频一区二区| 欧美最新免费一区二区三区 | 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 午夜精品一区二区三区免费看| 亚洲国产日韩欧美精品在线观看| av在线观看视频网站免费| 国产精品自产拍在线观看55亚洲| 欧美黄色淫秽网站| 午夜影院日韩av| 亚洲狠狠婷婷综合久久图片| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av| 男女做爰动态图高潮gif福利片| 亚洲国产欧洲综合997久久,| 一级作爱视频免费观看| 亚洲国产日韩欧美精品在线观看| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 国产欧美日韩精品一区二区| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 国产 一区 欧美 日韩| 永久网站在线| av在线天堂中文字幕| 亚洲人成网站在线播| 久久精品91蜜桃| 久久精品综合一区二区三区| 久久99热6这里只有精品| 国产午夜精品论理片| 美女免费视频网站| 国模一区二区三区四区视频| 99热这里只有是精品在线观看 | 精品国产三级普通话版| 别揉我奶头~嗯~啊~动态视频| 亚洲成av人片在线播放无| 日韩欧美精品v在线| 色精品久久人妻99蜜桃| 久久久精品大字幕| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产aⅴ精品一区二区三区波| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看 | 日韩免费av在线播放| 听说在线观看完整版免费高清| 国产成人欧美在线观看| 99视频精品全部免费 在线| 亚洲av美国av| 国产69精品久久久久777片| 国产黄片美女视频| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 午夜两性在线视频| 女生性感内裤真人,穿戴方法视频| 一进一出抽搐动态| h日本视频在线播放| 一边摸一边抽搐一进一小说| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩无卡精品| 一级黄色大片毛片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线播| 久久精品国产亚洲av天美| 日本成人三级电影网站| 亚洲综合色惰| 欧美成狂野欧美在线观看| 99久久成人亚洲精品观看| 精品人妻一区二区三区麻豆 | 亚洲熟妇熟女久久| 国产高清激情床上av| 日韩高清综合在线| 禁无遮挡网站| 脱女人内裤的视频| 少妇高潮的动态图| ponron亚洲| 男女做爰动态图高潮gif福利片| 亚洲片人在线观看| 久久久久久大精品| 亚洲七黄色美女视频| 久久久久九九精品影院| 如何舔出高潮| 免费观看精品视频网站| 激情在线观看视频在线高清| 好男人电影高清在线观看| 一级a爱片免费观看的视频| 嫩草影院精品99| 欧美+日韩+精品| 久久国产乱子伦精品免费另类| 精品人妻熟女av久视频| 两个人的视频大全免费| 亚洲最大成人手机在线| 国产视频一区二区在线看| 成人午夜高清在线视频| 日韩精品中文字幕看吧| 一个人免费在线观看电影| 欧美日本视频| 久久久精品欧美日韩精品| 日日夜夜操网爽| 欧美黄色片欧美黄色片| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 亚洲国产精品成人综合色| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 内射极品少妇av片p| 最近视频中文字幕2019在线8| 99久久精品一区二区三区| 88av欧美| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 亚洲av美国av| 淫妇啪啪啪对白视频| 亚洲熟妇中文字幕五十中出| 精品国内亚洲2022精品成人| 少妇的逼好多水| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| av黄色大香蕉| 国产精品,欧美在线| 中文字幕人妻熟人妻熟丝袜美| 日本 av在线| 女人被狂操c到高潮| 日韩成人在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 丁香欧美五月| 老司机福利观看| av国产免费在线观看| 极品教师在线视频| 精品国产三级普通话版| 久久精品国产亚洲av天美| 久久婷婷人人爽人人干人人爱| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 老司机福利观看| 久久精品久久久久久噜噜老黄 | 色5月婷婷丁香| 舔av片在线| 午夜日韩欧美国产| 99国产综合亚洲精品| 亚洲一区二区三区不卡视频| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添av毛片 | 天天一区二区日本电影三级| 啪啪无遮挡十八禁网站| 日本成人三级电影网站| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 国产淫片久久久久久久久 | 欧美成人a在线观看| 一个人看的www免费观看视频| 色精品久久人妻99蜜桃| 99热这里只有精品一区| 久久久久久久久中文| av天堂中文字幕网| 久久精品国产自在天天线| 亚洲av第一区精品v没综合| 在线看三级毛片| 国产探花极品一区二区| 