• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-periodic Solutions for the Derivative Nonlinear Schr¨odinger Equation with Finitely Differentiable Nonlinearities?

    2017-06-06 02:42:58MeinaGAOKangkangZHANG

    Meina GAO Kangkang ZHANG

    1 Introduction

    In this paper we prove the existence of quasi-periodic solutions of the derivative nonlinear Schr¨odinger(DNLS for short)equation

    subject to Dirichlet boundary conditions u(t,0)=0=u(t,π),?∞

    The same as in[18],introducing the inner product in a suitable phase space,for example,the usual Sobolev space([0,π])

    then(1.1)can be written in the Hamiltonian form

    with the “Reality” conditionwhere the gradient of H is de fined with respect to ?·,·?and

    KAM theory is a powerful tool to deal with the existence of periodic,quasi-periodic or almost periodic solutions of partial differential equations(PDEs for short)under small perturbations.The first KAM results for PDEs have been obtained for 1-d semi-linear Schr¨odinger and wave equations by Kuksin[14],Craig-Wayne[10,29],see the references therein.For PDEs in higher space dimension,the theory has been more recently extended by Bourgain[8],Eliasson-Kuksin[11],Berti-Bolle[5],and Geng-Xu-You[12].For unbounded perturbations,the first KAM results have been proved by Kuksin[15–16]and Kappeler-P¨oschel[13]for KdV equation(see also[7]),and more recently by Liu-Yuan[17–19],Zhang-Gao-Yuan[32]for derivative NLS equation,Baldi-Berti-Montalto[1]for the Hamiltonian quasi-linear perturbations of the KdV equation,and Berti-Biasco-Procesi[2–3]for derivative NLW equation.

    However,the results mentioned above require the analyticity of the perturbations of the PDEs to overcome the well-known “l(fā)oss of regularity”problem.By shrinking the width of the angle variables,one can estimate the solutions of the homological equations and obtain the convergence of the KAM iterative procedure.For dynamical systems with differentiable perturbations,it is clear that after finitely many steps all derivatives are exhausted which leads to the failure of the KAM iteration.To cope with this difficulty,the primary approach is due to Moser[20–21],which extended the classical KAM theory for nearly integrable Hamiltonian systems under real-analytic perturbations,to smooth category.The main idea exploited by Moser is to use a smoothing operator,and re-insert enough regularity into the problem at every Newton iterative step in order to compensate the loss of regularity.A closely related approach was given by Nash[24]researching the embedding problem of compact Riemannian manifolds.In[21],Moser first proved the existence of the invariant curves for area preserving annulus mappings satisfying the monotone twist property which corresponds to the Hamiltonian system case in “one and a half” degrees of freedom.The number of derivative of the perturbation is required to be ?>333,which was later reduced by R¨ussmann to ?>5 in[26].For the Hamiltonian case we refer to[23,25].

    The KAM theory in Moser[20–21]dealt with the persistence of maximal-dimensional invariant tori in the context of smooth category.It is natural to ask whether lower-dimensional tori can be persisted or not.By exploiting a technique following[23],Chierchia-Qian[9]considered the existence of lower-dimensional elliptic tori of any dimension between one and the number of degrees of freedom for the nearly integrable Hamiltonian system with finitely differentiable perturbation.The framework of this method is mainly based on an approximation of the differentiable functions with analytic ones.Zhang[31]proved the existence of the lowerdimensional invariant tori for the reversible system with finite degrees of freedom under finitely differentiable perturbation.For in finite dimensional Hamiltonian systems,the research just began in the last few years,the main results were given by Berti-Bolle-Procesi[4–6].By using a Nash-Moser iterative scheme in scales of the Sobolev functions space,they got the existence of quasi-periodic solutions which has Sobolev regularity both in time and space for PDEs with bounded perturbations,such as the NLS and NLW for any spatial dimension.

    The perturbation of(1.1)is finitely differentiable.What is more important,the answer is unbounded.Thus(1.1)is excluded by the above approach.The aim of the present paper is to construct a large amount of quasi-periodic solutions of small amplitude for the derivative NLS equation(1.1).More precisely,in the following we consider a class of“vector” derivative NLS equations:

    subject to Dirichlet boundary condition u(t,0)=0=u(t,π),where the nonlinearities are quasiperiodic in time with frequency ω ∈ Rnandfor somelarge enough and the second equation is the formal complex conjugation of the first one.

    We have the following theorem.

    Theorem 1.1Suppose that the nonlinearities f and are finitely differentiable with >100(1+ ρ)(3n+2τ+1)+3+p,where ρ,p and τ are positive constants which will be de fined below,and Π?Rnis a compact set of positive Lebesgue measure.Then there exists a small constant ?? >0 such that for|?|< ??,a Cantor set Π? ? Π with Meas(Π Π?) → 0 as ?→ 0,and for arbitrary ω ∈ Π?,(1.4)possesses a quasi-periodic solution of frequency ω with small amplitude.

    The main ideas of our proof consist of a smoothing technique elaborated in[23]and Newton iterative scheme.Note that(1.4)is a Hamiltonian PDE,however,we do not use its Hamiltonian structure explicitly.Instead,we write(1.4)into an abstract nonlinear equation

    (see Theorem 2.1),of which we try to construct the quasi-periodic solutions by Newton’s method.The essential element of Newton’s method is to find the approximate solution by solving the linearized equation of the original equation.Therefore,at each Newton iteration,we solve the linearized equation of(1.5)

    Moreover,we need to prove the convergence of the iterative process.In order to solve(1.6),we need to estimate the inverse of(Λ+P(ωt))?1,which is “big” due to the unboundedness of the perturbation.Hence we do not solve the linearized equation(1.6)directly but do the KAM type reduction first.Luckily,as we discuss(1.4)under Dirichlet boundary condition,the frequencies are simple,the reduction process is feasible(see Lemma 3.2 for the details).The Hamiltonian structure guarantees the reality of Λ which is necessary in Theorem 1.4 in Liu-Yuan[17].In fact we get a new system after the reduction

    whereis much smaller and can be treated as perturbation.Thus we just need to find the solution for the linearized equation

    wheredenotes a diagonal matrix close to Λ in some sense(seeLemma4.1 for the details).

    We remark that P(ωt),F(ωt)andare only differentiable with respect to t.The main difficulty during the whole procedure is the phenomenon of“l(fā)oss of regularity”.To overcome this,we use an approximation theorem which is closely related to the classical theorem due to Jackson,of which the fundamental observation is that the qualitative property of differentiability of a function can be characterized in terms of quantitative estimates for an approximating sequence of analytic functions.Then we can solve the linearized equation in analytic category with good estimates to guarantee the convergence of the Newton iterative process.

