• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Sobolev-Poincar′e Inequalities in Irregular Domains?

    2017-06-06 02:43:20ChangYuGUO

    Chang-Yu GUO

    1 Introduction

    Recall that a bounded domain ??Rnis a John domain if there is a constant C and a point x0∈ ? so that for each x ∈ ?,one can find a recti fiable curve γ :[0,1]→ ? with γ(0)=x,γ(1)=x0and

    for each 0

    The condition(1.1)is called a “twisted cone condition” in literature.Thus the condition(1.2)should be called a “twisted cusp condition”.

    In the last twenty years,s-John domains have been extensively studied in connection with Sobolev-type inequalities(see[2,7–8,12–13,17]).Recall that a bounded domain ? ? Rn,n ≥ 2 is said to be a(q,p)-Poincar′e domain if there exists a constant Cq,p=Cq,p(?)such that

    for all u∈C∞(?)∩L1(?).Here u?=??u(x)dx.When q=p, ? is termed a p-Poincar′e domain and when q>p,we say that ? supports a(q,p)-Sobolev-Poincar′e inequality.Buckley and Koskela[2]have shown that a simply connected planar domain which supports a(,p)-Sobolev-Poincar′e inequality is a 1-John domain.Smith and Stegenga shown that an s-John domain ? is a p-Poincar′e domain,provided that 1 ≤ s<+In particular,if 1≤s

    Recently,there has been a growing interest in the study of the so-called fractional(q,p)-Sobolev-Poincar′e inequalities(see for instance[3,9]and the references therein).In this paper,we continue the study of the following fractional(q,p)-Sobolev-Poincar′e inequality in a domain??Rnwith finite Lebesgue measure,n≥2,

    where 1≤ p≤ q< ∞,δ∈(0,1),τ∈(0,∞)and the constant C does not depend on u ∈ C(?)∩ L1(?).If ? supports the fractional(q,p)-Sobolev-Poincar′e inequality(1.4),q ≥ p,then we say that ? is a fractional(q,p)-Sobolev-Poincar′e domain1Strictly speaking,we should also indicate the parameter δ in the de finition of a fractional(q,p)-Sobolev-Poincar′e domain.But since we did not emphasize it in the de finition of the fractional(q,p)-Sobolev-Poincar′e inequality either,we keep our current terminology..

    From now on,unless otherwise speci fied,δ∈ (0,1)and τ∈ (0,∞)will be fixed constants.Given a function u ∈ C(?)∩L1(?),we de fine gu:? → R as

    for x∈?.

    It is well-known,due to Maz’ya[15–16],that the validity of a(q,p)-Sobolev-Poincar′e inequality in ? is equivalent to certain capacity-type estimates in ?.Thus one would expect that a similar equivalence result holds in the setting of fractional(q,p)-Sobolev-Poincar′e inequalities as well.Our first main result con firms this expectation.

    Theorem 1.1Let ??Rn,n≥2 be a domain with finite Lebesgue measure and 1≤p≤q<∞.Then the following statements are equivalent:

    (i)? satis fies the fractional(q,p)-Sobolev-Poincar′e inequality.

    (ii)For an arbitrary ball B0 ? ?,there exists a constant C=C(?,p,q,B0,δ,τ)such that

    for every measurable set A?? such that=?.The in fimum above is taken over all functions u∈ C(?)∩L1(?)that satisfy u|A ≥ 1 and u|B0=0.

    Theorem 1.1 can be regarded as a fractional version of[7,Theorem 1]and it allows us to study the fractional(q,p)-Sobolev-Poincar′e inequalities in irregular domains via capacity estimates.On the other hand,as in the usual Sobolev-Poincar′e case,we have standard techniques for doing capacity estimates.

    Our second main result can be regarded as an(un-weighted)fractional version of[7,Theorem 9].

    Theorem 1.2Let ? ? Rn,n≥ 2,be an s-John domain.If p

    The range for q in Theorem 1.2 is essentially sharp as indicated by the following example.

    Example 1.1Given τ,δ∈ (0,1),1 ≤ p

    Theorem 1.2 holds for the critical caseas well,provided that s=1 or p=1(see Remark 4.2).We conjecture that Theorem 1.2 holds under the same assumptions for the critical case.

    The above s-John condition on a domain ? is very “geometric” and it provides an effective estimate for capacity.There is another well-known “metric” condition on ? that is sufficient for our capacity estimates.The condition is termed the quasihyperbolic boundary condition in literature and it requires that the quasihyperbolic distance between each point x and a fixed point x0in ? is dominated from above by(a logarithmic function of)its distance to the boundary of ?(see Section 2 below for precise de finitions).With these understood,our third main result can be regarded as a fractional version of[13,Theorems 1.4–1.5]and[10,Theorem 1].

    Theorem 1.3Let ? ? Rn,n≥ 2,satisfy the quasihyperbolic boundary condition(2.1)for some β ≤ 1.Then ? is a fractional(q,p)-Sobolev-Poincar′e domain provided that p ∈and q∈

    Example 1.2For each q>there exists a domain ? ? Rn,n ≥ 2,satisfying(2.1)which is not a fractional(q,p)-Sobolev-Poincar′e domain.For each 1 ≤ p

    Recall that we say a domain ??Rnwith a distinguished point x0has a separation property if there exists a constant C0such that the following property holds:For every x∈?,there exists a curve γ :[0,1]→ ? with γ(0)=x,γ(1)=x0,such that for each t,either

    or each y ∈ γ([0,t])Btand x0belongs to different components of ??Bt.

    Theorem 1.4Assume that ??Rnis a domain of finite Lebesgue measure that satis fies the separation property with a distinguished point x0.Let 1≤pp,then for each x ∈ ?,there is a curve γ :[0,1]→ ? with γ(0)=x, γ(1)=x0such that

    where

    The assumptions in Theorem 1.4 can be further relaxed.Indeed,Theorem 1.4 holds if we only assume that the fractional(q,p)-Sobolev-Poincar′e inequality(1.4)holds for all locally Lipschitz continuous functions in ?(see Remark 3.1).

