• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Transportation for Generalized Lagrangian

    2017-06-06 02:43:24JiLIJianluZHANG

    Ji LI Jianlu ZHANG

    1 Introduction

    Given a pile of soil and an excavation that we want to fill up with the soil.As early as 1781,Monge posed the question to find an optimal way to do this work.This is the primary statement of Monge problem.We can model the pile of soil and the excavation by two probability measures as the density of the mass.Concretely,given a space M,and a continuous function,called the cost function c(x,y):M ×M → R,given two probability measuresμ0andμ1on M, find the mapping t:M → M which transportμ0toμ1and minimize the total costc(x,t(x))dμ0.But unfortunately,the Monge problem is not always well-posed,for instance,considerμ0=δx, μ1=(δy+ δz)(x,y,z ∈ M),the Monge problem has no solution since there is no map t such that= μ1.

    It is difficult to study the Monge problem directly.In 1942,Kantorovich raised a generalized problem,later called the Monge-Kantorovich(MK for short)problem,we will state it concretely in Section 4.As proved in[7],MK problem always has a solution.It turned out that through the solution of MK problem,sometimes we can construct the solution of the Monge problem.Recently,several mathematicians studied the connections between Aubry-Mather-Fathi theory,optimal transportation problem and Hamilton-Jacobi equations(see[4–6,10,12,14]).

    In[2],they considered a Lagrangian function L(x,v,t):TM×[0,T]→R which satis fies the Tonelli conditions introduced by Mather,and considered the cost by

    where the minimum is taken on the set of absolutely continuous curve γ :[0,1]→ M with γ(0)=x and γ(1)=y.One of the main results of[2]is that using the dual MK problem,they proved that the optimal transformation can be performed by a Borel map with the assumption that the initial measureμ0is absolutely continuous w.r.t.the Lebesgue measure,thus the Monge problem has a solution.

    This paper is stimulated by[2],but we use another approach called optimal control,studying the optimal transportation problem of a generalized Lagrangian L=L(x,u(x,t),t).Consider the cost function as following:

    where U is called a control set.x(t)satis fies the following equation:

    here f satis fies some regular condition.About the control set and the regular condition,we will state it in Section 3.

    We start from the point of optimal control to study the original optimal transportation problem,called the Monge problem:

    Under the same assumption in[2]that the initial measureμ0is absolutely continuous w.r.t.the Lebesgue measure,we prove that the corresponding Monge problem has a Borel map as its solution.

    2 Method of Characteristic

    In this section,we brie fly introduce the method of characteristics in constructing a local classical solutions of the Cauchy problem for Hamilton-Jacobi equation like

    where H and u0are of C2.

    We suppose a priori that we have a solution u∈C2([0,T]×M)of the above equation.We call the solution of the following equation:

    t→(t,X(t,z)),a characteristic curve associated to u starting from z.

    Now we set

    Easy calculation shows

    Since

    we obtain

    Thus,the pair(X,P)solves the following ordinary differential equation:

    with initial condition X(0)=z,P(0)=?u0(z),while U satis fies

    Obviously,X,P and U are uniquely determined by the initial value u0.The above arguments suggests that we can obtain a solution to the Hamilton-Jacobi equation(2.1)by solving the characteristic system(2.4)provided the map z→X(t,z)is invertible.In[3],they listed a classic result.

    Theorem 2.1(see[3])For any z∈Rn,let X(t,z),P(t,z)denote the solution of the characteristic system(2.4)and let U(t,z)be de fined by(2.5).Then,there exists T?≥0 such that the map z→X(t,z)is invertible with C1inverse x→Z(t,x),and there exists a unique solution u ∈ C2([0,T?)×M))of(2.1),which is given by

    Remark 2.1T?in Theorem(2.1)is the uniform maximum time such that any two characteristic curves do not intersect with each other when the time T

    3 Optimal Control Problem for Bolza Problem

    Optimality is a universal principle of life.The first basic ingredient of an optimal control problem is the so-called control system,and it gives the possible behaviors.Usually,the control system is described by ordinary differential equations.In this paper,we consider the following form:

    where x is the state,x∈M,t is the time,x0is the initial state,t0is the initial time,u is called control which depends on x,t,i.e.,u=u(x,t),t∈R.

    Here are some basic assumptions on the control system:

    (A1)There exists K0>0 such that|f(x,u)|≠K0(1+|x|+|u|), ?x ∈ Rn,u ∈ U;

    (A2)f is Lipschitz w.r.t.x:There exists K1>0 such that|f(x2,u(x2,t))?f(x1,u(x1,t))|≤K1|x2?x1|for all x1,x2∈M,u∈U;

    (A3)f is C1,1with respect to x:There exists K2>0 such that ∥fx(x2,u(x2,t)))?fx(x1,u(x1,t)∥≤K2|x2?x1|for all x1,x2∈M,u∈U.