    This paper is organized as follows:In Section 2,we rewrite the derivative NLS equation(1.4)in in finite coordinates,and this new equation will be our starting point for the following discussion.What’s more,we list a similar theory to the approximation theory of Jackson,Moser and Zehnder,which will be used as the basis of our smoothing technique.In Section 3,a KAM type reduction lemma will be proven with finitely differentiable unbounded perturbation.In Section 4,we describe the solving procedure of the linearized equation at each step and the iterative process in details.Finally some technical lemmas are exhibited in Section 5.

    2 The Basic Modes

    We study(1.4)on some suitable phase space,for example,the usual Sobolev spaceWe rewrite it in in finitely many coordinates by making the ansatz

    The coordinates are taken from the Hilbert space ?pof all complex-valued sequences q=We fix p>later.Then(1.4)can be written as

    wherewithIn the following we considerto be independent,and(1.4)equals to(2.2)when the bar means the complex conjugate.We investigate the regularity of the nonlinear vector field first.In fact,we have the following observation.

    Lemma 2.1The nonlinear vector fieldde fines a finitely differentiablemap fromintowhere denotes some small neighborhood of the originin ?p × ?p.To be more precise,for anywith

    where T means the transpose of a vector.

    ProofIntroduce a map F de fined on Hp×Tnwith

    We will prove that there exists some neighborhood U of the origin in Hpsuch that for anyThen(2.3)follows directly.

    From the assumption thatwe can find some N being the neighborhood of the origin in C2such that for a+b≤ p?1,all the derivativesare bounded on N×Tn.Then we set U denoting the neighborhood of the origin in Hpof which the elementhas graphs lying in N.We will show that for any ξ∈ U,? ∈ Tn,Using the chain rule we can write

    where ? represents i1+···+ia+j1+···+jb+m=p?1.For ξ∈ U,we haveandwhich is due to the fact thatThus we can get the estimate

    Then by using the interpolation estimate in Lemma 5.1 in the Appendix,we can get

    Consequently we haveThe estimate corresponding to F2can be obtained similarly,and we omit the details here.Hence we obtain

    Then the conclusion thatde fines a map from U into Hp?1for any ? ∈ Tnfollows.

    Now we investigate the first order Fr`echet derivative ofwith respect to ξ.When|k|= ?,then nothing remains to be done.Hence in the following we assumeHp,we get

    with a different constant C depending on p. Thus,and the same estimate can be obtained for F2.Therefore,for any(ξ,?)∈U×Tn,the first Fr`echet derivativede fines a bounded linear operator from Hpintoas the set of bounded linear operators from Hpinto Hp?1,then we can obtainfor all ? ∈ Tn.For any other derivative of high order,we can handle in the same way.By now we have finished the proof.

    We set some notations and de finitions for the sake of convenience.Set Pp= ?p× ?p,andrepresent the set of bounded linear operators fromand the corresponding norm respectively.Here we just focus our attention on α∈N for simplicity,and hence inLemma2.1 we choose ?,|k|∈ N also.Set X0:=Pp?1.For a given vector R(ζ,?)=(f(ζ,?),g(ζ,?))T,de fine

    For the original system(2.2),setThen based onLemma2.1,we conclude that for anyestimate

    holds true.Then we have the following theorem.

    Theorem 2.1Consider the system

    which ful fills the following hypotheses:

    where

    with λi=i2.

    (A2)The perturbationis finitely differen-tiable with respect to ζ and ? with

    In addition,

    (A3)The first order Fr`echet derivativefunction from O × Tninto the space of bounded operators from ?pinto ?p?1.Moreover,

    forand ?∈Tn.

    Then for any

    where ρ and τ are two fixed positive constants with 0< ρ n+3,there exists ?? >0 and a Cantor subset Π?? Π with Meas(ΠΠ?)→ 0 as ?→ 0,such that for ?< ?? and ω ∈ Π?,(2.11)has a quasi-periodic solution with frequency ω.

    From(1.3)in Section 1,we can find a Hamiltonian perturbation P(q,,?)such thatThen taking the “Reality” condition of P into account,we can easily check the assumption(A3).Obviously,we can directly get the conclusion in Theorem 1.1 from Theorem 2.1,thus we will discuss the proof of Theorem 2.1 in the following.In the remaining part of the present section we list a well known and fundamental approximation result.Starting from the following lemma,we can set up a sequence of analytic functions which approximate to the original finitely differential one.

    Lemma 2.2(Jackson,Moser,Zehnder)Let X be a Banach space and f ∈ C?(Rn;X)for some ?>0 with finite C?norm over Rn.Let ? be a radial-symmetric,C∞ function with support being the closure of the unit ball centered at the origin,where ? is completely flat and takes value 1,and let K=b? be its Fourier transform.For all σ>0,de fine fσ(x):=Then there exists a constant C≥1 depending only on ?and n such that the following holds:For any σ >0,the function fσ(x)is a real-analytic function from Cnto X such that if denotes the n-dimensional complex strip of width σ,then for all α ∈ Nnsuch that|α|≤ ?,one has

    and for all 0≤s≤σ,

    Here Xαis the Banach space of bounded operatorswith the norm

    The function fσpreserves periodicity(i.e.,if f is T-periodic in any of its variable xj,so is fσ).Finally,if f depends on some parameter ξ∈ Π ? Rnand if the Lipschitz-norm of f and its x-derivatives are uniformly bounded by then all the above estimates hold with ∥ ·∥replaced by ∥ ·∥L.

    This lemma is similar to the approximation theory obtained by Jackson,Moser and Zehnder,and the only difference is that we extend the applied range from C?(Rn;Cn)to C?(Rn;X).The proof of this lemma consists in a direct check which is based on standard tools from calculus and complex analysis,for details see[27–28]and the references therein.

    Fix a sequence of fast decreasing numbers sν↓0,ν ≥0,and s0≤for F(?)∈ C?(Tn;X)we can construct a sequence of analytic and quasi-periodic functions F(ν)(?)such that the following conclusions holds:

    (1)F(ν)(?)is analytic on the complex stripof the width sνaround Tn.

    (2)The sequence of functions F(ν)(?)satis fies the bounds:

    where C denotes a constant depending only on n and ?.

    (3)The first approximate F(0)is “small” with the perturbation F.Precisely speaking,for arbitrary ?∈we have

    where constant C is independent of s0,and the last inequality holds true due to s0≤

    (4)From(2.19),we have the equality below.For arbitrary ?∈Tn,

    3 Reduction Lemma

    In this section,we will give an iterative lemma,which is the key part of our proof.Let m≥0 be the m-th step,we introduce some recursive parameters.

