• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility analysis ofWDM links for radar applications

    2015-11-08 07:31:10MEENAFREDYFRANCISSARATHDIPINSRINIVAS
    Defence Technology 2015年1期

    D.MEENA*,F(xiàn)REDY FRANCIS,K.T.SARATH,E.DIPIN,T.SRINIVAS

    aApplied Photonics Lab,ECE Department,Indian Institute of Science(IISc),Bangalore,India

    bElectronics and Radar Development Establishment(LRDE),DRDO(Ministry of Defence),Bangalore,India

    cModel Engineering College,Thrikkakara,Cochin,India

    Received 9 May 2014;revised 27 August2014;accepted 10 September 2014 Available online 26 November 2014

    Feasibility analysis ofWDM links for radar applications

    D.MEENAa,b,*,F(xiàn)REDY FRANCISc,K.T.SARATHc,E.DIPINc,T.SRINIVASa

    aApplied Photonics Lab,ECE Department,Indian Institute of Science(IISc),Bangalore,India

    bElectronics and Radar Development Establishment(LRDE),DRDO(Ministry of Defence),Bangalore,India

    cModel Engineering College,Thrikkakara,Cochin,India

    Received 9 May 2014;revised 27 August2014;accepted 10 September 2014 Available online 26 November 2014

    Active phased array antennasenhances the performanceofmodern radarsby usingmultiple low power transmit/receivemodules in placeof a high power transmitter in conventional radars.Fully distributed phased array radarsdemand the distribution of varioussignals in radio frequency(RF)and digital domain for real time operation.This is normally achieved through complex and bulky coaxial distribution networks.In this w ork,w e intend to tap the inherent advantagesof fiber linksw ith w avelength divisionmultiplexed(WDM)technology and a feasibility study to adapt these links for radar applications is carried out.This is done by analysing various parameters like amp litude,delay,frequency and phase variation response of various radarwaveforms overWDM links.Thisalso includesperformanceevaluation of non-linear frequencymodulation(NLFM)signals,known for better signal to noise ratio(SNR)to specific side lobe levels.NLFM waveforms are further analysed using pulse compression(PC)technique.Link evaluation isalso carried outusinga standard simulation environmentand is then experimentally verifiedwith otherwaveforms like RF continuouswave(CW),pulsed RF and digital signals.Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation.During evaluation of digital signals,variable transient effects for differentduty cycles are observed from an amp lifier configuration.A suppressionmethod is proposed to elim inate this transienteffects.Further,the link delay response is investigated using different lengths of fiber spools.It can be inferred from the experimental results thatWDM links are capable of handling various signals significant to radar applications.

    WDM;Radar;RF over fiber;EDFA transient;Delay;CW;Pulsed CW;NLFM

    1.Introduction

    Conventional radar signal distribution networks are designed w ith coaxial cable or space-feeds,which make the system bulky,complex,massive and inflexible[1,2].The inherentadvantagesof optical link is reduced size,weightand loss,low attenuation,immunity to electro-magnetic interference(EM I),and high bandw idth capacity[3].Along w ith the advancem ents in m icrowave photonic device technology,the possibility for distribution of signals in optical domain had been opened up.

    During 1980's,the components capable of working in the microwave domain emerged.Pan[2]describesan optical link capable of working at 5 GHz.By 1984,a Ti:LiNbO3 Mach-Zehnder interferometer type external modulator capable of working at 17-GHz was developed towork in 830 nm[4].In 1987,Stephensetal.[5]described a complete radio over fiber(RoF)link while com paring the performances of directmodulation and external modulation using loss,SNR(signal to noise ratio),linearity,etc.,as the parameters for 4.1-4.7 GHz and 2.0-12.0 GHz.In 1988,the applications of radar X-band signal in fiberoptic linkswere studied by a team in Malibu[6]. They were primarily interested in providing RF delay using fiber optic link for application in radar phase noise testsetandradar repeater test.Link characterisation was also done for AM and FM modulations in direct and externalmodulations using 1300 nm InGaAs laser.Cox et al.[7]described an analytical lumped-element small-signalmodel of directly and externallymodulated analog fiberoptic link.The designed link was described to be superior to others in providing a maximum bandw idth of 22MHz for externallymodulated link(11 dB transducer gain,6 dB noise figure)and 1 GHz bandw idth for directly modulated link(-14 dB transducer gain,33 dB noise margin).They theoretically proved that the efficiency of externally modulated M ach-Zehnder modulator(MZM)operated at moderate bandw idth w ith high optical power is several times higher than that of directmodulation. Due to the versatility and practicality of optical links,soon resultswereavailable in introducing true timedelays in phased array antennas[8].The paper also provides a method to overcome beam squinting and describes the use of fiber delay loops in introducing a phase delay in m icrowave regime,which is expected to have a great impact on phased array antenna construction.It isonly amatter of time that theoptical system finds its way into the avionics industry,where light weight and immunity to EM I are highly desirable.Slaveski et al.[9]discussed the transm ission of analog AM and FM signals over a WDM link along w ith FSK digitalmodulated signalbetween antennasand on-board avionic equipment.The resultswere prom ising w ith insertion loss of-55 dB,carrier to noise ratio(CNR)and SNR of more than 40 dB,total harmonic distortion(THD)of less than 7%and BER ofmore than 1.85e-07.This proves that the link worksasefficiently as coaxial cable in antenna-cockpit link w ith the additional benefits ofWDM optical systems.