    Since this paper generalizes the main results of[2–3,7,9,13]to the fractional setting in a natural way,some of the arguments used in this paper are similar to ones in those papers.In particular,we bene fit a lot from[7,9,13].This paper is organized as follows.Section 2 contains the basic de finitions and Section 3 contains some auxiliary results.We prove our main results,namely,Theorems 1.1–1.2 and Example 1.1 in Section 4.In Section 5,we prove Theorem 1.3 and give the construction of Example 1.2.In the final section,i.e.,Section 6,we discuss the proof of Theorem 1.4 and point out an inaccurate statement,namely,Corollary 4.1 in[2].

    2 Notations and De finitions

    Recall that the quasihyperbolic metric k?in a domain ? (Rnis de fined to be

    where the in fimum is taken over all recti fiable curves γ in ? which join x to y.This metric was introduced by Gehring and Palka in[5].A curve γ joining x to y for which k?(x,y)=is called a quasihyperbolic geodesic.Quasihyperbolic geodesics joining any two points of a proper subdomain of Rnalways exists(see[4,Lemma 1]).

    Recall that a domain ? ? Rn,n ≥ 2,is said to satisfy a β-quasihyperbolic boundary condition,β∈(0,1],if there exists a point x0∈? and a constant C0such that

    holds for all x∈?.

    Let ? be a bounded domain in Rn,n ≥ 2.Then W=W(?)denotes a Whitney decomposition of ?,i.e.,a collection of closed cubes Q ? ? with pairwise disjoint interiors and edges parallel to the coordinate axes,such thatand the diameters of Q∈W belong to the setand satisfy the condition

    For j∈Z,we de fine

    Note that when we write f(x).g(x),we mean that f(x)≤Cg(x)is satis fied for all x with some fixed constant C ≥ 1.Similarly,the expression f(x)&g(x)means that f(x)≥ C?1g(x)is satis fied for all x with some fixed constant C≥1.We write f(x)≈g(x)whenever f(x).g(x)and f(x)&g(x).

    3 Auxiliary Results

    We need the following “chain lemma” from[7,Proof of Theorem 9].Note that the condition 3 below is not stated there,however,the proof adapts to our setting and we omit the details.

    Lemma 3.1Let ??Rnbe an s-John domain and M>1 a fixed constant.Let B0=B(x0,where x0∈? is the John center.There exists a constant c>0,depending only on ?,M and n,such that given x ∈ ?,there exists a finite “chain” of balls Bi=B(xi,ri),i=0,1,···,k(k depends on the choice of x)that joins x0to x with the following properties:

    (1)|Bi∪Bi+1|≤c|Bi∩Bi+1|.

    (2)d(x,Bi)≤

    (3)d(Bi,??)≥ Mri.

    (4)

    (5)|x?xi|≤and Bk=B(x,).

    (6)For any r>0,the number of balls Biwith radius ri>r is less thanwhen s>1.

    Recall that for a function f,the Riesz potential Iδ,δ∈ (0,n)of f is de fined by

    The following estimate for the Riesz potential is well-known(see for instance[1,Theorem 3.1.4 and Corollary 3.1.5]).

    Theorem 3.1Let 0<δ0 such that the weak estimate

    holds for every f∈L1(Rn).

    The following proposition,which can be regarded as a fractional analogy of[2,Theorem 2.1],is proved in[3,Proposition 6.2].

    Proposition 3.1Suppose that ? ? Rnis a domain of finite Lebesgue measure.Let 1 ≤p0 and w ∈ ?.Then there exists a constant C>0 such that

    and

    if T is the union of all components of ?B(w,d)that do not intersect the ball B0.The constant C depends only on|B0|,|?|,n,p,q, δ and the constant associated to the fractional(q,p)-Sobolev-Poincar′e inequality.

    Remark 3.1As in[2],one can check that the conclusion holds whenever the fractional(q,p)-Sobolev-Poincar′e inequality(1.4)with τ=1 holds for every locally Lipschitz continuous functions(see[3,Proof of Proposition 6.2]).

    Fix a Whitney cube Q0and assume that x0is the center of Q0.For each cube Q∈W,we choose a quasihyperbolic geodesic γ joining x0to the center of Q and we let P(Q)denote the collection of all the Whitney cubes Q′∈ W which intersect γ.Then the shadow S(Q)of the cube Q is de fined to be

    The following lemma is proved in[13,Lemma 2.6].

    Lemma 3.2Let ? ? Rn,n≥ 2 be a domain that satis fies the quasihyperbolic boundary condition(2.1).Then for each ε>0,there exists a constant C=C(n,diam ?,ε)such that

    We also need the following estimate of the size of the shadow of a Whitney cube Q in terms of the size of Q.The proof can be found in[10,Lemma 6].2I would like to thank Renjin Jiang for sharing the manuscript[10]and Aapo Kauranen for pointing out Lemma 3.3 in their work in[10,Lemma 6].

    Lemma3.3Let ? ? Rn,n ≥ 2,be a domain that satis fies the quasihyperbolic boundary condition(2.1).Then there exists a constant C=C(n,d(x0,??))such that

    for all Q∈W.Consequently,

    4 Main Proofs

    Proof of Theorem 1.1We first show that the condition(ii)implies the condition(i).Fix a function u∈ C(?)∩L1(?).Pick a real number b such that both|{x ∈ ? :u(x)≥ b}|and|{x ∈ ? :u(x)≤ b}|are at leastIt suffices to show the fractional(q,p)-Sobolev-Poincar′e inequality with|u?u?|replaced by|u?b|,and by replacing u with u?b,we may assume that b=0.Write v+=max{u,0}and v?= ?min{u,0}.In the sequel,v denotes either v+or v?;all the statements below are valid in both cases.Without loss of generality,we may assume that v≥0.