    (1) ?0=C?,Cdenotes a positive constant depending only on n and

    (2) ?m=whereis a small constant satisfying 0<<

    (3)sm=with 0<<ρ

    (4)σm=which acts as a bridge from smto sm+1,

    (5)andwhich denote the length of the truncation of Fourier series,

    (6)which dominates the measure parameters excluded in the m-th iteration step,

    (7)hence

    (8)hence

    (9)hencewhere C1is a positive constant depending only on n and τ,and τ is a fixed real number greater than n+3.

    Before we give the iterative lemma,we list some notations.

    (1)Suppose thatis the set of bounded linear operators from ?qintoand we de fine the operator norm of its element byAccordingly,we denote the set of bounded linear operators from Pqintobyand the operator norm of its element byHence from the above section,we can conclude that|∥ ·∥|p,p?1= ∥ ·∥X1.

    (2)Letbe the complexi fication of Tn,and de fine={?∈:|Im?|=|Im?i|

    Furthermore,if f has an additional(Lipschitz-continuous)dependence on ω ∈ Π,we de fine the Lipschitz norm

    (3)Choose ? and α0such that

    (4)In what follows we use the notations ab to represent that there exists a constant C independent of m,? and α0but may depending on n,τ and ? such that a

    (5)Let

    Apparently we know that Meas(Π Π′)l α0.

    Lemma 3.1Assume that at the m-th iteration step,we have a system as follows:

    with∈Pp,ω∈Πm,m≥1 which satis fies the following hypotheses:

    where

    with

    Moreover,λi,mis Lipschitz-continuous in ω and ful fills the estimate

    (?,ω): × Πm → C is real analytic in ?,Lipschitz-continuous in ω and of zero average,It also ful fills the following estimates in×Πm:

    wheredenotes the k-th Fouriercoefficient ofμ.

    (H2)is real analytic with respect to ?,Lipschitz-continuous in ω and satis fies the estimate:

    Furthermore,for ? ∈ Tnand ω ∈ Πm,

    (H3)For any ω ∈ Πm,

    Then there exist Πm+1? Πmwith Meas(ΠmΠm+1)αm+1and Bm(?,ω): ×Πm →Bp,p ∩which is real analytic with respect to ? ∈ ,Lipschitz-continuous in ω∈Πmand satis fies

    such that for any ω ∈ Πm,by the transformation(3.2)can be changed into

    Moreover,Λm+1,Pm+1ful fill(H1)–(H3)with m replaced by m+1.

    The above result is similar to the iteration Lemma 3.2 in[17],and the key part of the proof is to find a suitable estimate for the solutions of the homological equations with large variable coefficients.Hence the process is parallel except the following two points:(1)The width of the angle variable smrelies on ?m,hence the system(3.2)in our paper has weaker regularity,(2)is controlled byinstead of ?min[17].Consequently,we concentrate our attention on these two aspects in the following.

    ProofNow we include our system into a more general framework.Abbreviate the notations Λm,Am,Pm,λi,m,μi,m,Bm,and ΓKmby Λ,A,P,λi,μi,B and ΓK,and Λm+1,Am+1,Pm+1,λi,m+1and μi,m+1by Λ+,A+,P+,andrespectively.Following the procedure in the proof of Lemma 3.2 in[17],we set χ =eB(?)φ,and pluging into(3.2)yields(3.9),where

    Thus we need to solve the homological equation for the unknown B:

    whereTo this end,Bi,1≤i≤4 should satisfy the homological equations:

    We only give the details of solving(3.13)in the following,and(3.14)–(3.16)can be handled in the same way.In view of the proof of Lemma 3.2 in[17],we can obtain the estimates of the elements of B1.Precisely speaking,we have the following statements:

    (1)B1,ii=0.

    (2)For(i,j)with 0<|λi? λj|<2Km,

    (3)For(i,j)with|λi? λj|≥ 2Km,

    By the assumptionswe can obtain

    It follows from(3.1)thatConsequently,we have

    Taking(3.18)and(3.20)into account and using Lemma 5.2 in the Appendix,we get the estimate of B1=(B1,ij)i,j≥1:

    In view of(3.1),we can setThen by the de finition of αmand ?m,we get

    Taking the de finition of σminto account,together with(3.21)and(3.22),we have the following estimate:

    From the assumption

    we can obtainConsequently,we have

    For the other terms of B,i.e.,B2,B3,B4,the same results can be obtained.Thus,we finally get the estimate for B:

    The remaining estimates for λ+, μ+and the new perturbed term P+can be handled in the classical way,and we do not give the proof here.For the detail we can refer to[30],and we just need to verify(3.5)for P+.

    From(3.13)–(3.16),it is easy to see that for real ?,i.e.,? ∈ Tn,

    Then by a direct calculation,we can obtain that R satis fies(3.5).Furthermore,from Lemma 5.3 in Appendix,together with the fact that Λ satis fies(3.5)and

    we can conclude that P+satis fies(3.5).Till now we complete the proof of this lemma.

    Remark 3.1In the following,for a block matrixif the components Pi,1≤i ≤ 4 satisfy(3.5)for real ?,we call P(?)satis fies(3.5).Similarly,for a given operatorif(3.27)can be ful filled for any real ?,we call B(?)satis fies(3.27).

    We can obtain a more general reduction lemma below by applying Lemma 3.1.

    Lemma 3.2Suppose that at the m-th iteration step,we have a system as follows:

    with Λ in(2.12),and Πmdescribed by(H3)in Lemma 3.1.Moreover,Pm(?,ω):Tn×Πm → X1has the formPi(?,ω).In addition,Pi(?,ω)can be written as

    and for ν ≥ i,(?,ω):×Πm → X1is real analytic in ? ∈ ,Lipschitz-continuous in ω and satis fies(3.5).Moreover,we have the following estimates:

    Then there exists Um(?,ω)de fined on Tsm?4σm × Πmwith Um(?,ω)=eB1(?,ω)···eBm(?,ω),where Bi(?,ω)satis fies(3.27)and the following estimates:

    such that by the transformation η =Um(ωt,ω)φ,(3.28)can be changed into

    where Λm+1ful fills(H1)in Lemma 3.1 with m replaced by m+1,and Qm+1(?,ω):Tn×Πm+1 →X1can be written as

    with(?,ω),(?,ω)being real analytic in ? ∈ ,Lipschitz-continuous in ω ∈ Πm+1 and satisfying(3.5)as well as the estimates:

    ProofWe proof this lemma by induction.When m=1,we have

    with

    Consider the system

    and it is easy to check the hypotheses(H1)–(H3)in Lemma 3.1 are satis fied.Applying Lemma 3.1 to(3.37),we can find a set Π2? Π1and a linear transformation η=eB1φ such that(3.37)is changed into

    where Λ2andsatisfy(H1)–(H3)in Lemma 3.1 with m=2.Moreover,the operator B1(?,ω):× Π1→ Bp,p∩Bp?1,p?1satis fies the estimate:

    Hence by the same transformation,in view of the expansion(3.35),the original equation(3.28)for m=1 can be changed into

    where

    which means that the lemma is true for m=1.