    The assumption(A2)ensures the existence of a unique global solution to the control system.

    The second basic ingredient is the cost functional,and it associates a cost with each possible behavior.An optimal control problem consists of choosing a control u in the(ODE)in order to minimize the cost functional.

    Let L=L(x,u(x,t),t)satisfy the following conditions:

    (L1)L is superlinear w.r.t.u;

    (L2)L is locally Lipschitz w.r.t.x: ?R>0,there exists αRsuch that

    (L3)?x∈ M,the following set is convex

    For the convenience and unity,we consider the following optimal control problem:

    where L∈C2(M×R×[0,T]),I∈C(M),and x is the solution of the control system:

    Note that fixing endpoint is the same as fixing initial point in essential.Here we use the same symbol x to denote a point or a solution of(3.1)without confusion.Now,we consider a time period of[0,T],and let t range over[0,T],x range over M.We introduce the value function.

    Theorem 3.1(see[3])Assume(A1)–(A2),(L1)–(L3)hold,and the initial cost I is continuous.Then,?(x,t)∈M ×[0,T],there exists an optimal control u∈U for(BP).

    De finition 3.1Given(t,x)∈ [0,T]×M,de fine

    which is called the value function of the control problem(BP).

    One of the most important principle in optimal control problem is so-called principle of optimality for V(t,x).

    Theorem 3.2(Principle of Optimality)For every(t,x)∈[0,T]×M and?t∈(0,t),the value function V(t,x)satis fies the following relation:

    The above principle of optimality means that in order to search for an optimal control,we can search over a small time interval for a control that minimizes the cost over this interval plus the subsequent optimal cost-to-go.

    Now,let us look at the value function V(t,x)in a deep sight.We assume V(t,x) ∈ C1([0,T]×M),and consider the right-hand side of(3.2),

    So,we can express V(t??t,x(t??t))as

    and we have

    Substituting(3.3)and(3.5)into the right-hand side of(3.2),we get

    After simple calculation,we obtain

    This is equivalent to the following equation:

    It is remarkable to note that there are several forms which are equivalent to(3.8),but(3.8)is the reasonable form since flipping the sign in a PDE affects its viscosity solutions,so it will turn out that the above sign convention is the correct one.Let

    We have the following theorem.

    Theorem 3.3If the initial condition is equal to the initial cost,i.e.,u0(x)=I(x),then V(t,x)is the unique viscosity solution of(2.1)with Hamiltonian function H as in(3.9).

    Proof Step 1(Viscosity subsolution)For every C1test function φ = φ(x,t),assume that φ ≥ V,and that φ ? V attains a local minimum at(t0,x0).We need to prove

    Suppose the contrary:There exists a C1function φ,and a control u0,s.t.

    and

    Since

    This is contradictory to the principle of optimal,so V(t,x)is a viscosity subsolution.

    Step 2(Viscosity supersolution) For every C1test function φ = φ(t,x),assume that φ≤V,and that φ?V attains a local minimal at(t0,x0).We need to prove

    Suppose the contrary:There exists a C1function ψ ,and a control u′0,s.t.

    and

    Since

    We get a contradictory,thus V(t,x)is a viscosity supersolution.

    Step 3(Uniqueness)By the comparison principle,the viscosity solution is unique!

    From the above three steps,we have proved that V(t,x)is the unique viscosity solution.

    Let the Hamiltonian H be as(3.9).We have the following theorem.

    Theorem 3.4(see[3])Let(u,x)be an optimal pair for the point(t0,x0)∈ [0,T]×M and let p:[0,t]→Rnbe a dual arc associated with(u,x).Then(x,p)solves the system

    for all s∈[0,t].As a consequence,x,p are of class C1.

    Remark 3.1The above theorem tells us that the optimal trajectory of the optimal control problem is nothing else,but just the characteristic curve of the corresponding Hamilton-Jacobi equation.

    4 Optimal Transportation Related to L(x,u,t)

    Statement of the Monge problemLet M be a compact manifold,and a continuous cost function c(x,y)is given,c(x,y):M ×M → R,μ0,μ1are two probability measures on M.Find the mapping Ψ :M → M which transportμ0into μ1,and minimize the total cost:

    where the transport means push-forward,which is de fined as following.