    Fix a ball B0such that 2B0?? ?.We may further assume that v|B0=0.In fact,let φ ∈ C∞(?)satisfy 0≤ φ ≤ 1,spt(φ)? 2B0and φ|B0=1.Note that we may write

    The first term φv ∈ C∞(2B0B0)and thus the fractional(q,p)-Sobolev-Poincar′e inequality holds for φv in 2B0B0.On the other hand,the second term(1 ? φ)v ∈ C(?)∩ L1(?)and it vanishes on B0.So if one can prove the fractional(q,p)-Sobolev-Poincar′e inequality for(1? φ)v,then a simple computation,after summing up these two estimates,will imply the fractional(q,p)-Sobolev-Poincar′e inequality for v.

    For each j∈Z,we de fine vj(x)=min{2j,max{0,v(x)?2j}}.We next prove the following inequality:

    To see it,notice that=0 and≥ 1,where Fj={x ∈ ? :v(x)≥ 2j+1}.So by(1.6),we obtain that

    Note thatThus we finally arrive at

    which is the desired estimate(4.1).

    The fractional(q,p)-Sobolev-Poincar′e inequality now follows from the weak type estimates via a standard argument.Write By=B(y,τd(y,??))and Ak=Fk?1Fk,

    where

    and

    For y ∈ Aiand z ∈ Ajwith j?1>i,|v(y)?v(z)|≥ |v(z)|?|v(y)|≥ 2j?2.Hence,

    Since the estimate

    holds for every k∈Z,(4.2)is valid whenever i≤k≤j and(y,z)∈Ai×Aj.It follows from(4.2)that

    Sincechanging the order of the summation yields that the right-hand side of the above inequality is bounded by

    The estimate ofis similar.Thus,we have proved that

    The desired fractional(q,p)-Sobolev-Poincar′e inequality(1.4)follows from the above inequality as we notice that|u|=v++v?and|v±(y)?v±(z)|≤ |u(y)?u(z)|for all y,z∈ ?.

    The implication from the condition(ii)to the condition(i)is easier.To see it, fix a measurable set A? ? such that= ?and a function u∈ C(?)∩L1(?)such that u|A≥ 1 and u|B0=0.If u?≤,then by(1.4),we have

    If u?≥then by(1.4)we have

    Combining the above two estimates,we conclude that

    where C=C(?,B0,p,q,δ,τ).Taking the in fimum over all such u gives(1.6).

    Remark 4.1It is clear from the proof above that the condition(ii)of Theorem 1.1 is equivalent to the following condition:For an arbitrary cube Q0? ?,there exists a constant C=C(?,Q0,p,q,δ,τ)such that

    for every measurable set A?? with=?.The in fimum above is taken over all functions u ∈ C(?)∩L1(?)that satisfy u|A≥ 1 and u|Q0=0.

    Proof of Theorem 1.2Let B0=B(x0,).Assume that p<10 such that

    It suffices to show,by Theorem 1.1,that there exists a constant C=C(?,B0,p,q,δ,τ)such that for every measurable set A?? with=?,we have

    whenever u ∈ C(?)∩L1(?)satis fies u|A≥ 1 and u|B0=0.Since ? is bounded,we may further assume that diam?=1.

    For any x ∈ A,we obtain from Lemma 3.1 a finite chain of balls Bi,i=0,1,···,k,satisfying conditions(1)–(6)in Lemma 3.1 with M>For all i=0,1,···,k,we have

    To see this, fix y∈Biand let z be any other point in Bi.Then by the condition(3)in Lemma 3.1,

    In order to estimate|A|,we divide A into the “bad” and “good” parts.Setting

    where Bx=B(x,),we have|A|≤|G|+|B|.We first estimate|G|.

    For x∈G,letbe the associated chain of balls as described before.Then Bx=Bk.By the condition(1)in Lemma 3.1,we have

    For a ball Bi,

    By(4.3)and the condition(2)in Lemma 3.1,

    Thus we conclude that

    H¨older’s inequality implies

    where κ =Using the condition(6)from Lemma 3.1,one can easily conclude

    Therefore,

    where the constant C depends only on p,n,?and the constant from s-John condition.

    By the condition(2)from Lemma 3.1,Cri≥ |x?y|sfor y∈ Bi,and since p(?κ+δ?<0 according to our choice p≤we obtain

    for y∈Bi.For y∈Bi∩(2j+1Bk2jBk),we have|x?y|≈2jrkand hence for such y,

    Combining(4.4)with(4.5)leads to

    On the other hand,

    Comparing the above two estimates,we conclude that there exists an l(depending on?)such that

    It follows that

    In other words,there exists an Rx≥with

    Note that according to our choice of?,the above estimate reduces to the following form:

    Applying the Vitali covering lemma to the covering{B(x,Rx)}x∈Eof the set B,we can select pairwise disjoint balls B1,···,Bk,such thatLet ridenote the radius of the ball Bi.Then

    We next estimate|B|.Note thatWe may use the Besicovitch covering theorem to select a subcovering{Bxi}i∈Nwith bounded overlap.Since u ≥ 1 on A and uBxi≤we obtain that

    for y ∈ A∩Bxi.By the fractional(q,p)-Sobolev-Poincar′e inequality for balls(see for instance[9]),we get

    Summing over all balls Bxi,we obtain that

    The proof of Theorem 1.2 is now complete.