    Now suppose that the lemma is true for m?1.Atthe m-th step,rewrite the system(3.28)as

    By induction,we can find a coordinate transformation η =Um?1χ with Um?1=eB1···eBm?1and Πm? Πm?1changing the equation

    into

    where

    and

    Differentiating the transformation η=Um?1χ with respect to t,we have=Inserting it into(3.28)and in view of(3.29),we can obtain the new system:

    where

    Consequently based on Lemma 3.1,there exist Πm+1? Πmwith Meas(ΠmΠm+1)αm+1,and Bm(?,ω):× Πm→ Bp,p∩Bp?1,p?1satisfying

    By the transformationwe can change(3.44)into

    with

    Set Um:=Um?1·eBm,then the lemma is true for m,and we finish the proof.

    4 Iteration Process and Proof of Theorem 2.1

    Lemma 4.1Let us consider the system

    de fined on× Πm+1,where Λm+1and Πm+1ful fill the hypotheses(H1)and(H3)in Lemma 3.1 with m replaced by m+1,and the vector field(?,ω)=((?,ω),(?,ω))T: × Πm+1 → Pp?1is real analytic in ? ∈,Lipschitz-continuous in Πm+1andsatis fies the estimate

    Furthermore,we assumeexists a quasi-periodic solution φm+1(?,ω)=(ym+1(?,ω),(?,ω))Twhich is real analyticin ? ∈and Lipschitz-continuous in ω ∈ Πm+1such that

    with rm=()and

    In addition,for any ?∈Tn,we have

    ProofAbbreviate the notationsand ΓL,respectively.Then(4.3)can be written as

    In the following we just find the solution to the first equation,and the second one can be solved similarly.Set r=(r1,r2)and let r1be an in finite vector with elements

    where ΓLis the truncation operatorThen yjsatis fies equations as follows:

    (1)For j with 0<|λj|<2Lm,

    (2)For j with|λj|≥ 2Lm,

    Now we solve the homological equations(4.8)–(4.9)with large variable coefficient.First let us consider(4.8).By(3.3)and(3.6),we haveThen applying Theorem 1.4 in[17]to(4.8),we have

    In view ofhave

    Thus by(3.1)we can obtain

    Hence from(4.10)–(4.12),we conclude that

    Next we consider(4.9).By(3.3),we have

    In view ofLemma 2.6 in[17]to(4.9),we have

    Taking(4.13)and(4.15)into account,using Lemma 5.2 in Appendix,we can get the estimate of the ?p-norm of y=(yj)j≥1:

    For the estimate of the Lipschitz norm,we proceed as follows.Given a function B of ω,set△B=B(ω)? B(ω′).Applying △ to(4.8)–(4.9),we obtain the following assertions:

    (1)For 0<|λj|<2Lm,

    (2)For|λj|≥ 2Lm,

    Applying Theorem 1.4 in[17]to(4.18),for 0<|λj|<2Lm,we obtain

    Then applying Lemma 2.6 in[17]to(4.19),for|λj|≥ 2Lm,we have

    Then from(4.20)–(4.21),using Lemma 5.2 in Appendix,we get

    Divided by|△ω|,together with(4.17),we obtain

    The estimate for ey is the same as y in(4.24).Hence we have

    In view of the de finition of σmand(3.22),we have

    where the last inequality follows from the assumption on ? in(2.16).

    We handle with the estimate of the remaining part r1as in[17].First,we divide r1into three parts,that is r1=++,whereandhave the vector elements as follows:

    andis the truncation ofthat is=(1?ΓL)From(4.16),(4.22)and

    we get

    by Lemma 5.2 in Appendix.Since

    applying Lemma 5.2 in Appendix,we obtain

    Applying again Lemma 5.2 in Appendix to △=(ω)?(ω′),we getFoewe obtain

    By the same method,we can obtain the estimate with respect to r2,and consequently we have

    In view ofwe can get(4.5)by a direct calculation.Now we finish the proof.

    Remark 4.1(1)For a given vector F(?)=(F1(?),F2(?))T,if for any ? ∈ Tn,we have

    then we say that the vector F satis fies(4.33).

    (2)Given an operator P(?)ful filling(3.5),and ζ(?)=(y(?), ey(?))T,we assume that ey=y for real ?.Then it is easy to conclude that the vector P(?)ζ(?)satis fies(4.33).

    (3)Givensuch that for any real ?,

    then we call that B(?)satis fies(4.34).It is easy to check that the operator eB(?)ful fills(4.34)if B(?)satis fies(4.34).

    (4)Given an operator B(?)satisfying(4.34)and a vector F(?)satisfying(4.33),we can obtain that the vector B(?)F(?)satis fies(4.33).

    Now with the above preparation work at hand,we begin to make the Newton iteration process clear.Setting F(ζ)=? Λζ+F(ζ,?),we have the following lemma.

    Lemma 4.2(Iteration Lemma)Assume that for m≥1,at the m-th iteration step,we have a solution ζm(?,ω)=(qm(?,ω),(?,ω))T:×Πm→O ful filling the following hypotheses:

    (T1) ζm(?,ω)has an expansion of the form ζm(?,ω)=ηi(?,ω),where for any 1 ≤ i ≤ m, ηi(?,ω)=(vi(?,ω),(?,ω))Tis real analytic in ? ∈ ,Lipschitzcontinuous in ω ∈ Πi,and satis fies the estimate

    Moreover,=for any real ?.

    (T2) ζmis an ?m-approximate solution to the system(2.11),that is,In addition,we have

    which satis fies the following assumptions:

    (a)hm(?,ω)=((?,ω),(?,ω))Tis real analytic in ? ∈ and ful fills the estimate

    In addition,hm(?,ω)satis fies(4.33)for any ω ∈ Πm.