    De finition 4.1(Push-forward)Let t:X→Y be a measurable map,μis a measure.De fine

    for every Borel set B?Y.

    The Monge problem can be stated as

    In the rest of this paper,we consider the cost function as following:

    where x satis fies the following ordinary equation:

    As we said in the introduction,the Monge problem is not always well-posed,since sometimes there is no map Ψ such that= μ1.In the study of the Monge problem,mathematicians find that it is a good and effective approach to consider the MK problem first.

    Statement of the Monge-Kantorovich problem

    Under some proper conditions,we can use the solution of the MK problem to construct the solution of the Monge problem.In this paper,we use this approach.

    The measure γ which satis fies(π1)?γ = μ0,(π2)?γ = μ1in(MK)is called a transport plan.We denote the transport plans by K(μ0,μ1).Observe that if Ψ is admissible for Monge problem,i.e.,Ψ?μ0= μ1,then the measure γ =(Id×Ψ)?μ0is a transport plan for(MK).Moreover,the class of transport plans is always non-empty since it always containsμ0×μ1.As proved in[7],the min in(MK)always can be achieved by a transport plan,and we call the transport plan which realizes the min an optimal transfer plan(see[2]).

    Let the total cost

    De finition 4.2(Admissible Kantorovich Pair)A pair of continuous function(?0,?1)is called an admissible Kantorovich pair if it satis fies the following relations:

    for all point x∈M.

    Kantorovich proved the following notable result.

    Theorem 4.1

    where the max is taken on the set of admissible Kantorovich pair(?0,?1).

    This is the so-called dual Kantorovich problem.The admissible pairs which attain the max are called optimal Kantorovich pairs,usually,it is not unique!

    Lemma 4.1If γ is an optimal transfer plan,and(?0,?1)is an optimal Kantorovich pair,then the support of γ is contained in the following set:

    Lemma 4.2We have

    where the max is taken on the set of admissible Kantorovich pairs.

    It is deserved to note that for different pair of(x,y),the max may be achieved by different admissible Kantorovich pair.

    Let(?0,?1)be an optimal Kantorovich pair,and

    We construct a function on M×[0,T]as following:

    Recall the de finition of the value function for(BP):

    where x satis fies the control system(3.1).Obviously,we can see easily that U(x,t)is just the same as the value function V(t,x)with I(x)=?0(x).

    So,the total cost C(μ0,μ1)can be realized by a viscosity solution of the Hamilton-Jacobi equation(2.1)with a proper initial condition.We have

    Let us stop here for a little while,and look at the value function from another point of view.Assume that u?realizes the inf in the de finition of value function V(t,x).We de fine an operator T:Cac([0,t],R)→Cac([0,t],R)as following:

    Obviously,Tt?0(x)=V(t,x).

    As in[11,13],we call Ttthe solution semigroup since it is determined by the viscosity solution of the Hamilton-Jacobi equation(2.1).Actually,Ttis indeed a semigroup.

    Theorem 4.2(Semi-group Property){Tt}t≥0is a one-parameter semigroup from C(M,R).

    ProofTs?0(x)=u(x,s)means that the operator Tsjust sends the initial value ?0into the corresponding viscosity solution at time s under this initial condition.Similarly,Tt+s?0(x)=u(x,s+t)means that the operator Tt+ssends the initial value ?0into the corresponding viscosity solution at time t+s.Attention Tt? Ts?0(x)means that the operator Ttsends the initial value Ts?0to the corresponding viscosity solution at time t.Since the viscosity solution of Hamilton-Jacobi(2.1)is unique,it is obvious that Tt?Ts?0=Tt+s?0for arbitrary initial value ?0∈ C(M,R).

    De finition 4.3Let(?0,?1)denote an optimal Kantorovich pair,and u? be one of the control which reaches the inf in the de finition of the value function V.We de fine F(?0,?1)?C2([0,1],M)as the set of curves γ(t)such that

    Remark 4.1Obviously,if we rewrite(4.9)into the following form:

    we can see that F(?0,?1)is just the set of pieces of characteristic curves.

    Let F0(ψ0,ψ1)be the set of initial state(x,p)∈ T?M such that the curve t→ π ?x,v)belongs to F(?0,?1).We have the following lemma.

    Lemma 4.3The maps π and π?:F0(?0,?1)→ M are surjective.If x is a differentiable point of ?0,then the set π?1(x) ∩ F(?0,?1)contains only one point.There exists a Borel measurable set Σ ? M of full measure,whose points are differentiable points of ?0,and such that the map

    is Borel measurable on Σ.