    In 2007,the researchers at Thales reported about the feasibility study of using RF photonics for radar applications[1],which proved that the commercial optical components are matured enough to carry radar signals.They tested the linkw ith local oscillator(LO)and pulsed RF signalsand,they designed the directmodulated narrow band and wide band links using active and reactive matching networks.In this work they brought the results fordirectmodulated and externalmodulated link performance in termsof frequency response,noise spectral density curve vs RF frequency curve.They used CWDM(coarse WDM)optical link as part of a demonstrator architecture.The experiments prove w ithout doubt that the optical com ponents havem atured enough to be used in m ilitary.

    Ballal et al.performed a comparative study of analog and digital RoF links in terms of their merits and demerits[10]. They mentioned that various disadvantages,such as nonlinearity and chromatic dispersion,of analog RoF link can bemitigated by use of digital RoF link.Bit error rate(BER)and SNR for various inputschemes,such asBPSK,QPSK and 16 QAM,were analysed for analog and digital links,and their comparison was presented.Digital RoF link shows improved performance in terms of BER parameters.

    More studies followed as in Ref.[11],which characterized a direct modulated optical link for X-Band chirp modulated radar signal.Further,the link was inserted w ithin Salex-Galileo LPI radar and the results were obtained w ithout any performance degradation.Yao[12]described the possibility of RoF distribution along w ith photonic true time delay beam forming.Ghelfi et al.[13]proposed a fully photonics-based coherent radar,exploring usage of optical components to the maximum extent,rather than using photonic componentsonly for distribution of signals.This is achieved by generating of stable radio frequency signalshaving arbitrary waveformsand detecting the signals by direct digitization w ithout downconversion.Xu et al.[14]described about the advantage of using photonic techniques to generate and distribute the m icrowave signals and also addressed various challenges in system realization.

    In thispaper,webring outothermeasurementresultswithRF signals in termsof amplitude,delay,frequency and phasevariationsoccurring inWDM links.As thephased array antennahas large number of transmit/receivemodules,a splitterw ith large splitting ratio isused to distribute thesignals.To compensate for thissplitter loss,anopticalamplifier is required in theWDM link configuration.Modern multifunction radar uses variable duty cycle signals for itsnormalmode of operation.Wealso analyse the effectsof digital signals in amplifier basedWDM linksand observed the transient effects w ith variable duty cycle digital signals.We also discuss a transient suppressionmethod for the transm ission ofvariableduty cycledigitalsignalsover fiber links. During experimentalevaluation,the differentsignalssignificant to radar,such asCW,pulsed CW and NLFM waveforms,are fed through theWDM link.Themeasurementsare repeatedbyusing differentfiberspool lengthstomeasuresignaldelay,which tallies w ith the mathematically computed signal delay value.Even though the experiments are carried out for measurement of various parameters,we mainly focus on amplitude and delay variationsw ithin the scope of this paper.Butsome of themeasurement results,such as frequency vs.time and phase vs.time plots,are considered to ensure the link adaptability to different waveforms.

    2.Experiment

    In a radar system,the echo signals are converted to intermediate frequency(IF)signals during receive operation.This down conversion process requires different local oscillator(LO)signals at each receiver module.Additionally,active phased array requires the distribution of digital signalsof a bitrate<1 M bit/s for control and m onitoring purpose.A phase reference signal,having a stringent inter-element phase error requirement,isalso presented to ensuresynchronousoperation amongmultiple transmit/receivemodules.

    Fig.1 showsan experimental setup.RF signal isexternally modulated using a CW laser operating at1550 nm and Mach-Zehndermodulator(MZM),while the digitalsignal isdirectly modulated using a DFB laser.

    The digital signals in differential format are normally used in a radar system to reduce the commonmode noise occurring in the transm ission line.Therefore,in order to test this kind of signal,a single ended digital signal is first converted to differential signal format using a RS422 transm itter module.A differential optical transmittermodule then directlymodulatesa DFB laser to produce themodulated optical output.These signals are then multiplexed using a 2:1 arrayed waveguide grating(AWG)typemultiplexer.Finally at the receiver stage,the signals are demultiplexed and retrieved using respective detector modules.The different parameters associated with WDM link are listed in Table 1.

    Fig.2 shows an experimental set-up.A radar transm itter operating in 2-4 GHz is used as the RF signal source.A digital signal sim ilar to synchronization signal in a real time radar system is generated using the digital signal source.The spectra of differentwaveforms are observed using a real time spectrum analyser(RTSA).This configuration helped in measuring the attenuation valuesassociated w ith transmission of RF signals over a WDM link.The delay occurring in the link wasmeasured using a digital storage oscilloscope(DSO). The experiment was repeated using different kinds of radar waveforms like continuous wave(CW),pulsed continuous wave and NLFM waveforms.Other RTSA plots used for the m easurement include normal spectral plot,digital phosphor technology(DPX)[15]waveforms,amp litude vs.time(envelope)p lot,frequency vs.time p lot,and phase vs.time plot.

    Fig.1.Block diagram ofWDM link-experimental set-up.

    Fig.2.Measurementalset-up.1-differentialsignal-opticalsignal converter;2-differentialsignalgenerator;3-digitalsignalsource;4-DSO;5-RF over fiber receiver;6-spectrum analyzer;7-radar transmitter;8-mux/demux;9-RFover fiber transm itter.

    Fig.3.Waveform spectrum of continuous input signal.

    Table 1 Parameters of optical link.

    3.Resu lts

    A RF signal w ith a frequency of 3.1 GHz and amplitude -12.43 dBm is used as the source signal in WDM link for measuring CW-RFwaveform parameters.Figs.3 and 4 show thewaveform spectra for a continuouswave input and output signals,respectively.It can be observed from Fig.3 that the input spectra is reproduced at the receiver end,retaining the critical central frequency and bandw idth criteria.As the critical waveform parameters are retained at the receiver end,we now focus on other parameters like amp litude,delay,frequency and phase for furtheranalysis.A few of theexperiment results are included in the follow ing sections.