    (b)X1,ν ≥m are real analytic in ? ∈Lipschitz-continuous in ω and satis fies(3.5).Moreover,we have the following estimates:

    (c)For 1≤i≤m?1 and ν≥m?1,(?,ω):×Πm→X1is real analytic in ?∈,Lipschitz-continuous in ω and ful fills(3.5)as well as the estimates:

    (d)For 0 ≤ i≤ m ? 1 and ν≥ m ? 1,(?,ω):× Πm→X0is real analytic in ? ∈Lipschitz-continuous in ω and ful fills(4.33)and the estimates:

    (e)For m≥1,

    Then there exists Πm+1? Πmwith Meas(ΠmΠm+1)αm+1and a quasi-periodic solution ζm+1(?,ω)de fined on× Πm+1such that(T1)and(T2)hold true with m replaced by m+1.

    ProofSet ζm+1= ζm+ ηm+1,then

    First let us investigate the higher order term gm.For convenience,we set

    withF(ζ,?)=A(ζ,?),(?,ω)=ζm?1(?,ω)+sηm(?,ω).Then for a fixed constant s,we can obtain

    Observe that for 0≤s≤1,

    then in view of i+k≤??3,we have

    Here the norm is de fined as the operator norm fromto X2.Thus we have

    For the estimate of the Lipschitz norm,we proceed as follows:As what mentioned before,for a given function T(ω),set △T=T(ω)? T(ω′).Applying △ to(4.42)we can obtain

    Observe that

    then in view of i+k+1≤??2,we have

    where the norm is de fined as the operator norm fromto X.Thus

    2

    Divided by|△ω|,together with(4.43)and(4.45),we can obtain

    Applying Cauchy estimate with respect to ηiontogether with the de finition of sm,we get for 0≤j≤??3,1≤i≤m,

    thus

    where ? means the admissible index set with t indices ji1,···jitlying in ?.Then?

    By integrating with respect to s,we have

    withNow we apply Lemma 2.2 to Nm,then for{sν}ν≥m,in view of(2.21),? ∈,Lipschitz-continuous in ω ∈ Πmand satis fies

    Then from(4.40),together with(4.35),we get

    and for ν≥m,in view of the assumption that 0<ρ<,we have

    SetThen Fm(?,ω)is real analytic in ? ∈Lipschitz-continuous in ω ∈ Πmand satis fies(4.33)and the estimate

    In addition

    In the following we get down to find the solution ηm+1of the homological equation

    Now let us give some more analysis concerning the operator Pm(?):=DζF(ζm,?)de fined in(4.36).Using Taylor’s formula,we have

    then by induction,we get

    ForThus by the same analysis as above,we have

    Hence,by applying Lemma 2.2,we can obtainwith

    Accordingly,for 2≤i≤m,

    Taking(4.35)into account,we have

    For i=1,we have

    whereand the second term can be handled similarly.Then by applying Lemma 2.2,we can obtain

    where

    Hence we havewith

    It is easy to verify that Pmful fills the hypotheses in Lemma 3.2,then we can find an operator Um(?,ω)de fined on× Πmful filling(4.34)and the corresponding coordinate transformation η=Um(ωt,ω)φ.Differentiating it with respect to t,we have=+Inserting it into(4.55),we obtain

    where Qm+1is de fined by(3.33)–(3.34)and

    Moreover,we can conclude thatsatis fies(4.33)in view of Remark 4.1 in this section.

    Consider the system i˙φ?Λm+1φ+=0 de fined on× Πm+1,then applying Lemma 4.1,we can find a solution φm+1(?,ω)such that

    with

    Hence(4.64)becomes

    Let ηm+1=Um+1φm+1,from(3.31)and(4.66)we have

    Taking(3.31)and(3.33)–(3.34)into account,the homological equation(4.55)has the form:

    and hm+1(?,ω)is real analytic in ? ∈with

    Consequently,from(4.41),(4.54)and(4.69),we can obtain

    and from(4.38)–(4.39),(4.68),(4.70)–(4.71)and Remarks 4.1 in this section,we get that

    and all the assumptions in(T1)and(T2)hold with m replaced by m+1.By now we finish the proof.

    Proof of Theorem 2.1It remains to find the first approximate solution η1to(2.11)and then to show that(T1)and(T2)in Lemma 4.2 are true for m=1.By using Taylor’s formula we hav

    where F0(?)∈ C?(Tn;X0)and P0(?)∈ C??1(Tn;X1)satisfy

    Then applying Lemma 2.2 to F0(?),we getwith

    From(4.61)–(4.62),we get with the estimate

    The homological equation we hope to investigate is

    Fix k,i and j and setThen it is easy to check Meas(Π′Π0)lα0.Hence from Lemma 3.2 in[17]we know that for ω ∈ Π0,there exists an operatorand

    such that by the coordinate transformation η=eB0φ,we can change the systeminto the new systemwhere Λ1apparently ful fills(H1)in Lemma 3.1 andThen by the same transformation,(4.76)can be changed into

    withand

    In addition,from(4.75)and(4.77)we obtain

    Applying Lemma 4.1,we can find a real analytic solution φ1(?)such that

    andSetting similarly to(4.69),we conclude

    where

    Hence

    Thus by setting

    which ful fills(T1)–(T2)in Lemma 4.2 with even better estimates.

    Finally,lettingthen ζ∞(ωt,ω)is a quasi-periodic solution of frequency ω ∈ Π?for(2.11)andIn addition,We finally finish the proof of Theorem 2.1,and the proof of Theorem 1.1 immediately follows.

    5 Appendix

    Lemma 5.1De fine the Sobolev space

    Then we have the interpolation estimate below

    ProofThe proof can be found in[22],we omit it here.

    Lemma 5.2Let F=(Fij)i,j≥1be a bounded operator on ?2.Assume that the matrixelements(Fij)are analytic functions of ?∈Let R=(Rij)i,j≥1be another operator withmatrix elements depending analytically onandRii=0.Then R is a bounded operator on ?2andMoreover,let f=(fj)j≥1be a vector in ?2with the vector elements fjbeing analytic function of ? ∈ Assume thatis another vector of which the vector elements depend analytically on ? ∈ andThen r ∈ ?2and the ?2-norm

    ProofThe proof of this lemma can be found in[17].

    Lemma 5.3Letbe an operator with the elementsful fillingbe another operator satisfying

    Then the operator[P,B]=PB?BP satis fies(3.5)also.

    ProofThe conclusion of this lemma can be obtained by a direct calculation.

    [1]Baldi,P.,Berti,M.and Montalto,R.,KAM for quasi-linear KdV,C.R.Math.Acad.Sci.Paris,352(7–8),2014,603–607.

    [2]Berti,M.,Biasco,P.and Procesi,M.,KAM theory for the Hamiltonian derivative wave equation,Ann.Sci.C.Norm.Supr.,46(2),2013,301–373.