    Remark 4.2In Theorem 1.2,q is assumed to be strictly less thanHowever,one can easily adapt the proof of Theorem 1.2 to show that when s=1 or p=1,q can reach the critical value(the case s=1 has already been proved in[3]).Indeed,we only need to use a variant of Lemma 3.1.Namely,for each x∈?,we may join x to x0via an in finite chain of balls{Bi}i∈Nwith all the properties listed in Lemma 3.1 except the condition(5)in Lemma 3.1 replaced by

    as i→ ∞.Then following the proof of Theorem 1.2,we easily deduce the following Rieszpotential-type estimate:

    Note that

    where β =sδ? (s? 1)n.Thus we conclude that

    For s=1 and p>1,the claim follows from the strong-type estimate in Theorem 3.1.For p=1,the claim follows from the weak-type estimate(3.2)and the weak-to-strong principle for fractional Sobolev-Poincar′e inequalities(see[9,Theorem 4.1]).

    Proof of Example 1.1We will use the mushroom-like domain as used in[7].The mushroom-like domain ??Rnconsists of a cube Q and an attached in finite sequence of mushrooms F1,F2,···growing on the “top” of the cube.By a mushroom F of size r,we mean a cap C,which is a ball of radius r,and an attached cylindrical stem P of height r and radius rs.The mushrooms are disjoint,and the corresponding cylinders are perpendicular to the side of the cube that we have selected as the top of the cube.We can make the mushrooms pairwise disjoint if the number riassociated with Ficonverges to 0 sufficiently fast as i→∞.We further write P=T∪M∪D,where T is the top-part of P,M is the middle-part of P,and D is the bottom-part of P.

    Let uibe a piecewise linear function on ? such that ui=1 on the cap Ci∪ Ti,uiis linear on Miand ui=0 elsewhere.Assume that 1≤s

    Note that

    On the other hand,

    Thus we obtain that for all i∈N,

    which is impossible if q>

    5 Fractional(q,p)-Sobolev-Poincar′e Inequalities in Domains with Quasihyperbolic Boundary Conditions

    Lemma 5.1Fix p and q as in Theorem 1.3.Then there exists a constant C=C(n,p,q,β)such that

    whenever E??.

    ProofFor simplicity,we write p?,δ=κ =and λ =Then=

    Thus

    where we have used(3.3)–(3.4)with ε=()κ >0.

    The proof of Theorem 1.3 is again based on Theorem 1.1.

    Proof of Theorem 1.3Fix Q0?? to be the central Whitney cube containing x0.For each measurable set A? ? with= ?,let u ∈ C(?)∩L1(?)satisfy u|A≥ 1 and u|Q0=0.As in the proof of Theorem 1.2,we divide A into “good” and “bad” parts.Set

    We have|A|≤|G|+|B|and we first estimate|B|.

    For points x ∈ B,the standard fractional(p?,δ,p)-Sobolev-Poincar′e inequality on cubes provides a trivial estimate

    on Whitney cube Q containing x,where p?,δ=Since q

    and by summing over all such Whitney cubes,we deduce that

    We next estimate|G|and our aim is to show that

    so then the conclusion follows from Theorem 1.1.

    For each x∈G,let Q(x)be the Whitney cube containing x,for which uQ(x)≥.Then the chaining argument used in the proof of Theorem 1.2 gives us the estimate

    Recall that P(Q(x))consists of the collection of all the Whitney cubes which intersect the quasi-hyperbolic geodesic joining x0to the center of Q(x).Strictly speaking,on the right-hand side of(5.3),one should replace Q with λQ,where 1< λ

    Integrating(5.3)with respect to the Lebesgue measure and interchanging the order of summation and integration yield

    Applying H¨older’s inequality leads to

    Applying Lemma 5.1,we find that

    which proves(5.2).

    Proof of Example 1.2The construction here is similar to that used in the proof of Example 1.1 and thus we only point out the difference.The mushroom-like domain ??Rnconsists of a cube Q and an attached in finite sequence of mushrooms F1,F2,···growing on the “top” of the cube as in Example 1.1.Now,by a mushroom F of size r,we mean a cap C,which is a ball of radius r,and an attached cylindrical stem P of height rτand radius rσ.The mushrooms are disjoint,and the corresponding cylinders are perpendicular to the side of the cube that we have selected as the top of the cube.We can make the mushrooms pairwise disjoint if the number riassociated with Ficonverges to 0 sufficiently fast as i→∞.We further write P=T∪M∪D,where T is the top-part of P,M is the middle-part of P,and D is the bottom-part of P.

    It is easy to show that ? satis fies the β-quasihyperbolic boundary condition(2.1)if σ =≤ τ(see for instance[13,Example 5.5]).We next show that ? is not a fractional(q,p)-Sobolev-Poincar′e domain if

    When τ= σ =(5.5)implies that ? is a β-quasihyperbolic boundary condition which does not support a fractional(q,p)-Sobolev-Poincar′e inequality.This veri fies Example 1.2.

    Let uibe a piecewise linear function on ? such that ui=1 on the cap Ci∪ Ti,and uibe linear on Miand ui=0 elsewhere.Assume that the fractional(q,p)-Sobolev-Poincar′e inequality holds on ?.

    Note that

    On the other hand,

    Thus we obtain that for all i∈N,

    which is impossible if

    6 Necessary Conditions for the Fractional(q,p)-Sobolev-Poincar′e Domains

    Proof of Theorem 1.4Fix x ∈ ?.Pick a curve γ :[0,1] → ? with γ(0)=x and γ(1)=x0as in the de finition of separation property.

    Let 0

    where

    A bounded domain ? ? Rnwith a distinguished point x0satisfying(1.7)with φ(t)=is termed s-diam John in[6].It was proved in[6]that,for s>1,s-diam John domains are not necessarily s-John.