    Figs.5 and 6 show the DPX waveforms of pulsed continuouswave signal at link inputand output.Again output signal is observed w ith a constant attenuation of 27.52 dB w ithout significant distortion.

    Table 2 summarizes the measured results of different test cases.It should be noted that the link incurred a net loss of approxim ately 27 dB,which is independent of waveforms.

    It can be observed thatboth the optical signals(at1310 and 1550 nm)were continuously present throughout the experiment,confirming that there isno crosstalk between the signals in WDM FOL[9].The measurement results of an intensity modulation-direct detection,linearly frequency-modulated(LFM)signal and X-band radar signal over a single analog link were discussed in Ref.[11].But this paper dealsw ith anexternally modulated WDM link using other waveforms like CW,pulsed CW and NLFM radar signals.

    A fter the evaluation of amp litude variation w ith various radar waveforms,the link is evaluated further for other parameters like phase,frequency and delay.Fig.7 shows the phase variation of continuous signal(3.1 GHz)at link output w ith respect to time.It can be observed that the linear phase relation ismaintained while the signal is transm itted through the link.

    NLFM waveformsare used inmodern radarsow ing to their improved security and better side lobe reduction[16].

    Fig.8 shows output NLFM waveform.It can be seen that the envelope is faithfully reproduced.

    Figs.9 and 10 show the frequency vs.timeofNLFM inputand outputsignals.Thevariation in frequencywith respectto timecan be observed to be nonlinear,and controlled by the non-linear coefficientsused in thegeneration ofwaveform.Non-linear frequency variation of the inputcan be seen to be faithfully reproduced at the link output.But spectrum output alone cannot represent the side lobe level requirements.Therefore a pulse compression(PC)technique isperformed on the captured samples Iand Q(using RTSA)ofWDM outputsignal.

    Fig.4.Waveform spectrum of continuous output signal.

    Fig.6.DPX waveform of pulsed output signal.

    Fig.5.DPX waveform of pulsed input signal.

    Table 2 Measured values.

    3.1.Pulse compression of NLFM waveform

    During measurement of NLFM waveform,the real time samples Iand Q(in phase,quadrature)of output signal are captured using RTSA and processed w ith necessary NLFM coefficients to obtain a pulse compressed output of both the WDM input and the output signals.Figs.11 and 12 show the pulse com pressed results(red(in the web version))of input and output signals along w ith corresponding envelope of NLFM signals(green(in the web version)).Figs.11 and 12 show the expanded view of a single output pulse,whereas the actual transm it signal is a burst of a specific number of continuous pulses.A particular radar application requires a side lobe level of approximately 20 dB to attain a certain level of radar performance.But the resultantoutputsignal side lobe level isapproximately 25 dB(Fig.12),satisfying the required performance level.

    3.2.Simulation results

    The amplitude variation for the sameWDM linkmodel is evaluated in a standard simulation environment(OptiSystem)to substantiate the experimental results(Fig.13).A RF signal in GHz range and a digital signal in MHz range are used as input signals for evaluation purpose.The RF signal is externally modulated using a Mach-Zehnder modulator.Since OptiSystem does notsupport comp lex waveform s like NLFM,LFM,etc.,amathematicalmodelof M ach-Zehndermodulator,which supports the generation and modulation of signalsw ith various controlling parameters,was developed in MATLAB.This model is used as a co-simulation component in Opti-System environment along w ith other components for link evaluation.The modulation part of the sam e component is used for evaluation of CW RF signal.The obtained results show a link loss of~27 dB,tallying w ith the experimental results(refer Table 3)for inputof-12.182 dBm and outputof -39.479 dBm.

    Fig.7.Phase vs.time for outputwaveform of CW radar signal.

    Fig.8.Amplitude vs.time for outputwaveform of NLFM signal.

    Fig.9.Frequency vs.time for inputwaveform of NLFM signal.

    Fig.10.Frequency vs.time for outputwaveform of NLFM signal.

    Fig.11.Envelope of inputRFand pulse compressed output-expanded view.

    Fig.12.Envelope ofoutputRFand pulse compressed output-expanded view.

    3.3.Delaymeasurement for WDM link

    During the measurement of delay,a pulsed RF signal,(pulsew idth of 1msand period of 10ms)is divided into two by using a 2-way power divider and given simultaneously to DSO and WDM input.The WDM output is fed to another DSO channel.The cables used were calibrated prior to experiment.

    Figs.14 and 15 show the DSO outputs for 500 m and 1000 m long optical fiber links,respectively.The pulses are delayed by 2.56 and 5 ms for 500 m and 1000 m long links,respectively.

    Fig.13.WDM co-simulation model in standard optical simulation software environment.

    Fig.14.Delay of pulsed RF signalw ith fiber length of 500 m.

    Table 3 Link loss.

    4.Discussion on results

    4.1.Amplitude measurement

    From Table 2,it isevident that,for the differentkindsof RF signals,theWDM link introduced an attenuation of approximately 27 dB,which can be attributed to the losses at various components,as given in Table 4.This parameter is very important due to the fact that any variation in signal parameters of the output signal affect the performance of the radar when WDM links are used as a part of the distribution networks.Since this attenuation value is determ inistic,it can be compensated either by RF or optical amplifiers as per the requirements.

    The total lossof 27 dB observed w ith analogWDM links is found to be in consistence w ith the results in Ref.[7].Even though the directmodulation is cheaper,simpler and offers a higher conversion efficiency,it can cause frequency modulation at its optical output due to themodulation of refractive index of laser cavity by themodulating signal.This spurious frequencymodulation distorts the frequencymodulation of the signal[1,11].Themeasured results show s that the externallymodulated analog linksare free from these distortions,asalso shown for FM and AM analog links[9]w ith external modulation.