    [3]Berti,M.,Biasco,P.and Procesi,M.,KAM theory for reversible derivative wave equations,Arch.Ration.Mech.Anal.,212,2014,905–955.

    [4]Berti,M.and Bolle,P.,Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential,Nonlinearity,25,2012,2579–2613.

    [5]Berti,M.and Bolle,P.,Quasi-periodic solutions with Sobolev regularity of NLS on Tdwith a multiplicative potential,J.Euro.Math.Soc.,15(1),2013,229–286.

    [6]Berti,M.,Bolle,P.and Procesi,M.,An abstract Nash-Moser theorem with parameters and applications to PDEs,Ann.I.H.Poincar′e-AN,27,2010,377–399.

    [7]Bourgain,J.,Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations,23–43,Gelfand Math.Sem.,Birkh¨auser Boston,Boston,MA,1996.

    [8]Bourgain,J.,Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schr¨odinger equations,Ann.of Math.,148(2),1998,363–439.

    [9]Chierchia,L.and Qian,D.,Moser’s theorem for lower dimensional tori,J.Differential Equation,206,2004,55–93.

    [10]Craig,W.and Wayne,C.E.,Newton’s method and periodic solutions of nonlinear wave equations,Commun.Pure Appl.Math.,46,1993,1409–1498.

    [11]Eliasson,H.L.and Kuksin,S.B.,KAM for nonlinear Schr¨odinger equation,Ann.of Math.,172,2010,371–435.

    [12]Geng,J.,Xu,X.and You,J.,An in finite dimensional KAM theorem and its application to the two dimensional cubic Schr¨odinger equation,Advances Math.,226,2011,5361–5402.

    [13]Kappeler,T.and P¨oschel,J.,KdV&KAM,Springer-Verlag,Berlin,Heidelberg,2003.

    [14]Kuksin,S.B.,Hamiltonian perturbations of in finite-dimensional linear systems with imaginary spectrum,Funct.Anal.Appl.,21,1987,192–205.

    [15]Kuksin,S.B.,On small-denominators equations with large variable coefficients,J.Appl.Math.Phys.ZAMP,48,1997,262–271.

    [16]Kuksin,S.B.,Analysis of Hamiltonian PDEs,Oxford Univ.Press,Oxford,2000.

    [17]Liu,J.and Yuan,X.,Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient,Commun.Pure Appl.Math.,63,2010,1145–1172.

    [18]Liu,J.and Yuan,X.,A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,Commun.Math.Phys.,307,2011,629–773.

    [19]Liu,J.and Yuan,X.,KAM for the derivative nonlinear Schr¨odinger equation with periodic boundary conditions,J.Differential Equations,256,2014,1627–1652.

    [20]Moser,J.,A new technique for the construction of solutions of nonlinear differential equations,Proc.Nat.Acad.Sci.USA,47,1961,1824–1831.

    [21]Moser,J.,On invariant curves of area-preserving mapping of annulus,Nachr.Akad Wiss.Gottingen Math.Phys.,KI(II),1962,1–20.

    [22]Moser,J.,A rapidly convergent iteration method and non-linear partial differential equations-I&II,Ann.Sc.Norm.Super.Pisa(3),20,1966,265–315,499–535.

    [23]Moser,J.,On the construction of almost periodic solutions for ordinary differential equations,Proc.Interna.Conf.on Functional Analysis and Related Topics,Tokyo,1969,60–67.

    [24]Nash,J.,The imbedding problem for Riemannian manifolds,Ann.of Math.,63(2),1956,20–63.

    [25]P¨oschel,J.,Integrability of Hamiltonian systems on Cantor sets,Comm.Pure Appl.Math.,35,1982,653–695.

    [26]R¨ussmann,H.,Kleine Nenner.I.Ber invariante Kurven differenzierbarer Abbildungen eines Kreisringes(in German),Nachr.Akad.Wiss.G¨ottingen Math.Phys.Kl.,II,1970,67–105.

    [27]Salamon,D.,The Kolmogorov-Arnold-Moser theorem,Math.Phys.Electron.J.,10,2004,3–37.

    [28]Salamon,D.and Zehnder,E.,KAM theory in con figuration space,Comm.Math.Helv.,64,1989,84–132.

    [29]Wayne,C.E.,Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory,Commun.Math.Phys.,127,1990,479–528.

    [30]Yuan,X.and Zhang,K.,A reduction theorem for time dependent Schr¨odinger operator with finite differentiable unbounded perturbation,J.Math.Phys.,54,2013,052701.

    [31]Zhang,J.,On lower dimensional invariant tori in Cdreversible system,Chin.Ann.Math.Ser.B,29(5),2008,459–486.

    [32]Zhang,J.,Gao,M.and Yuan,X.,KAM tori for reversible partial differtial equations,Nonliearity,24,2011,1189–1228.