    ProofFor each x ∈ M,there exists a characteristic curve such that(4.9)–(4.10)are satis fied,so the projection π ?ψ10from F0(?0,?1)to M is surjective.For π,it is similar!

    Next we consider a differentiable point x of ?0.By the characteristic method introduced in Section 2,the characteristic curves do not cumulate together at x,i.e.,there is only one characteristic curve starts from x.We construct S as

    Since ?0is Lipschitz,the set of differentiable points of ?0is of total Lebesgue measure.Notice that there exists a sequence of compact sets Knsuch that ?0is differentiable at each point of Kn,and the Lebesgue measure of M?Knis converging to zero.For each n,the set π?1(Kn)∩F(?0,?1)is compact,and the canonocal projection π restricted to this set is injective and continuous,so the inverse function S is continuous on Kn.And as a consequence,S is a Borel measurable map on

    Now let

    And let m0∈ B(T?M)be a Borel probability measure on the cotangent bundle T?M.We call m0an initial transport measure if the measure η on M × M given by

    is a transport plan.Here ψ is the time one map of the Hamiltonian flow,and π :T?M → M is the canonical projection.We denote I(μ0,μ1)the set of initial transport measures.Obviously,we can de fine the action of an initial transport measure as

    Lemma 4.4The mapping(π × (π ? ψ))?:I(μ0,μ1)→ K(μ0,μ1)is surjective.

    ProofWe shall prove that for arbitrary probability measure η∈B(M×M),there exists a probability measure m0∈ B(T?M)such that(π×(π?))?m0= η.Since the set of probability measures on M×M is the compact convex closure of the set of Dirac probability measures,we just need to prove it when η is a Dirac probability measure.Let η be a Dirac probability measure supported at(x,y)∈ M×M,and γ:[0,T]→ M be a curve with boundary conditions γ(0)=x, γ(1)=y satisfying the control system.Let m0be a Dirac probability measure supported at γ(0),˙γ(0).Obviously,we have

    where η is a transport plan which is determined by m0through(π × (π ? ψ))?.

    Theorem 4.3Ifμ0is absolutely continuous with respect to Lebesgue measure,then,there exists a Borel section S:M → TM such that the map π ??S is an optimal transport map between μ0and μ1.The section S is unique in the sense ofμ0everywhere.

    ProofSince Σ is of full Labesgue measure,consider m0=S?(μ0|Σ),which is a probability measure on T?M,concentrated on F(?0,?1),and π?m0= μ0.Since π induces an isomorphism between π?1(Σ)∩ F0(?0,?1),and by Lemma 4.4,we have(μ0,μT)=A(m0),and that m0is the unique initial transport measure.Thus,m0is the unique optimal transport measure.π?ψ?S is an optimal transport map betweenμ0andμ1.

    AcknowledgementWe appreciate the anonymous referees for their valuable comments.

    [1]Ambrosio,L.,Lecture Notes on Optimal Transport Problems Mathematical Aspects of Evolving Interfaces,Lecture Notes in Mathematics,Vol.1812,2004,1–52.

    [2]Bernard,P.and Buffoni,B.,Optimal mass transportation and Mather theory,J.Eur.Math.Soc.,9,2007,85–121.

    [3]Cannarsa,P.and Sinestrari,C.,Semiconcave Functions,Hamilton-Jacobi Equations,and Optimal Control Progress in Nonlinear Differential Equations and Their Applications,2004.

    [4]De Passcale,L.,Gelli,M.S.and Granieri,L.,Minimal measures,one-dimensional currents and the Monge-Kantorovich problem,Calculus of Variations and Partial Differential Equations,27(1),2006,1–23.

    [5]Evans,L.C.and Gomes,D.,Linear programming interpretations of Mather’s variational principle,Attribute to J.L.Lions,Esaim Control Optim,Calc.Var.,8,2002,693–702.

    [6]Granieri,L.,On action minimizing measures for the Monge-Kantorovich problem,NoDEA,14(1–2),2007,125–152.

    [7]Kantorovich,L.V.,On the transfer of mass,Dokl.Akad.Nauk.USSR,37,1942,227–229.

    [8]Kantorovich,L.V.,On a problem of Monge,Uspekhi Mat.Nauk.,3,1948,225–226.

    [9]Liberzon,D.,Calculus of Variations and Optimal Control Theory:A Concise Introduction,ISBN:97814008426431.

    [10]Pratelli,A.,Equivalence between some de finitions for the optimal mass transportation problem and for the transport density on manifolds,Annali di Math.Pura App.,2004.