    In[2,Corollary 4.1],it was stated that if a bounded domain ??Rnsatis fies a separation property and supports a(q,p)-Sobolev-Poincar′e inequality(1.3)with q>p,then ? is s-John with s=One could immediately check that the proof given there is only sufficient to deduce that ? is s-diam John with s=In fact,combining[6,Example 5.1]and[2,Section 4],one can produce an s-diam John domain ? ?Rnwith s=such that ? supports a(q,p)-Sobolev-Poincar′e inequality.Moreover,? is not s′-diam John whenever s′

    We next brie fly discuss how to construct such an example in the plane(it works in higher dimensions as well).Set

    where 0<α<β≤1 will be speci fied later.The idea is very simple:We first use the mushroom-like domain ?′? R2as is constructed in[2](with different choices of parameters)and then modify ?′to be a spiral domain ? as in[6,Example 5.1].

    The mushroom-like domain ?′? R2consists of a cube Q and an attached in finite sequence of mushrooms F1,F2,···growing on the “top” of the cube as in Example 1.1.Now,by a mushroom F of size r,we mean a cap C,which is a ball of radius r,and an attached cylindrical stem C(r).The mushrooms are disjoint,and the corresponding cylinders are perpendicular to the side of the cube that we have selected as the top of the cube.We can make the mushrooms pairwise disjoint if the numbers riassociated with Ficonverge to 0 sufficiently fast as i→∞.

    Note first that if β =with n=2,then C(r)satis fies the(q,p)-Sobolev-Poincar′e inequality uniformly in r(see[2]).Letμ =sβ =and p?=One can show that ?′is a(q,p)-Sobolev-Poincar′e domain if

    holds with n=2(see[2]).Note also that ? is-John.

    We next bend each mushroom Fito make it spiral so that the resulting domain ? is an s-diam John domain.According to our choice,s=One can check that if β =then(6.1)reduces to

    Since p1.For anysatisfying(6.2)and=it is easy to check that>=s.It is clear that ?′and ? are bi-Lipschitz equivalent,so the(q,p)-Sobolev-Poincar′e inequality holds in ? as well.Moreover, ? satis fies all the required properties.

    One could also modify the above example to the fractional(q,p)-Sobolev-Poincar′e case,but the computations will be too complicated,so we omit them in the present paper.

    AcknowledgementsThe author wants to express his gratitude to Antti V V¨ah¨akangas.for posing the question in Jyv¨askyl¨a analysis seminar,which is the main motivation of the current paper,for sharing the manuscript(see[3]),and for numerous useful comments on the manuscript.The author also wants to thank academy Professor Pekka Koskela for the helpful discussions.

    [1]Adams,D.R.and Hedberg,L.I.,Function spaces and potential theory,Grundlehren der Mathematischen Wissenschaften,Fundamental Principles of Mathematical Sciences,314,Springer-Verlag,Berlin,1996.

    [2]Buckley,S.and Koskela,P.,Sobolev-Poincar′e implies John,Math.Res.Lett.,2(5),1995,577–593.

    [3]Dyda,B.,Ihnatsyeva,L.and V¨ah¨akangas,A.V.,On improved Sobolev-Poincar′e inequalities,Ark.Mat.,2015,http://dx.doi.org/10.1007/s11512-015-0227-x

    [4]Gehring,F.W.and Osgood,B.G.,Uniform domains and the quasihyperbolic metric,J.Analyse Math.,36,1979,50–74.

    [5]Gehring,F.W.and Palka,B.P.,Quasiconformally homogeneous domains,J.Analyse Math.,30,1976,172–199.

    [6]Guo,C.Y.and Koskela,P.,Generalized John disks,Cent.Eur.J.Math.,12(2),2014,349–361.

    [7]Hajlasz,P.and Koskela,P.,Isoperimetric inequalities and imbedding theorems in irregular domains,J.London Math.Soc.,58(2),1998,425–450.

    [8]Hajlasz,P.and Koskela,P.,Sobolev met Poincar′e,Mem.Amer.Math.Soc.,145(688),2000,101 pages.

    [9]Hurri-Syrj¨anen,R.and V¨ah¨akangas,A.V.,On fractional Poincar′e inequalities,J.Anal.Math.,120,2013,85–104.

    [10]Jiang,R.and Kauranen,A.,A note on “quasihyperbolic boundary conditions and Poincar′e domains”,Math.Ann.,357(3),2013,1199–1204.

    [11]John,F.,Rotation and strain,Comm.Pure Appl.Math.,14,1961,391–413.

    [12]Kilpel¨ainen,T.and Mal′y,J.,Sobolev inequalities on sets with irregular boundaries,Z.Anal.Anwendungen,19(2),2000,369–380.

    [13]Koskela,P.,Onninen,J.and Tyson,J.T.,Quasihyperbolic boundary conditions and Poincar′e domains,Math.Ann.,323(4),2002,811–830.

    [14]Martio,O.and Sarvas,J.,Injectivity theorems in plane and space,Ann.Acad.Sci.Fenn.Ser.A I Math.,4(2),1979,383–401.

    [15]Maz’ya,V.G.,Classes of domains and imbedding theorems for function spaces,Soviet Math.Dokl.,1,1960,882–885.

    [16]Maz’ya,V.G.,Sobolev spaces with applications to elliptic partial differential equations,Second,revised and augmented edition,Grundlehren der Mathematischen Wissenschaften,Fundamental Principles of Mathematical Sciences,342,Springer-Verlag,Heidelberg,2011.

    [17]Smith,W.and Stegenga,D.A.,H¨older and Poincar′e domains,Trans.Amer.Math.Soc.,319,1990,67–100.