    av卡一久久| 爱豆传媒免费全集在线观看| 成年美女黄网站色视频大全免费| 啦啦啦啦在线视频资源| 国产成人精品无人区| 热re99久久精品国产66热6| 国产片特级美女逼逼视频| 久久 成人 亚洲| 国产片内射在线| 有码 亚洲区| xxx大片免费视频| 精品久久久久久电影网| 观看av在线不卡| 国产黄频视频在线观看| 寂寞人妻少妇视频99o| 久久久欧美国产精品| 欧美成人午夜免费资源| 水蜜桃什么品种好| 国产精品久久久久久av不卡| 国精品久久久久久国模美| 国产国拍精品亚洲av在线观看| 色婷婷av一区二区三区视频| 亚洲色图 男人天堂 中文字幕 | 男人舔女人的私密视频| 老女人水多毛片| 亚洲丝袜综合中文字幕| 国产成人一区二区在线| 国产免费福利视频在线观看| 91国产中文字幕| 最黄视频免费看| 欧美亚洲 丝袜 人妻 在线| 成人手机av| 久久精品国产自在天天线| 亚洲美女视频黄频| av又黄又爽大尺度在线免费看| 久久午夜综合久久蜜桃| 国产日韩一区二区三区精品不卡| 精品久久国产蜜桃| 色婷婷av一区二区三区视频| 亚洲精品aⅴ在线观看| 国产精品久久久av美女十八| 久久久久久久精品精品| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 插逼视频在线观看| 校园人妻丝袜中文字幕| 亚洲情色 制服丝袜| 街头女战士在线观看网站| 蜜臀久久99精品久久宅男| 亚洲精品乱码久久久久久按摩| 国产成人精品无人区| 国产有黄有色有爽视频| 国产片特级美女逼逼视频| 美女主播在线视频| 日韩欧美一区视频在线观看| 亚洲欧美色中文字幕在线| 国产成人欧美| 激情视频va一区二区三区| 看免费av毛片| 久久人人爽av亚洲精品天堂| 亚洲av男天堂| 日韩av在线免费看完整版不卡| 97超碰精品成人国产| 91在线精品国自产拍蜜月| 黑丝袜美女国产一区| 麻豆乱淫一区二区| 久久久久久伊人网av| 天天影视国产精品| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 亚洲伊人色综图| 在现免费观看毛片| 久久青草综合色| 观看美女的网站| av在线播放精品| 免费大片黄手机在线观看| 麻豆乱淫一区二区| 最近手机中文字幕大全| 嫩草影院入口| 美女内射精品一级片tv| 精品少妇内射三级| 黄色怎么调成土黄色| 亚洲精品一区蜜桃| 久久人人爽人人片av| 国产精品99久久99久久久不卡 | 美女xxoo啪啪120秒动态图| 成人18禁高潮啪啪吃奶动态图| 国产日韩一区二区三区精品不卡| 亚洲av电影在线观看一区二区三区| 97在线视频观看| 2018国产大陆天天弄谢| 国产男女内射视频| 黑人猛操日本美女一级片| 久久久久视频综合| 精品一区二区免费观看| 免费大片18禁| 亚洲av综合色区一区| 国产精品久久久av美女十八| 肉色欧美久久久久久久蜜桃| 国产成人免费观看mmmm| 亚洲,一卡二卡三卡| 欧美xxxx性猛交bbbb| 自线自在国产av| 人妻一区二区av| 精品人妻偷拍中文字幕| 国产精品欧美亚洲77777| 午夜福利影视在线免费观看| 久久久精品区二区三区| 一区二区日韩欧美中文字幕 | 免费不卡的大黄色大毛片视频在线观看| 91在线精品国自产拍蜜月| 日韩 亚洲 欧美在线| 丝袜喷水一区| 制服丝袜香蕉在线| 亚洲内射少妇av| 亚洲国产欧美在线一区| 国产在视频线精品| 国产在线一区二区三区精| 91精品三级在线观看| 国产黄色免费在线视频| 夫妻午夜视频| 欧美日韩av久久| 亚洲第一av免费看| 免费女性裸体啪啪无遮挡网站| 免费播放大片免费观看视频在线观看| 啦啦啦视频在线资源免费观看| 最近手机中文字幕大全| 99热全是精品| 日韩一区二区视频免费看| 亚洲人成网站在线观看播放| 2022亚洲国产成人精品| 国产激情久久老熟女| 2021少妇久久久久久久久久久| 老熟女久久久| 你懂的网址亚洲精品在线观看| 少妇人妻 视频| 精品少妇久久久久久888优播| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品| 精品国产一区二区三区久久久樱花| 无人区码免费观看不卡| 香蕉久久夜色| 国产精品久久久av美女十八| 少妇裸体淫交视频免费看高清 | 五月开心婷婷网| 两性夫妻黄色片| 国产人伦9x9x在线观看| 国产乱人伦免费视频| 亚洲国产看品久久| 香蕉丝袜av| 一进一出抽搐动态| 看免费av毛片| 国产高清视频在线播放一区| 捣出白浆h1v1| 成人黄色视频免费在线看| 国产精品美女特级片免费视频播放器 | 国产精品国产av在线观看| a级毛片黄视频| 亚洲精品乱久久久久久| 人人妻人人澡人人看| 视频在线观看一区二区三区| 国产亚洲精品久久久久5区| 日本黄色日本黄色录像| 亚洲熟妇熟女久久| 一二三四社区在线视频社区8| 国产av一区二区精品久久| 美女高潮喷水抽搐中文字幕| 亚洲av成人av| 国产一区二区激情短视频| 日韩视频一区二区在线观看| 女性生殖器流出的白浆| 国产欧美日韩精品亚洲av| 国产91精品成人一区二区三区| 91麻豆精品激情在线观看国产 | 无遮挡黄片免费观看| 老司机靠b影院| 伊人久久大香线蕉亚洲五| 女人高潮潮喷娇喘18禁视频| 搡老岳熟女国产| 精品国产美女av久久久久小说| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 国产免费现黄频在线看| 99国产精品一区二区蜜桃av | 女性被躁到高潮视频| 久久国产精品影院| 999久久久精品免费观看国产| 伊人久久大香线蕉亚洲五| 亚洲国产精品sss在线观看 | 欧美日韩av久久| 国产高清视频在线播放一区| 国产精品影院久久| 在线观看一区二区三区激情| 亚洲第一青青草原| 宅男免费午夜| 99国产精品免费福利视频| 91成年电影在线观看| 国产免费现黄频在线看| 精品国产一区二区三区久久久樱花| 午夜福利在线免费观看网站| 亚洲av日韩精品久久久久久密| 午夜福利免费观看在线| 亚洲av电影在线进入| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 国产免费现黄频在线看| 天堂中文最新版在线下载| 最近最新中文字幕大全免费视频| 90打野战视频偷拍视频| 久久久久久久午夜电影 | 久久久精品区二区三区| 纯流量卡能插随身wifi吗| 欧美乱色亚洲激情| 超碰成人久久| 亚洲欧美激情在线| 亚洲精品在线观看二区| 在线观看一区二区三区激情| 亚洲,欧美精品.| 捣出白浆h1v1| 午夜福利在线免费观看网站| 18禁美女被吸乳视频| av超薄肉色丝袜交足视频| 91国产中文字幕| 亚洲免费av在线视频| 国产人伦9x9x在线观看| 欧美人与性动交α欧美软件| 日本黄色视频三级网站网址 | 日韩有码中文字幕| 亚洲成国产人片在线观看| 最近最新中文字幕大全电影3 | 亚洲中文av在线| 国产精品av久久久久免费| 精品国产一区二区三区久久久樱花| 久久精品成人免费网站| 日本一区二区免费在线视频| 久久这里只有精品19| 黄色丝袜av网址大全| 啦啦啦在线免费观看视频4| 在线国产一区二区在线| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三区在线| 精品第一国产精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲综合色网址| 我的亚洲天堂| 两个人免费观看高清视频| 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 十八禁高潮呻吟视频| 天天添夜夜摸| x7x7x7水蜜桃| 好看av亚洲va欧美ⅴa在| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影 | 久久中文字幕一级| 在线av久久热| 丁香六月欧美| 男人舔女人的私密视频| 人妻一区二区av| 中亚洲国语对白在线视频| 成熟少妇高潮喷水视频| 成年人午夜在线观看视频| 