    [11]Su,X.F.and Yan,J.,Weak KAM theorem for Hamilton-Jacobi equations,preprint.arXiv:1312.1600

    [12]Villani,C.,Topics in Optimal Transportation,American Mathematical Society,Providence,Rhode Island,2003.

    [13]Wang,L.and Yan,J.,Uniqueness of viscosity solutions of Hamilton-Jacobi equations,Weak KAM theory for general Hamition-Jacobi equations II:The fundamental solution under Lipschitz conditions.arXiv:1408.3791v1

    [14]Wolansky,G.,Optimal transportation in the presence of a prescribed pressure field.arXiv:mathph10306070

    [15]Young,L.C.,Lectures on the Calculus of Variations and Optimal Control Theory,2nd edition,Chelsea,1980,Econometrica,39(3),1971,653.

    黄色女人牲交| 91成年电影在线观看| av超薄肉色丝袜交足视频| 18禁黄网站禁片午夜丰满| 中文字幕最新亚洲高清| 激情在线观看视频在线高清| 国产av在哪里看| 亚洲中文av在线| 在线观看免费日韩欧美大片| 亚洲avbb在线观看| 美国免费a级毛片| 天天躁夜夜躁狠狠躁躁| www.999成人在线观看| bbb黄色大片| 黑人猛操日本美女一级片| 国产成人精品久久二区二区免费| 亚洲成人久久性| 欧美午夜高清在线| 免费人成视频x8x8入口观看| 欧美成人免费av一区二区三区| 午夜91福利影院| 天天躁夜夜躁狠狠躁躁| 国产精品日韩av在线免费观看 | 国产精品 欧美亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品影院| 精品一品国产午夜福利视频| 满18在线观看网站| 成人国语在线视频| 咕卡用的链子| 99久久人妻综合| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 亚洲精品国产色婷婷电影| 激情在线观看视频在线高清| 午夜a级毛片| 亚洲欧美一区二区三区黑人| 亚洲成国产人片在线观看| 精品国产国语对白av| 精品电影一区二区在线| 久久香蕉国产精品| 久久久国产成人免费| 精品一区二区三区av网在线观看| 亚洲熟女毛片儿| 午夜福利一区二区在线看| 国产成人精品久久二区二区91| 成人国语在线视频| 国产成+人综合+亚洲专区| 妹子高潮喷水视频| 免费在线观看完整版高清| 一边摸一边抽搐一进一小说| 国产精品 欧美亚洲| 国产乱人伦免费视频| 久久狼人影院| 欧美成人性av电影在线观看| x7x7x7水蜜桃| 亚洲中文日韩欧美视频| 日本五十路高清| www.999成人在线观看| 国产av又大| 精品久久久久久久久久免费视频 | 69av精品久久久久久| 91麻豆av在线| a级毛片黄视频| 精品一区二区三卡| 免费搜索国产男女视频| 欧美另类亚洲清纯唯美| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 久久99一区二区三区| 国产单亲对白刺激| 国产欧美日韩一区二区精品| 两个人看的免费小视频| 亚洲av五月六月丁香网| 日韩 欧美 亚洲 中文字幕| 亚洲久久久国产精品| 精品福利永久在线观看| 国产精品 欧美亚洲| av免费在线观看网站| 国产av一区二区精品久久| 日本a在线网址| 性欧美人与动物交配| 中文字幕精品免费在线观看视频| 成人三级黄色视频| а√天堂www在线а√下载| 中出人妻视频一区二区| 国产精品国产高清国产av| 亚洲第一av免费看| 在线看a的网站| 精品久久蜜臀av无| 成人永久免费在线观看视频| 亚洲国产精品999在线| 免费高清在线观看日韩| 国产成人欧美在线观看| 日韩免费高清中文字幕av| 嫩草影视91久久| 久久久久久久午夜电影 | 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 欧美精品一区二区免费开放| 淫妇啪啪啪对白视频| 妹子高潮喷水视频| 成人免费观看视频高清| x7x7x7水蜜桃| www日本在线高清视频| 国产又爽黄色视频| 啪啪无遮挡十八禁网站| 久久伊人香网站| 日韩中文字幕欧美一区二区| 亚洲男人天堂网一区| 男人操女人黄网站| 成人精品一区二区免费| 婷婷精品国产亚洲av在线| 国产成人精品在线电影| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 麻豆av在线久日| 久久久久久久久免费视频了| 欧美一区二区精品小视频在线| 