日韩成人在线观看一区二区三区| 欧美性猛交黑人性爽| 少妇人妻精品综合一区二区 | 美女被艹到高潮喷水动态| 嫩草影视91久久| 国产91精品成人一区二区三区| 男人和女人高潮做爰伦理| av黄色大香蕉| 九九在线视频观看精品| 超碰av人人做人人爽久久| 午夜久久久久精精品| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 99热精品在线国产| 国产91精品成人一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品亚洲一区二区| 久久性视频一级片| 亚洲精品在线美女| 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 国产精品一区二区免费欧美| 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 乱人视频在线观看| 日韩精品中文字幕看吧| 美女cb高潮喷水在线观看| 国产乱人视频| 欧美3d第一页| 男人舔女人下体高潮全视频| 国产在视频线在精品| 亚洲av美国av| 欧美高清成人免费视频www| 免费大片18禁| 亚洲色图av天堂| 男插女下体视频免费在线播放| 婷婷精品国产亚洲av| 搡老妇女老女人老熟妇| 国产久久久一区二区三区| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 亚洲五月婷婷丁香| 亚洲av二区三区四区| 极品教师在线免费播放| 亚洲人成网站高清观看| 少妇丰满av| 亚洲第一欧美日韩一区二区三区| 人人妻,人人澡人人爽秒播| 禁无遮挡网站| 悠悠久久av| 麻豆成人午夜福利视频| 欧美一区二区精品小视频在线| av女优亚洲男人天堂| 国产高潮美女av| 午夜老司机福利剧场| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 少妇的逼水好多| 国产精品女同一区二区软件 | 首页视频小说图片口味搜索| 亚洲成人久久爱视频| 国产视频一区二区在线看| 午夜免费激情av| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 日本三级黄在线观看| 精品福利观看| 欧美成人性av电影在线观看| 9191精品国产免费久久| 少妇的逼好多水| 天堂网av新在线| 国产免费一级a男人的天堂| 深爱激情五月婷婷| 91麻豆av在线| 日韩精品青青久久久久久| 三级毛片av免费| 日韩欧美 国产精品| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆 | 在线看三级毛片| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 成年版毛片免费区| 成人特级av手机在线观看| 中文字幕久久专区| 欧美精品国产亚洲| 欧美最黄视频在线播放免费| 一二三四社区在线视频社区8| 欧美一级a爱片免费观看看| 亚洲av免费在线观看| 中文在线观看免费www的网站| 精品一区二区免费观看| 欧美国产日韩亚洲一区| 男人舔女人下体高潮全视频| 精品99又大又爽又粗少妇毛片 | 热99在线观看视频| 国产v大片淫在线免费观看| 搡老岳熟女国产| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| bbb黄色大片| 99国产极品粉嫩在线观看| 一进一出抽搐动态| 麻豆久久精品国产亚洲av| 少妇人妻精品综合一区二区 | 国产麻豆成人av免费视频| 自拍偷自拍亚洲精品老妇| 色尼玛亚洲综合影院| 中文字幕熟女人妻在线| 在线观看66精品国产| 欧美色欧美亚洲另类二区| 亚洲综合色惰| 国产精品亚洲美女久久久| 成年人黄色毛片网站| 亚洲自拍偷在线| 又黄又爽又刺激的免费视频.| 欧美一区二区亚洲| 欧美三级亚洲精品| 91麻豆av在线| 琪琪午夜伦伦电影理论片6080| .国产精品久久| 99久久精品国产亚洲精品| 99热只有精品国产| 国产成+人综合+亚洲专区| 国产精华一区二区三区| 精品久久久久久,| 久久久久久久亚洲中文字幕 | 亚洲电影在线观看av| 国产成人欧美在线观看| www.999成人在线观看| 99国产精品一区二区三区| 好男人在线观看高清免费视频| 少妇丰满av| 日韩欧美在线乱码| 日韩高清综合在线| 91av网一区二区| 国产精品野战在线观看| 亚洲精品久久国产高清桃花| 国产av在哪里看| 亚洲在线观看片| 成人午夜高清在线视频| 嫩草影视91久久| 久久人妻av系列| 男女之事视频高清在线观看| 午夜福利高清视频| 直男gayav资源| 国产精品自产拍在线观看55亚洲| 午夜福利在线观看免费完整高清在 | 国内久久婷婷六月综合欲色啪| a级毛片a级免费在线| 国产精品亚洲一级av第二区| 麻豆av噜噜一区二区三区| 五月玫瑰六月丁香| 久久久久国产精品人妻aⅴ院| 欧美日韩福利视频一区二区| 亚洲美女视频黄频| 国产伦在线观看视频一区| 99精品久久久久人妻精品| 欧美午夜高清在线| 欧美激情国产日韩精品一区| 成人性生交大片免费视频hd| 18禁黄网站禁片免费观看直播| 真人做人爱边吃奶动态| 亚洲精品久久国产高清桃花| 日本免费一区二区三区高清不卡| 老司机福利观看| 舔av片在线| ponron亚洲| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆| 看片在线看免费视频| 91午夜精品亚洲一区二区三区 | 又爽又黄a免费视频| 免费观看人在逋| 91午夜精品亚洲一区二区三区 | 国产欧美日韩精品一区二区|