    4.2.Delaymeasurement

    The delay incurred in an optical link is primary attributed to the refractive index and length of fiber.Component propagation delaysare smalland hence neglected.A singlemode fiber w ith an effective refractive index of 1.5 and carrying a 1550 nm optical signal isused formeasurement.Theexpected delay is

    where l is the length of fiber;v=c/n is the speed of light in optical fiber;c is the speed of light in vacuum(3×108m/s);and n is the effective refractive index of optical fiber. Therefore,

    1)Theoretical delay for 500m long fiber is around 2.5ms.

    2)Theoretical delay for 1000 m long fiber is around 5 ms.

    These values are also found to be comparable to the measured results,asshown in Figs.13 and 14 and summarized in Table 5.The delay parameter is of prim ary importance in radar systems,and any delay could be taken as Doppler shift. As the optical delay is determ inistic,itcan be compensated in an efficientmanner.

    Fig.15.Delay of pulsed RF signalwith fiber length of 1000m.

    Fig.16.Schematic diagram of experimental set-up used for EDFA transient effectmeasurement.

    Table 4 Loss budgetofWDM link.

    Table 5 Delays for various test cases.

    5.Digital signal:m easured resu lts and discussion

    Digital signals are used in radar systems for control and monitoring purpose.These signalsmay vary in their bit-rate and duty cycle.The measured result of direct modulated digital signal(Fig.1)was found to be sim ilar to that of the RF signal,where the insertion loss associated w ith RoF transm it/ receivem odules were replaced w ith the conversion losses of DFB laser and detector.

    Signal distribution in a large array demands the use of optical amplifiers to compensate these losses incurred for splitting a signal to a large number of transmit/receivemodules.These losses increases w ith splitting ratio.The splitting loss can be computed as10 log N,where N being the splitting ratio,i.e.,1:64,can cause a signal attenuation of 18 dB along the link.Thus optical amplifiers are used to boost the signal level.Er-doped fiber am plifiers(EDFA)is comm only used for this purpose.But itwasobserved that the digital signals suffer from transient effectw ith saturated EDFA as reported in Refs.[17,18].Additional linksmay require gain flattening circuits based on the application.Singh etal.[19]presented a Raman-EDFA hybrid optical amplifier configuration.This amplifier configuration provides a flat gain of greater than 10 dB w ithout any gain flattening circuits.But our work focus on variable transients observed with different duty cycle signals. This can degrade the digital signal transmission through fiber link.

    A configuration shown in Fig.16 is used to analyse the transient effect while amplifying the digital signals in the optical links.A 1530 nm laser diode(1mW)ismodulated by a 2 kHz digital signal.Except for EDFA,thisset-up isconsisted by the components available as parts of a commercialWDM test unit,which is capable of generating variable duty cycle pulse signals.The laser output is amplified using an EDFA operating in the saturation region w ith a pump power of 30mW(980 nm).EDFA used is10m in length,Er lifetime is10 ms,Er ion density is 2×1025m-3,numerical aperture is 0.24,core radius is 2.2μm,and Er doping radius is 2.2μm. The output is then passed on to aphoto detectorofWDM unit,and the electrical output is observed using a DSO.

    Fig.17 shows the transient effect observed in the output digital signal.The spikes occurring at the output pulses are due to transient effects.As the digital signals used in radar system are primarily used for control and synchronizing,any change in signal characteristics can seriously degrade the beam formation and radar operation.

    Additionally,the pulsed signals used for synchronization are produced based on a transmitwaveforms that are random in nature and have different duty cycles.The transient effects for differentduty cyclesare simulated and isshown in Fig.18. It can be observed that the transient peaksand slope decrease w ith the increase in duty cycle,which can be explained to be due to greater time available for EDFA gain recovery.These transients are follow ing an exponential curve mentioned in Ref.[13].The m athem atical derivation of the sam e is not included in this paper.

    Fig.19 shows the measured transient result for a digital signalw ith pulsewidth of 300μs and period of 500μs.

    In addition,itwasobserved that the effectof transientscan be reduced by multiplexing an additional signal,w ith a complementary pulse,along the link w ith a nearby wavelength(Fig.20).

    Fig.17.Measured transients for 2 kHz pulsed signal-input(yellow)and output(blue).

    Fig.18.EDFA Transients w ith 10,20 and 50%duty cycle(2 KHz pulsed signals,pump power at 60 mW).

    Fig.19.Transient effect in a digital signal of duty cycle 60%input(blue),output(yellow).

    Fig.20.Transient suppressed output.

    6.Conclusions

    WDM-based optical networks are preferred over the conventional signal distribution schemes ow ing to their physical compactness,low loss,light weight and immunity to EM I. Conventional signal distribution network adds considerably to the system complexity and bulkiness of the active phased arrays.Itmakes the system massive and demandshigh capacity drive mechanisms for rotary joints.This paper explored the feasibility of using optical WDM link for distribution of different types of RF and digital signals,hence making the system light and agile.The RF signals like CW,pulsed CW,and NLFM waveforms generated from a radar transm itterwas used for experimental measurements.The results wereobserved w ith a finite attenuation due to various com ponent losses incurred in the link,irrespectiveof the inputsignalused. The amplitude variations for continuous wave signals were verified using the simulation results.Since the link loss is fixed,fora particularnetwork itcan easily be compensated by using the amplifiers in the electrical or optical domain.