美女高潮到喷水免费观看| 99久久国产精品久久久| 国产伦一二天堂av在线观看| 两个人免费观看高清视频| 又大又爽又粗| 免费在线观看日本一区| 乱人伦中国视频| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 色婷婷久久久亚洲欧美| 丰满的人妻完整版| 在线观看日韩欧美| 精品久久久精品久久久| 一a级毛片在线观看| 午夜福利在线观看吧| 亚洲情色 制服丝袜| 欧美一区二区精品小视频在线| 日韩视频一区二区在线观看| 精品日产1卡2卡| 久热爱精品视频在线9| 99精品欧美一区二区三区四区| 一级作爱视频免费观看| 亚洲专区字幕在线| 国产蜜桃级精品一区二区三区| 一区二区三区精品91| 黄色怎么调成土黄色| 97碰自拍视频| 中文字幕另类日韩欧美亚洲嫩草| 91麻豆av在线| 国产99白浆流出| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 激情视频va一区二区三区| 国产午夜精品久久久久久| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 中文字幕高清在线视频| 亚洲国产看品久久| 国产成人影院久久av| 黄色a级毛片大全视频| 黑人巨大精品欧美一区二区蜜桃| 99精国产麻豆久久婷婷| 欧洲精品卡2卡3卡4卡5卡区| 老司机靠b影院| 91精品三级在线观看| 精品国产一区二区久久| 欧美日韩精品网址| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| a级毛片黄视频| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 精品福利观看| 免费高清视频大片| 亚洲人成电影免费在线| 99国产精品一区二区三区| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 岛国在线观看网站| 在线免费观看的www视频| 制服诱惑二区| 亚洲avbb在线观看| 精品久久久精品久久久| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 欧美人与性动交α欧美精品济南到| 桃色一区二区三区在线观看| 黄色怎么调成土黄色| 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 乱人伦中国视频| 在线免费观看的www视频| 天堂中文最新版在线下载| 国产单亲对白刺激| 成人精品一区二区免费| 欧美日韩精品网址| 精品国产一区二区三区四区第35| 久久久久久久精品吃奶| 美女扒开内裤让男人捅视频| 不卡av一区二区三区| 少妇粗大呻吟视频| 国产亚洲精品久久久久久毛片| 国产精品久久久av美女十八| 亚洲成人国产一区在线观看| 十八禁网站免费在线| 亚洲av成人av| 亚洲七黄色美女视频| 三级毛片av免费| 人人澡人人妻人| 亚洲精品成人av观看孕妇| 成人三级黄色视频| 亚洲av第一区精品v没综合| 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 好男人电影高清在线观看| 90打野战视频偷拍视频| 国产麻豆69| 亚洲午夜理论影院| 国产99白浆流出| 男女床上黄色一级片免费看| 在线观看日韩欧美| 中文字幕高清在线视频| 波多野结衣高清无吗| 深夜精品福利| 大码成人一级视频| 91字幕亚洲| 久久亚洲真实| 成人精品一区二区免费| 亚洲片人在线观看| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜 | 91老司机精品| 国产又爽黄色视频| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| 国产av一区在线观看免费| 午夜免费成人在线视频| 青草久久国产| 欧美激情久久久久久爽电影 | 国产成人av教育| 手机成人av网站| 亚洲熟妇中文字幕五十中出 | 欧美黑人欧美精品刺激| 91麻豆av在线| av天堂在线播放| 成人手机av| 两性午夜刺激爽爽歪歪视频在线观看 | 大码成人一级视频| 日韩欧美国产一区二区入口| tocl精华| 少妇 在线观看| 琪琪午夜伦伦电影理论片6080| 日本wwww免费看| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 丰满的人妻完整版| 亚洲欧美精品综合久久99| 一进一出抽搐gif免费好疼 | 久久久久久人人人人人| 1024视频免费在线观看| 高清欧美精品videossex| 亚洲精品美女久久久久99蜜臀| 久久久国产一区二区| 999久久久国产精品视频| 视频在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 啦啦啦 在线观看视频| 黄色丝袜av网址大全| 亚洲国产精品999在线| 国产极品粉嫩免费观看在线| 日韩中文字幕欧美一区二区| a级毛片在线看网站| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 国产黄色免费在线视频| 