    √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 狂野欧美激情性xxxx在线观看| 亚洲欧美清纯卡通| 香蕉国产在线看| 精品久久国产蜜桃| 午夜激情av网站| 在线观看一区二区三区激情| 色网站视频免费| av播播在线观看一区| 黑人高潮一二区| 亚洲高清免费不卡视频| 97在线人人人人妻| 精品熟女少妇av免费看| 国产成人91sexporn| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 国产熟女欧美一区二区| 女人精品久久久久毛片| 日韩欧美精品免费久久| 亚洲欧美日韩另类电影网站| 亚洲精品国产av蜜桃| 国产精品久久久久久精品古装| 日韩精品有码人妻一区| 欧美日韩视频精品一区| 视频区图区小说| 美女国产视频在线观看| 在线观看三级黄色| 成人影院久久| 大香蕉97超碰在线| 秋霞伦理黄片| 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 日韩 亚洲 欧美在线| 成年女人在线观看亚洲视频| 最新的欧美精品一区二区| √禁漫天堂资源中文www| 9热在线视频观看99| 国产又爽黄色视频| 高清黄色对白视频在线免费看| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 欧美精品高潮呻吟av久久| 色网站视频免费| 亚洲av.av天堂| 午夜老司机福利剧场| 国产乱人偷精品视频| 国产精品一区二区在线观看99| 国产欧美日韩综合在线一区二区| 国产av国产精品国产| 免费看av在线观看网站| 国产一区二区三区综合在线观看 | 啦啦啦视频在线资源免费观看| 如何舔出高潮| 五月开心婷婷网| 视频区图区小说| 热re99久久国产66热| 自线自在国产av| 国产成人精品在线电影| 日本vs欧美在线观看视频| av国产久精品久网站免费入址| 久久精品国产a三级三级三级| 亚洲成色77777| 精品一区二区三区四区五区乱码 | 亚洲性久久影院| 一区二区三区精品91| 在线观看国产h片| 亚洲五月色婷婷综合| 青春草视频在线免费观看| 国产精品人妻久久久久久| 亚洲激情五月婷婷啪啪| 最新中文字幕久久久久| 久久韩国三级中文字幕| 亚洲欧美色中文字幕在线| 精品熟女少妇av免费看| 久久午夜综合久久蜜桃| 熟妇人妻不卡中文字幕| 天堂中文最新版在线下载| 日韩中文字幕视频在线看片| 少妇人妻精品综合一区二区| 精品人妻熟女毛片av久久网站| 观看av在线不卡| 国产成人a∨麻豆精品| 丝瓜视频免费看黄片| 久久久久久久久久人人人人人人| 国产激情久久老熟女| 午夜激情av网站| 国产成人午夜福利电影在线观看| av福利片在线| 日韩免费高清中文字幕av| 丝袜喷水一区| 日韩av不卡免费在线播放| 久久久精品94久久精品| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看| 亚洲成国产人片在线观看| 欧美 亚洲 国产 日韩一| 精品一区二区三卡| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 亚洲伊人色综图| 一级毛片黄色毛片免费观看视频| 欧美另类一区| 中文字幕制服av| 成人亚洲精品一区在线观看| 久久久国产一区二区| 免费黄色在线免费观看| 少妇高潮的动态图| 又粗又硬又长又爽又黄的视频| a 毛片基地| 热99久久久久精品小说推荐| av播播在线观看一区| 国产av国产精品国产| 精品人妻一区二区三区麻豆| 国产精品 国内视频| 丰满迷人的少妇在线观看| 999精品在线视频| 性高湖久久久久久久久免费观看| 少妇的丰满在线观看| 欧美日韩av久久| 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 亚洲综合精品二区| 18禁国产床啪视频网站| 日日撸夜夜添| 男人爽女人下面视频在线观看| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 水蜜桃什么品种好| 看免费成人av毛片| 亚洲一级一片aⅴ在线观看| 精品一区二区三区视频在线| 日本黄色日本黄色录像| xxx大片免费视频| 侵犯人妻中文字幕一二三四区| 99re6热这里在线精品视频| 高清毛片免费看| 国产亚洲最大av| 嫩草影院入口| 在线观看www视频免费| 国产午夜精品一二区理论片| 你懂的网址亚洲精品在线观看| 欧美亚洲 丝袜 人妻 在线| 最近最新中文字幕免费大全7| 亚洲情色 制服丝袜| 高清欧美精品videossex| 如何舔出高潮| 亚洲人成网站在线观看播放| 肉色欧美久久久久久久蜜桃| 一区在线观看完整版| 国产精品免费大片| 亚洲综合精品二区| 国产爽快片一区二区三区| 国产精品不卡视频一区二区| 一级片免费观看大全| 国产亚洲欧美精品永久| 99九九在线精品视频| 国产视频首页在线观看| 极品人妻少妇av视频| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 尾随美女入室| 亚洲av日韩在线播放| 国产麻豆69| 人人妻人人添人人爽欧美一区卜| 人妻少妇偷人精品九色| 乱码一卡2卡4卡精品| 国产成人精品福利久久| 亚洲精品,欧美精品| 久久久精品94久久精品| a 毛片基地| h视频一区二区三区| 九九在线视频观看精品| 视频中文字幕在线观看| 男女午夜视频在线观看 | 一本大道久久a久久精品| 国产又色又爽无遮挡免| 日韩中文字幕视频在线看片| 久久久久久久国产电影| 日韩人妻精品一区2区三区| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 一区二区三区精品91| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 免费观看av网站的网址| 在线观看免费高清a一片| 国产xxxxx性猛交| 亚洲天堂av无毛| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区 | 熟女av电影| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频| 日韩一本色道免费dvd| 欧美日韩视频高清一区二区三区二| 黑人巨大精品欧美一区二区蜜桃 | 国产爽快片一区二区三区| 