    The experimental results of NLFM waveform was further verified for side lobe requirementsby using pulse compression(PC)techniques.The experiments were also repeated with various fiber spools.The results were observed w ith a delay proportional to the length of the fiber spool.Therefore,delay and attenuation,being determ inistic parameters,can be compensated based on the application requirements.

    Further,the paper also discussed about the transienteffects associated w ith digital signals of variable duty cycle.This transient effects can be reduced by adding an additional complementary signal in the WDM link.

    This kind of optical distribution helps in the generation of radar signals outside antenna arrays and their distribution through optical rotary joints.Thus it helps in providing a solution free from EM I/EMC related issues.

    [1]Garenaux K,Merlet T,AlouiniM,Lopez J,VodjdaniN,Boula-Picard R,et al.Recent breakthroughs in RF photonics for radar systems.Aerosp Electron Syst M ag IEEE 2007;22(2):3-8.

    [2]Pan J.5-GHzw ideband fiber-optic link.OSATechnicalDigestSeriesOpt Fiber Commun 1983.paper TuK2.

    [3]Capmany Jos'e,Dalma Novak.M icrowave photonics combines two worlds.Nat Photonics 2007;1(6):319-30.

    [4]Gee CM,Thurmond GD,Yen HW.17-GHz bandw idth electro-optic modulator.Appl Phys Lett1983;43(11):998-1000.

    [5]StephensW illiam E,Joseph Thomas R.System characteristics of direct modulated and externallymodulated RF fiber-optic links.Light Technol 1987;5(3):380-7.

    [6]Gee CM,Newberg IL,Thurmond GD,Yen HW.X-Bana Rf fiber optic links.In:Cambridge Symposium-Fiber/LASE'86.International Society for Opticsand Photonics;1987.p.64-8.

    [7]Cox III,Charles H,Betts Gary,Johnson Leonard M.An analytic and experimental comparison of direct and externalmodulation in analog fiber-optic links.M icrow Theory Tech IEEE Trans 1990;38(5):501-9.

    [8]Frigyes Istvan,Seeds AJ.Optically generated true-time delay in phasedarray antennas.M icrow Theory Tech IEEE Trans1995;43(9):2378-86.

    [9]Slaveski Filip,Sluss James,Atiquzzaman Mohammed,Nguyen Hung,Ngo Duc.Transm ission of RF signals over optical fiber for avionics applications.In:21st Digital avionics systems Conference,2002.Proceedings.IEEE,vol.1;2002.4D2-1.

    [10]BallalBeenaR,NemaShikha.Performancecomparisonofanaloganddigital radio over fiber link.Int JComput SciEng Technol(IJCSET)2012;3:6.

    [11]Pardini Rossano,Bruno Umberto,Izzo Roberto.Characterization of a fiber-optic directmodulation analog linkw ith chirp radarsignals.In:Radar Conference,2009.EuRAD 2009.European,IEEE;2009.p.449-52.

    [12]Yao JP.A tutorial on m icrowave photonics.IEEE Photonics Soc New sl 2012;26(3):5-12.

    [13]Ghelfi Paolo,Laghezza Francesco,Scotti Filippo,Serafino Giovanni,Capria Amerigo,Pinna Sergio,et al.A fully photonics-based coherent radar system.Nature 2014;507(7492):341-5.

    [14]Xu K,Wang RX,Dai YT,Yin FF,Li JQ,Ji YF,et al.M icrowave photonics:radio-over-fiber links,systems,and applications[Invited].Photonics Res 2014;2(4):B54-63.

    [15]http://www2.tek.com/cmsw pt/tidetails.lotr?ct=TI&cs=pri&ci=4540[Retrieved on 30.08.2013].

    [16]Vizitiu Iulian-Constantin.Sidelobe reduction in the pulse-compression radarusing synthesis of NLFM laws.Int JAntennas Propag 2013:2013.[17]Kuroda Keiji,Yoshikuni Yuzo.Single wavelength pump-probe technique to measure population recovery in a continuously pumped fiber amplifier.Opt Commun 2013;300:96-9.

    [18]Kuroda Keiji,Sasahira Kohnosuke,Yoshikuni Yuzo.Gain saturation of a CW-pumped erbium-doped fiber amplifier for nanosecond pulses.Opt Fiber Technol 2012;18(1):44-6.

    [19]Singh Sim ranjit,Kaler RS.Flat-gain L-band Raman-EDFA hybrid optical amplifier for densewavelength divisionmultiplexed system.Photonics Technol Lett IEEE 2013;25(3):250-2.

    .Electronicsand Radar Development Establishment(LRDE),DRDO(M inistry of Defence),Bangalore,India.

    E-mail addresses:dmeenasatish@gmail.com,meenad@ece.iisc.ernet.in(D.MEENA).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.09.002

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.A ll rights reserved.