女性被躁到高潮视频| 国产一区二区三区在线臀色熟女 | 丝袜美腿诱惑在线| 在线国产一区二区在线| 久久精品影院6| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 在线av久久热| 国产av在哪里看| 久久香蕉激情| 国产一区二区三区视频了| 日韩人妻精品一区2区三区| 国产熟女xx| 国产黄a三级三级三级人| 91大片在线观看| 美女午夜性视频免费| 免费不卡黄色视频| 亚洲专区中文字幕在线| 男人的好看免费观看在线视频 | 一个人观看的视频www高清免费观看 | 久久人人爽av亚洲精品天堂| 丰满的人妻完整版| 国产精品 欧美亚洲| 免费少妇av软件| 国产麻豆69| 国产高清视频在线播放一区| 成人黄色视频免费在线看| 精品少妇一区二区三区视频日本电影| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 午夜福利影视在线免费观看| 黄色视频,在线免费观看| 黄色毛片三级朝国网站| 亚洲,欧美精品.| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免费看| 成人三级做爰电影| 亚洲国产精品sss在线观看 | 男人舔女人的私密视频| 欧美色视频一区免费| 国产视频一区二区在线看| 精品国产乱码久久久久久男人| 日日夜夜操网爽| 黄片小视频在线播放| 午夜久久久在线观看| 欧美日本亚洲视频在线播放| 一级作爱视频免费观看| 久久婷婷成人综合色麻豆| 免费看十八禁软件| 少妇 在线观看| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 三级毛片av免费| 国产精品一区二区精品视频观看| 久久久久久久久久久久大奶| 激情在线观看视频在线高清| 亚洲黑人精品在线| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 日韩免费高清中文字幕av| 99精国产麻豆久久婷婷| 亚洲一区二区三区不卡视频| 国产av精品麻豆| 美女福利国产在线| 露出奶头的视频| 一级毛片精品| 久久香蕉国产精品| 丝袜美足系列| 国产一区二区三区在线臀色熟女 | videosex国产| 免费av中文字幕在线| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 亚洲精品成人av观看孕妇| 久久精品91无色码中文字幕| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 天堂俺去俺来也www色官网| 久久久久国内视频| 妹子高潮喷水视频| 亚洲人成电影免费在线| 纯流量卡能插随身wifi吗| 久久久国产成人免费| 老司机靠b影院| 麻豆国产av国片精品| 动漫黄色视频在线观看| 两性夫妻黄色片| 热re99久久精品国产66热6| www.www免费av| 激情在线观看视频在线高清| 免费人成视频x8x8入口观看| 激情在线观看视频在线高清| 久久久久国内视频| 久久国产精品影院| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 一边摸一边抽搐一进一小说| 欧美精品亚洲一区二区| 人成视频在线观看免费观看| 国产精品亚洲一级av第二区| 青草久久国产| 91字幕亚洲| 精品久久久久久电影网| 新久久久久国产一级毛片| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 成人亚洲精品av一区二区 | 黄色怎么调成土黄色| 日本黄色日本黄色录像| 免费观看精品视频网站| 亚洲av成人av| 91在线观看av| 99国产精品一区二区蜜桃av| 精品少妇一区二区三区视频日本电影| 国产精品成人在线| 身体一侧抽搐| 国产精品秋霞免费鲁丝片| 新久久久久国产一级毛片| 亚洲成国产人片在线观看| 美女午夜性视频免费| 午夜久久久在线观看| 免费av毛片视频| 国产精品一区二区免费欧美| 亚洲av日韩精品久久久久久密| 黑人操中国人逼视频| 免费高清在线观看日韩| 老司机深夜福利视频在线观看| 国产成人精品无人区| 成年版毛片免费区| a在线观看视频网站| 久久婷婷成人综合色麻豆| 黄色片一级片一级黄色片| 成人av一区二区三区在线看| 精品久久久久久电影网| 亚洲欧美日韩无卡精品| 免费久久久久久久精品成人欧美视频| 日韩欧美三级三区| 日韩大尺度精品在线看网址 | 麻豆国产av国片精品| 好男人电影高清在线观看| 女人精品久久久久毛片| 国产又爽黄色视频| 高清在线国产一区| 国产精品二区激情视频| 国产精品电影一区二区三区| 天天添夜夜摸| 欧美国产精品va在线观看不卡| 午夜成年电影在线免费观看| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 国产一卡二卡三卡精品| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 在线国产一区二区在线| 国产有黄有色有爽视频| 亚洲色图av天堂| 91国产中文字幕| 老熟妇仑乱视频hdxx| 桃色一区二区三区在线观看| 色在线成人网| 人妻久久中文字幕网| 