交换朋友夫妻互换小说| 久久午夜福利片| 另类亚洲欧美激情| 777米奇影视久久| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 欧美性感艳星| 日韩欧美一区视频在线观看| 七月丁香在线播放| 如何舔出高潮| 国产女主播在线喷水免费视频网站| 亚洲色图综合在线观看| 久久婷婷青草| 人人妻人人澡人人看| 欧美日韩av久久| 女性生殖器流出的白浆| 欧美日韩视频高清一区二区三区二| 亚洲欧美色中文字幕在线| 男人操女人黄网站| 水蜜桃什么品种好| 久久人妻熟女aⅴ| 最近中文字幕高清免费大全6| 精品国产一区二区三区四区第35| 精品一区二区免费观看| 如何舔出高潮| 久久99精品国语久久久| 一本大道久久a久久精品| 亚洲精品美女久久久久99蜜臀 | 十八禁网站网址无遮挡| 有码 亚洲区| 日韩制服丝袜自拍偷拍| 国产精品一国产av| 久久精品夜色国产| 亚洲第一区二区三区不卡| av国产精品久久久久影院| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 热re99久久精品国产66热6| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 久久婷婷青草| 亚洲av福利一区| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 国产精品一区www在线观看| 亚洲av电影在线进入| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区| a级毛色黄片| 日本-黄色视频高清免费观看| 久久97久久精品| 午夜视频国产福利| 国产成人精品婷婷| 欧美精品高潮呻吟av久久| 免费在线观看黄色视频的| 最近2019中文字幕mv第一页| 日本黄大片高清| 久久97久久精品| 国产成人午夜福利电影在线观看| 国产亚洲午夜精品一区二区久久| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 美国免费a级毛片| 在线亚洲精品国产二区图片欧美| 亚洲av综合色区一区| 色5月婷婷丁香| 五月伊人婷婷丁香| 黄色怎么调成土黄色| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 精品第一国产精品| 成年av动漫网址| 伦理电影大哥的女人| 成人国语在线视频| 亚洲精品国产av成人精品| 91成人精品电影| 涩涩av久久男人的天堂| 岛国毛片在线播放| 99久久中文字幕三级久久日本| 亚洲精品国产av成人精品| 国产色婷婷99| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 超碰97精品在线观看| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 国产又色又爽无遮挡免| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 欧美激情极品国产一区二区三区 | 久久狼人影院| 日本vs欧美在线观看视频| 亚洲国产欧美日韩在线播放| 成人毛片60女人毛片免费| 欧美日韩视频高清一区二区三区二| 国产乱人偷精品视频| 伊人亚洲综合成人网| 国产毛片在线视频| 母亲3免费完整高清在线观看 | 久久久久久久久久人人人人人人| 日韩av免费高清视频| 国产亚洲精品久久久com| 91久久精品国产一区二区三区| a 毛片基地| 日韩成人伦理影院| 免费在线观看黄色视频的| 夜夜骑夜夜射夜夜干| 久久狼人影院| 在线观看免费日韩欧美大片| av卡一久久| 久久狼人影院| 男人操女人黄网站| 咕卡用的链子| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| av电影中文网址| 国产av一区二区精品久久| 26uuu在线亚洲综合色| 春色校园在线视频观看| 80岁老熟妇乱子伦牲交| 五月伊人婷婷丁香| 免费日韩欧美在线观看| 人妻一区二区av| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 日本欧美国产在线视频| 男女下面插进去视频免费观看 | 大陆偷拍与自拍| 午夜福利视频精品| 国产白丝娇喘喷水9色精品| 久久97久久精品| 捣出白浆h1v1| av国产精品久久久久影院| 久久久久久久久久成人| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品999| 一级毛片电影观看| 国产精品国产av在线观看| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 国产日韩一区二区三区精品不卡| 深夜精品福利| 久久久久久久精品精品| 亚洲精品美女久久av网站| 国产精品免费大片| 午夜精品国产一区二区电影| 午夜av观看不卡| 一级黄片播放器| 看十八女毛片水多多多| 天堂8中文在线网| 国产毛片在线视频| av在线播放精品| 看免费成人av毛片| 大片免费播放器 马上看| 90打野战视频偷拍视频| 一本久久精品| 在线看a的网站| www日本在线高清视频| 精品国产露脸久久av麻豆| 咕卡用的链子| 亚洲欧美一区二区三区黑人 | 亚洲三级黄色毛片| 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 啦啦啦在线观看免费高清www| 免费少妇av软件| 国产男人的电影天堂91| 秋霞伦理黄片| 丰满迷人的少妇在线观看| 久久av网站| 精品第一国产精品| 在线天堂中文资源库| 中文字幕av电影在线播放| 亚洲中文av在线| 男男h啪啪无遮挡| 久久精品人人爽人人爽视色| 丰满少妇做爰视频| 最近最新中文字幕大全免费视频 | 国产熟女午夜一区二区三区| 自线自在国产av| 国产一区二区在线观看av| 十八禁高潮呻吟视频| 十分钟在线观看高清视频www| 丝袜喷水一区| 国产精品三级大全| 午夜福利,免费看| 观看美女的网站| 捣出白浆h1v1| av国产久精品久网站免费入址| 99视频精品全部免费 在线| 夜夜骑夜夜射夜夜干| 亚洲国产精品一区二区三区在线| 国产精品99久久99久久久不卡 | 免费女性裸体啪啪无遮挡网站| 99久国产av精品国产电影| 亚洲欧美一区二区三区黑人 | av视频免费观看在线观看| av天堂久久9| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| 丰满少妇做爰视频| 男女下面插进去视频免费观看 | 国产极品粉嫩免费观看在线| 精品亚洲成国产av| 免费久久久久久久精品成人欧美视频 | 久久久久久久亚洲中文字幕| √禁漫天堂资源中文www| 宅男免费午夜| 国产免费视频播放在线视频| 狠狠婷婷综合久久久久久88av| 亚洲精品日本国产第一区| 久久久亚洲精品成人影院| 麻豆精品久久久久久蜜桃| av免费观看日本| 久久人人97超碰香蕉20202| 亚洲综合色惰| 精品视频人人做人人爽| 免费大片18禁| 国产精品一区二区在线观看99| 一本大道久久a久久精品| 交换朋友夫妻互换小说| 久久精品久久久久久久性| 看非洲黑人一级黄片| av黄色大香蕉| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 美女福利国产在线| 制服丝袜香蕉在线| 免费黄色在线免费观看| 69精品国产乱码久久久| 在线观看人妻少妇| 激情五月婷婷亚洲| 欧美激情极品国产一区二区三区 | 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 一本色道久久久久久精品综合| 男人添女人高潮全过程视频| 搡老乐熟女国产| 免费看光身美女| videossex国产| 国产成人精品无人区| 51国产日韩欧美| 国产精品成人在线| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 日韩精品免费视频一区二区三区 | 多毛熟女@视频| 欧美+日韩+精品| 少妇猛男粗大的猛烈进出视频| 肉色欧美久久久久久久蜜桃| 99热全是精品| 久久久久精品久久久久真实原创| 国产又爽黄色视频| 免费大片18禁| 人体艺术视频欧美日本| 9热在线视频观看99| av播播在线观看一区| 韩国精品一区二区三区 | 欧美+日韩+精品| 亚洲高清免费不卡视频| 伊人亚洲综合成人网| 曰老女人黄片| 永久网站在线| 国产亚洲精品久久久com| 亚洲成人av在线免费| √禁漫天堂资源中文www| 91精品伊人久久大香线蕉| 少妇被粗大的猛进出69影院 | 久久ye,这里只有精品| 亚洲三级黄色毛片| 黑人高潮一二区| videos熟女内射| 国产成人91sexporn| 中文字幕亚洲精品专区| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 国产精品国产三级专区第一集| 久久精品夜色国产| 伊人亚洲综合成人网| 国产精品一区www在线观看| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 国产福利在线免费观看视频| 中文字幕精品免费在线观看视频 | 中文字幕精品免费在线观看视频 | 久久国内精品自在自线图片| 全区人妻精品视频| 欧美人与性动交α欧美软件 | 国产在视频线精品| 国产福利在线免费观看视频| 999精品在线视频| 亚洲成国产人片在线观看| 宅男免费午夜| 性色avwww在线观看| 亚洲精品自拍成人| 老熟女久久久| 多毛熟女@视频| 精品酒店卫生间| 女性被躁到高潮视频| 香蕉国产在线看| 一个人免费看片子| 天堂8中文在线网| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 亚洲伊人久久精品综合| 热99久久久久精品小说推荐| 久久午夜福利片| 男女边摸边吃奶| 天天躁夜夜躁狠狠躁躁| 国国产精品蜜臀av免费| 五月开心婷婷网| 丝袜脚勾引网站| 看非洲黑人一级黄片| 久久狼人影院| 日日摸夜夜添夜夜爱| 欧美精品一区二区大全| 国产爽快片一区二区三区| 免费久久久久久久精品成人欧美视频 | 只有这里有精品99| 精品亚洲成国产av| 天堂8中文在线网| 久久人妻熟女aⅴ| 免费看av在线观看网站| xxx大片免费视频| 久久久久精品人妻al黑| 成年人午夜在线观看视频| 美女主播在线视频| 午夜福利乱码中文字幕| 亚洲高清免费不卡视频| 最新的欧美精品一区二区| 十八禁高潮呻吟视频| 国产精品一区二区在线不卡| 熟女电影av网| 国产精品久久久久久精品古装| 大码成人一级视频| 久久久久国产网址| 国产精品99久久99久久久不卡 | 亚洲色图 男人天堂 中文字幕 | 国产一区二区在线观看av| 国产成人午夜福利电影在线观看| 最后的刺客免费高清国语| 国产黄频视频在线观看| 国产日韩欧美在线精品| 亚洲欧美日韩卡通动漫| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 两个人看的免费小视频| 精品熟女少妇av免费看| 欧美日韩亚洲高清精品| 97在线视频观看| 成人亚洲欧美一区二区av| 99热这里只有是精品在线观看| 亚洲精品乱久久久久久| 日本黄色日本黄色录像| 97人妻天天添夜夜摸| 日本wwww免费看| 日韩成人伦理影院| 国产精品熟女久久久久浪| 久久精品国产自在天天线| 人妻 亚洲 视频| 成人无遮挡网站| 大香蕉久久成人网| 国产免费又黄又爽又色| 久久国产亚洲av麻豆专区| 视频在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| 视频中文字幕在线观看| 人成视频在线观看免费观看| 老熟女久久久| 久久综合国产亚洲精品| 国产福利在线免费观看视频| 亚洲美女搞黄在线观看| 青春草亚洲视频在线观看| av.在线天堂| 亚洲国产成人一精品久久久| 精品一区在线观看国产| 肉色欧美久久久久久久蜜桃| 女的被弄到高潮叫床怎么办| www.熟女人妻精品国产 | 免费黄色在线免费观看| 一本—道久久a久久精品蜜桃钙片| 日韩,欧美,国产一区二区三区| 熟女人妻精品中文字幕| 亚洲国产精品专区欧美| 久久精品国产亚洲av涩爱| 97人妻天天添夜夜摸| 七月丁香在线播放| 久久久久国产网址| 秋霞在线观看毛片| 各种免费的搞黄视频| 大香蕉久久网| 国产乱来视频区| 大片电影免费在线观看免费| 国产男女超爽视频在线观看| 亚洲精品中文字幕在线视频| 多毛熟女@视频| av.在线天堂| 熟妇人妻不卡中文字幕| 亚洲情色 制服丝袜| 欧美精品一区二区大全| 男女午夜视频在线观看 | 高清黄色对白视频在线免费看| 久久精品国产亚洲av天美| 视频中文字幕在线观看| 久久久亚洲精品成人影院| 国产精品麻豆人妻色哟哟久久| 91精品伊人久久大香线蕉|