    久久这里只有精品19| 国产精品久久久av美女十八| 国产无遮挡羞羞视频在线观看| 女同久久另类99精品国产91| 欧美激情久久久久久爽电影 | 国产又爽黄色视频| 在线观看一区二区三区激情| 一级a爱片免费观看的视频| 久久国产乱子伦精品免费另类| 久久久国产欧美日韩av| 波多野结衣av一区二区av| 精品一品国产午夜福利视频| 亚洲伊人色综图| 国产精品秋霞免费鲁丝片| 国产国语露脸激情在线看| 久久久精品国产亚洲av高清涩受| 免费观看a级毛片全部| 久久草成人影院| 色尼玛亚洲综合影院| 国产高清国产精品国产三级| 韩国av一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| www.自偷自拍.com| 99久久人妻综合| 国产日韩欧美亚洲二区| 日韩成人在线观看一区二区三区| 国产欧美日韩一区二区三| 亚洲视频免费观看视频| 久久精品人人爽人人爽视色| 免费女性裸体啪啪无遮挡网站| 90打野战视频偷拍视频| 99热只有精品国产| 叶爱在线成人免费视频播放| 国产成人精品在线电影| 老司机在亚洲福利影院| 成年人午夜在线观看视频| 久久青草综合色| 搡老熟女国产l中国老女人| 美国免费a级毛片| 下体分泌物呈黄色| 国产成人欧美| 免费黄频网站在线观看国产| 国产成人系列免费观看| 欧美精品高潮呻吟av久久| 亚洲成人国产一区在线观看| 亚洲第一av免费看| 一区二区日韩欧美中文字幕| ponron亚洲| 亚洲精品中文字幕在线视频| 免费在线观看影片大全网站| 精品人妻1区二区| 天天影视国产精品| 国产不卡av网站在线观看| 久久久久精品人妻al黑| 日韩熟女老妇一区二区性免费视频| 国产精华一区二区三区| 香蕉国产在线看| 视频区图区小说| 可以免费在线观看a视频的电影网站| 色综合欧美亚洲国产小说| 国产精品 欧美亚洲| 亚洲精品久久午夜乱码| 99国产精品99久久久久| 美国免费a级毛片| 女性被躁到高潮视频| 亚洲中文字幕日韩| 18禁观看日本| 天天影视国产精品| 人人妻人人爽人人添夜夜欢视频| 99精国产麻豆久久婷婷| 麻豆av在线久日| 欧美人与性动交α欧美精品济南到| 久久久国产成人免费| 亚洲人成伊人成综合网2020| 精品欧美一区二区三区在线| 国产aⅴ精品一区二区三区波| 日日摸夜夜添夜夜添小说| 两性午夜刺激爽爽歪歪视频在线观看 | 久热爱精品视频在线9| 婷婷成人精品国产| 精品视频人人做人人爽| 日韩大码丰满熟妇| 一级毛片精品| 色在线成人网| 亚洲中文av在线| 大香蕉久久网| 黄片播放在线免费| 久久影院123| 日韩免费高清中文字幕av| 国产一区二区三区视频了| 女同久久另类99精品国产91| 欧美亚洲日本最大视频资源| 欧美日韩黄片免| 久久久久久免费高清国产稀缺| 99国产极品粉嫩在线观看| 日韩精品免费视频一区二区三区| 免费在线观看完整版高清| 国产精品自产拍在线观看55亚洲 | av电影中文网址| 国产精品影院久久| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美国产一区二区入口| 最近最新中文字幕大全免费视频| 人人澡人人妻人| 亚洲精品国产区一区二| 韩国精品一区二区三区| 男人操女人黄网站| 久久亚洲真实| 欧美乱妇无乱码| 中出人妻视频一区二区| 91老司机精品| 欧美精品啪啪一区二区三区| 精品亚洲成国产av| 亚洲五月天丁香| 国产高清videossex| 精品少妇一区二区三区视频日本电影| 人妻一区二区av| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频 | 亚洲午夜理论影院| avwww免费| a级毛片在线看网站| 久久ye,这里只有精品| 日本黄色视频三级网站网址 | 韩国av一区二区三区四区| 丁香欧美五月| 欧美日韩成人在线一区二区| 好看av亚洲va欧美ⅴa在| 日本欧美视频一区| 制服诱惑二区| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 中文欧美无线码| 免费在线观看日本一区| 国产精品久久久av美女十八| 午夜精品在线福利| av不卡在线播放| 亚洲片人在线观看| 久久久国产成人免费| netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区免费开放| 好看av亚洲va欧美ⅴa在| avwww免费| 国产一区有黄有色的免费视频| 国产免费现黄频在线看| 国产97色在线日韩免费| 九色亚洲精品在线播放| 亚洲熟妇中文字幕五十中出 | 王馨瑶露胸无遮挡在线观看| 久久精品aⅴ一区二区三区四区| 十八禁人妻一区二区| 黄色怎么调成土黄色| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 可以免费在线观看a视频的电影网站| 水蜜桃什么品种好| 一个人免费在线观看的高清视频| 法律面前人人平等表现在哪些方面| 久久香蕉精品热| 99精品欧美一区二区三区四区| 精品福利永久在线观看| 国产91精品成人一区二区三区| 老司机亚洲免费影院| a级毛片黄视频| 大型黄色视频在线免费观看| 91精品三级在线观看| 一夜夜www| 波多野结衣一区麻豆| 国产区一区二久久| 亚洲精品久久午夜乱码| 侵犯人妻中文字幕一二三四区| 极品少妇高潮喷水抽搐| 亚洲精品美女久久av网站| 色精品久久人妻99蜜桃| 18禁裸乳无遮挡动漫免费视频| 国产1区2区3区精品| 精品国产亚洲在线| 午夜福利欧美成人| 久久人妻福利社区极品人妻图片| 日本wwww免费看| 日日爽夜夜爽网站| 动漫黄色视频在线观看| av视频免费观看在线观看| 国产色视频综合| 韩国av一区二区三区四区| 两个人免费观看高清视频| 99香蕉大伊视频| 欧美国产精品va在线观看不卡| 亚洲av美国av| 99久久综合精品五月天人人| ponron亚洲| 亚洲一码二码三码区别大吗| 国精品久久久久久国模美| 色在线成人网| av福利片在线| 成年版毛片免费区| 免费高清在线观看日韩| 夜夜躁狠狠躁天天躁| 波多野结衣av一区二区av| 桃红色精品国产亚洲av| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 高清av免费在线| 老司机靠b影院| 香蕉丝袜av| 久久ye,这里只有精品| 日韩制服丝袜自拍偷拍| 欧美在线一区亚洲| av国产精品久久久久影院| 老熟妇仑乱视频hdxx| 欧美激情高清一区二区三区| 欧美久久黑人一区二区| av线在线观看网站| 人成视频在线观看免费观看| 