男女下面进入的视频免费午夜 | 老鸭窝网址在线观看| 夜夜看夜夜爽夜夜摸 | 热re99久久精品国产66热6| 99热国产这里只有精品6| 亚洲少妇的诱惑av| 精品欧美一区二区三区在线| 国产一卡二卡三卡精品| 可以在线观看毛片的网站| 在线观看一区二区三区| 国产精品亚洲av一区麻豆| 亚洲国产精品999在线| 久久久久国产一级毛片高清牌| 亚洲片人在线观看| 成人18禁高潮啪啪吃奶动态图| 免费高清视频大片| 精品久久久精品久久久| 中国美女看黄片| 亚洲成人久久性| 久久久久久亚洲精品国产蜜桃av| 国产高清激情床上av| 精品一区二区三区av网在线观看| av在线天堂中文字幕 | 一夜夜www| 国产精品亚洲一级av第二区| 热99re8久久精品国产| 在线观看一区二区三区激情| xxx96com| 精品久久久久久久毛片微露脸| a级毛片黄视频| 欧美乱妇无乱码| av中文乱码字幕在线| 午夜成年电影在线免费观看| 亚洲精品粉嫩美女一区| 国产免费男女视频| 在线观看午夜福利视频| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 免费高清视频大片| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影| 亚洲成人免费电影在线观看| 精品熟女少妇八av免费久了| 精品国产一区二区三区四区第35| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 9热在线视频观看99| 国产成人影院久久av| www.自偷自拍.com| 日韩欧美在线二视频| 99在线人妻在线中文字幕| 国产精品久久久久成人av| 久久久久久久久久久久大奶| 亚洲专区中文字幕在线| 精品久久久久久成人av| 国产一区二区在线av高清观看| 超碰成人久久| 成人手机av| 无遮挡黄片免费观看| 高清在线国产一区| 琪琪午夜伦伦电影理论片6080| 亚洲一区二区三区不卡视频| 一区二区三区精品91| 美女大奶头视频| 9色porny在线观看| 大陆偷拍与自拍| 国产精品98久久久久久宅男小说| 黄色片一级片一级黄色片| 午夜a级毛片| 丁香六月欧美| 亚洲黑人精品在线| 91字幕亚洲| 国产成人啪精品午夜网站| 99在线人妻在线中文字幕| 757午夜福利合集在线观看| 欧美日韩视频精品一区| 欧美在线黄色| 脱女人内裤的视频| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡 | 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 日本五十路高清| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 90打野战视频偷拍视频| 国产亚洲精品一区二区www| 午夜免费激情av| 91成人精品电影| 9色porny在线观看| 18禁美女被吸乳视频| 老汉色∧v一级毛片| 婷婷丁香在线五月| 亚洲精品国产精品久久久不卡| 日韩精品中文字幕看吧| 在线观看日韩欧美| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 老司机午夜福利在线观看视频| 亚洲成av片中文字幕在线观看| 热99国产精品久久久久久7| 久久精品亚洲av国产电影网| 波多野结衣av一区二区av| 丰满迷人的少妇在线观看| 少妇裸体淫交视频免费看高清 | 俄罗斯特黄特色一大片| 天堂俺去俺来也www色官网| 国产精品亚洲av一区麻豆| 亚洲久久久国产精品| 又黄又爽又免费观看的视频| bbb黄色大片| 久热这里只有精品99| 国产亚洲精品综合一区在线观看 | 亚洲专区中文字幕在线| 国产片内射在线| 久久精品人人爽人人爽视色| 久热爱精品视频在线9| e午夜精品久久久久久久| 另类亚洲欧美激情| 好看av亚洲va欧美ⅴa在| 亚洲人成电影观看| 亚洲第一av免费看| 真人做人爱边吃奶动态| 18美女黄网站色大片免费观看| 亚洲av成人不卡在线观看播放网| 国产日韩一区二区三区精品不卡| 久久久国产精品麻豆| 国产亚洲精品久久久久久毛片| 操美女的视频在线观看| 亚洲激情在线av| 亚洲国产欧美网| 日韩大码丰满熟妇| 久久久国产欧美日韩av| 可以在线观看毛片的网站| 国产精品久久视频播放| 91成人精品电影| 脱女人内裤的视频| 麻豆av在线久日| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看日本一区| 久久精品91无色码中文字幕| 久久国产乱子伦精品免费另类| 亚洲 欧美一区二区三区| 18美女黄网站色大片免费观看| 亚洲自拍偷在线| 一级毛片精品| 国产成人影院久久av| 亚洲第一av免费看| 成人精品一区二区免费| 国产精华一区二区三区| 在线观看一区二区三区| 咕卡用的链子| 午夜精品久久久久久毛片777| 久久亚洲精品不卡| 国产熟女xx| 别揉我奶头~嗯~啊~动态视频| 国产高清激情床上av| 日韩免费高清中文字幕av| 欧美日韩福利视频一区二区| 国产av一区二区精品久久| 国产精品久久久久成人av| 国产国语露脸激情在线看| 亚洲精品一二三| 超碰成人久久|