一级毛片女人18水好多| 丁香欧美五月| av福利片在线| 老司机亚洲免费影院| 亚洲第一青青草原| 久久久久视频综合| 成人av一区二区三区在线看| 国产伦人伦偷精品视频| 国产成人av激情在线播放| 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| 丰满迷人的少妇在线观看| 飞空精品影院首页| 在线看a的网站| 国产成人av激情在线播放| 嫩草影视91久久| 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 人妻 亚洲 视频| 午夜精品久久久久久毛片777| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 人人妻人人澡人人看| 欧美国产精品va在线观看不卡| 久久中文看片网| 黄色片一级片一级黄色片| 欧美 亚洲 国产 日韩一| 国产精品免费一区二区三区在线 | 在线永久观看黄色视频| 下体分泌物呈黄色| videos熟女内射| 黄片小视频在线播放| 亚洲av日韩在线播放| 一进一出抽搐动态| 精品少妇久久久久久888优播| 少妇 在线观看| 一级a爱片免费观看的视频| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 欧美精品av麻豆av| 国产精品99久久99久久久不卡| 久久狼人影院| 欧美在线一区亚洲| 精品欧美一区二区三区在线| 又黄又粗又硬又大视频| 国产野战对白在线观看| 啦啦啦 在线观看视频| 国产成人影院久久av| 黑人猛操日本美女一级片| 国产精品98久久久久久宅男小说| ponron亚洲| 成人手机av| a级毛片在线看网站| 亚洲av第一区精品v没综合| 亚洲av电影在线进入| 亚洲av成人av| 国产精品二区激情视频| 成年人免费黄色播放视频| 国产精品国产av在线观看| 男女床上黄色一级片免费看| 自线自在国产av| 91成人精品电影| 国产免费现黄频在线看| 国产麻豆69| netflix在线观看网站| 国产亚洲精品第一综合不卡| 高清黄色对白视频在线免费看| 欧美国产精品一级二级三级| 超碰97精品在线观看| 久久国产精品大桥未久av| 大片电影免费在线观看免费| 国产亚洲一区二区精品| 日韩三级视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲专区字幕在线| 午夜福利在线免费观看网站| 亚洲中文日韩欧美视频| 女性生殖器流出的白浆| 精品第一国产精品| 99热只有精品国产| 多毛熟女@视频| 国产野战对白在线观看| 两人在一起打扑克的视频| 女人被躁到高潮嗷嗷叫费观| 国产成人影院久久av| 一边摸一边抽搐一进一出视频| 国产男女超爽视频在线观看| 少妇猛男粗大的猛烈进出视频| a级片在线免费高清观看视频| 欧美成人免费av一区二区三区 | 大香蕉久久网| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 久久人妻av系列| 国产蜜桃级精品一区二区三区 | 亚洲,欧美精品.| 校园春色视频在线观看| avwww免费| 亚洲第一欧美日韩一区二区三区| 妹子高潮喷水视频| 成年人免费黄色播放视频| 性色av乱码一区二区三区2| 桃红色精品国产亚洲av| 脱女人内裤的视频| 国产高清激情床上av| 一进一出抽搐动态| 香蕉久久夜色| 久久精品aⅴ一区二区三区四区| 中国美女看黄片| xxxhd国产人妻xxx| 亚洲少妇的诱惑av| 日韩人妻精品一区2区三区| 国产99久久九九免费精品| 精品久久久久久,| 黄片大片在线免费观看| 咕卡用的链子| 国产av一区二区精品久久| 国产精品美女特级片免费视频播放器 | 久久 成人 亚洲| 成人国产一区最新在线观看| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 中文欧美无线码| 亚洲三区欧美一区| 如日韩欧美国产精品一区二区三区| 女同久久另类99精品国产91| 男人的好看免费观看在线视频 | 国产蜜桃级精品一区二区三区 | 啦啦啦 在线观看视频| 夜夜躁狠狠躁天天躁| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| 久久中文看片网| 制服人妻中文乱码| 中文字幕人妻丝袜一区二区| 欧美最黄视频在线播放免费 | 亚洲九九香蕉| 一本大道久久a久久精品| 日韩熟女老妇一区二区性免费视频| 窝窝影院91人妻| 99re6热这里在线精品视频| 黄片播放在线免费| 成年人免费黄色播放视频| 一二三四社区在线视频社区8| 搡老乐熟女国产| 久久精品国产亚洲av香蕉五月 | 天堂√8在线中文| 久久热在线av| 国产精品二区激情视频| 窝窝影院91人妻| 在线天堂中文资源库| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 亚洲av成人一区二区三| 中文字幕人妻丝袜制服| 久久精品亚洲熟妇少妇任你| 国产精品久久久久久人妻精品电影| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 韩国av一区二区三区四区| 极品教师在线免费播放| 免费日韩欧美在线观看| 久久亚洲真实| 日韩中文字幕欧美一区二区| 欧美人与性动交α欧美精品济南到| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 在线观看免费午夜福利视频| 一级a爱视频在线免费观看| 免费高清在线观看日韩| 正在播放国产对白刺激| 成人av一区二区三区在线看| 免费看十八禁软件| 一级毛片高清免费大全| 中文字幕人妻丝袜一区二区| 可以免费在线观看a视频的电影网站| 99久久人妻综合| 亚洲人成电影免费在线| 国产精品免费视频内射| 国产精品av久久久久免费| 国产激情欧美一区二区| 在线永久观看黄色视频| 夜夜夜夜夜久久久久| 妹子高潮喷水视频| 少妇裸体淫交视频免费看高清 | 亚洲成a人片在线一区二区| 手机成人av网站| 国产精品免费一区二区三区在线 | 免费观看精品视频网站| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看| 窝窝影院91人妻| 午夜影院日韩av| 最新的欧美精品一区二区| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 国产在线一区二区三区精| 日韩大码丰满熟妇| 一本大道久久a久久精品| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av香蕉五月 | 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到| 亚洲精品一卡2卡三卡4卡5卡| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| av片东京热男人的天堂| 欧美 日韩 精品 国产| 丝袜人妻中文字幕| 亚洲午夜精品一区,二区,三区| 久久人妻福利社区极品人妻图片| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 在线av久久热| 午夜福利一区二区在线看| 国产aⅴ精品一区二区三区波| 久久久久精品人妻al黑| 美国免费a级毛片| 国产精品久久久久久人妻精品电影| 国产视频一区二区在线看| 久久精品亚洲av国产电影网| 午夜精品久久久久久毛片777| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 久久狼人影院| 50天的宝宝边吃奶边哭怎么回事| 黑丝袜美女国产一区| 成年人午夜在线观看视频| 18禁裸乳无遮挡免费网站照片 | 一区二区三区精品91| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 精品国产一区二区三区四区第35| 欧美大码av| 国产一区二区激情短视频| 日韩免费高清中文字幕av| 日韩人妻精品一区2区三区| 不卡一级毛片| 最新在线观看一区二区三区| 啦啦啦免费观看视频1| 欧美精品av麻豆av| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 亚洲一区高清亚洲精品| 国产亚洲一区二区精品| 人成视频在线观看免费观看| 91在线观看av| 黑丝袜美女国产一区| 久久青草综合色| 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 欧洲精品卡2卡3卡4卡5卡区| 国产真人三级小视频在线观看| 国产成人免费观看mmmm| 久久婷婷成人综合色麻豆| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 国产精品一区二区在线观看99| 一级毛片女人18水好多| 在线免费观看的www视频| 色尼玛亚洲综合影院| 日韩 欧美 亚洲 中文字幕| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃| 99热国产这里只有精品6| 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 国产亚洲精品久久久久久毛片 | 丝袜美足系列| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美软件| 久久国产精品大桥未久av| 精品卡一卡二卡四卡免费| 91成年电影在线观看| 一区二区三区国产精品乱码| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 少妇裸体淫交视频免费看高清 | 校园春色视频在线观看| 亚洲av成人av| 老司机亚洲免费影院| 香蕉国产在线看| 久久国产乱子伦精品免费另类| av天堂久久9| 免费高清在线观看日韩| 亚洲五月色婷婷综合| 久久久精品国产亚洲av高清涩受| 久久久精品免费免费高清| 免费一级毛片在线播放高清视频 | 久久中文字幕一级| 日韩中文字幕欧美一区二区| 国产97色在线日韩免费| 免费在线观看完整版高清| 天天躁日日躁夜夜躁夜夜| a在线观看视频网站| 日本五十路高清| 夫妻午夜视频| 99re6热这里在线精品视频| 99精品在免费线老司机午夜| 午夜福利视频在线观看免费| 在线免费观看的www视频| svipshipincom国产片| 亚洲国产毛片av蜜桃av| 大码成人一级视频| 国产真人三级小视频在线观看| 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 男女高潮啪啪啪动态图| 亚洲精品一二三| 人人澡人人妻人| 日韩三级视频一区二区三区| 中亚洲国语对白在线视频| 下体分泌物呈黄色| 免费看十八禁软件| 激情视频va一区二区三区| 久久香蕉激情| 亚洲av成人不卡在线观看播放网| 免费在线观看亚洲国产| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡动漫免费视频| 亚洲国产看品久久| 国内久久婷婷六月综合欲色啪| 国产成人免费无遮挡视频| 午夜福利,免费看| 一级毛片女人18水好多| 日韩视频一区二区在线观看| 精品卡一卡二卡四卡免费| 午夜亚洲福利在线播放| 国产精品久久久久成人av| 51午夜福利影视在线观看| 欧美人与性动交α欧美软件| 99国产精品一区二区蜜桃av | 亚洲av电影在线进入| 国产成+人综合+亚洲专区| 交换朋友夫妻互换小说| 女同久久另类99精品国产91| 免费观看a级毛片全部| 婷婷精品国产亚洲av在线 | 精品一区二区三卡| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 韩国av一区二区三区四区| 大型av网站在线播放| 一边摸一边做爽爽视频免费| 欧美人与性动交α欧美精品济南到| 人人妻,人人澡人人爽秒播| 大码成人一级视频| 国产欧美日韩一区二区三| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 欧美不卡视频在线免费观看 | 99re6热这里在线精品视频| 岛国在线观看网站| 一进一出抽搐动态| 18禁国产床啪视频网站| 一本大道久久a久久精品| 99精品久久久久人妻精品| 亚洲精品久久成人aⅴ小说| 久久精品国产综合久久久| tocl精华| 80岁老熟妇乱子伦牲交| 国产成+人综合+亚洲专区| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| 国产精品久久久久成人av| 国产欧美日韩综合在线一区二区| 久久精品国产亚洲av香蕉五月 | 超色免费av| 国产在线观看jvid| 中文字幕av电影在线播放| 视频在线观看一区二区三区| 欧美av亚洲av综合av国产av| 国产成人免费无遮挡视频| 日韩大码丰满熟妇| 99re在线观看精品视频| 亚洲午夜理论影院| 免费观看a级毛片全部| 另类亚洲欧美激情| 欧美精品啪啪一区二区三区| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片|