亚洲欧美色中文字幕在线| 女人久久www免费人成看片| 最新的欧美精品一区二区| 国产日韩一区二区三区精品不卡| 又紧又爽又黄一区二区| 天天影视国产精品| 亚洲精品中文字幕一二三四区| 在线av久久热| 亚洲国产精品合色在线| 免费少妇av软件| 国产亚洲精品久久久久5区| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 韩国精品一区二区三区| videosex国产| 国产区一区二久久| 亚洲国产欧美网| 日本欧美视频一区| 51午夜福利影视在线观看| 久久久久视频综合| 757午夜福利合集在线观看| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| 国产成人欧美在线观看 | 精品免费久久久久久久清纯 | 久久狼人影院| 亚洲五月天丁香| 在线播放国产精品三级| 成人特级黄色片久久久久久久| 老汉色av国产亚洲站长工具| 制服诱惑二区| 日日摸夜夜添夜夜添小说| 乱人伦中国视频| 黑丝袜美女国产一区| 亚洲成a人片在线一区二区| 国产精品乱码一区二三区的特点 | 最新美女视频免费是黄的| 在线观看www视频免费| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 女人精品久久久久毛片| 老司机深夜福利视频在线观看| 国产一卡二卡三卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 美女福利国产在线| 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 亚洲精品国产一区二区精华液| 侵犯人妻中文字幕一二三四区| 亚洲成人国产一区在线观看| 欧美成狂野欧美在线观看| 日日夜夜操网爽| 免费看a级黄色片| 大型av网站在线播放| 欧美国产精品一级二级三级| 欧美成人午夜精品| 十八禁网站免费在线| 一进一出抽搐动态| 王馨瑶露胸无遮挡在线观看| 日本欧美视频一区| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 99久久综合精品五月天人人| 精品福利观看| 亚洲,欧美精品.| 一级作爱视频免费观看| 国产在视频线精品| 两个人免费观看高清视频| 精品国产一区二区久久| 亚洲午夜精品一区,二区,三区| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| av天堂久久9| 男人舔女人的私密视频| 国产有黄有色有爽视频| 亚洲精品国产一区二区精华液| 精品国产超薄肉色丝袜足j| 人人妻人人澡人人爽人人夜夜| 亚洲综合色网址| 亚洲精品国产区一区二| 一个人免费在线观看的高清视频| 精品午夜福利视频在线观看一区| 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲色图综合在线观看| 18禁观看日本| 免费女性裸体啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品古装| 亚洲精品国产精品久久久不卡| 久久精品国产99精品国产亚洲性色 | 日日摸夜夜添夜夜添小说| 国产成人欧美| 一夜夜www| 亚洲在线自拍视频| 日韩成人在线观看一区二区三区| 国产精品久久视频播放| 窝窝影院91人妻| 免费少妇av软件| 久久性视频一级片| 亚洲av片天天在线观看| 亚洲精品久久成人aⅴ小说| 成年人黄色毛片网站| 亚洲专区字幕在线| 91麻豆精品激情在线观看国产 | 日本一区二区免费在线视频| 一边摸一边抽搐一进一出视频| 精品人妻熟女毛片av久久网站| 夜夜夜夜夜久久久久| 久久香蕉精品热| 18禁国产床啪视频网站| 久久久久久久精品吃奶| 欧美激情高清一区二区三区| 亚洲av成人av| 国产精品影院久久| 午夜精品国产一区二区电影| 日韩免费高清中文字幕av| 在线观看免费高清a一片| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人爽人人夜夜| 久久久久视频综合| 建设人人有责人人尽责人人享有的| 黑丝袜美女国产一区| 国产精品 欧美亚洲| 好男人电影高清在线观看| av网站免费在线观看视频| 国产99久久九九免费精品| 啦啦啦免费观看视频1| 波多野结衣一区麻豆| 欧美日韩瑟瑟在线播放| 午夜福利,免费看| 少妇的丰满在线观看| 黄色成人免费大全| 90打野战视频偷拍视频| av一本久久久久| av线在线观看网站| 超色免费av| 无限看片的www在线观看| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 99精国产麻豆久久婷婷| 搡老乐熟女国产| 亚洲成人免费av在线播放| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 久久久水蜜桃国产精品网| 色综合欧美亚洲国产小说| ponron亚洲| 亚洲国产精品一区二区三区在线| 国产激情欧美一区二区| 搡老岳熟女国产| 久久午夜亚洲精品久久| 欧美 亚洲 国产 日韩一| 他把我摸到了高潮在线观看| 99久久精品国产亚洲精品| 亚洲精品成人av观看孕妇| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂| 久久国产乱子伦精品免费另类| 波多野结衣一区麻豆| 欧美不卡视频在线免费观看 | 一级a爱视频在线免费观看| 午夜福利在线免费观看网站| 制服人妻中文乱码| 十八禁高潮呻吟视频| 国产精品成人在线| 欧美人与性动交α欧美软件| 19禁男女啪啪无遮挡网站| 成人三级做爰电影| 18禁观看日本| 在线观看午夜福利视频| 精品高清国产在线一区| 久久天堂一区二区三区四区| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼 | 午夜亚洲福利在线播放| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 国产极品粉嫩免费观看在线| 亚洲精品成人av观看孕妇| 精品免费久久久久久久清纯 | 国产三级黄色录像| 亚洲欧洲精品一区二区精品久久久| 啦啦啦免费观看视频1| 捣出白浆h1v1| 成熟少妇高潮喷水视频| 欧美亚洲日本最大视频资源| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 国产午夜精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 欧美日韩一级在线毛片| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区三区久久久樱花| 人人澡人人妻人| 国产高清激情床上av| 夜夜夜夜夜久久久久| 纯流量卡能插随身wifi吗| 视频在线观看一区二区三区| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 国产激情久久老熟女| 十八禁高潮呻吟视频| 男人操女人黄网站| 免费黄频网站在线观看国产| 久久午夜亚洲精品久久| 一级a爱视频在线免费观看| 日本a在线网址| 一级毛片精品| 欧美午夜高清在线| 精品久久蜜臀av无| 免费看a级黄色片| 午夜老司机福利片| 国产99白浆流出| av超薄肉色丝袜交足视频| 欧美 亚洲 国产 日韩一| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区 | ponron亚洲| 大香蕉久久成人网| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 久久人人爽av亚洲精品天堂| 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9 | 日韩三级视频一区二区三区| 国产高清videossex| 久久国产乱子伦精品免费另类| 很黄的视频免费| 久久婷婷成人综合色麻豆| 桃红色精品国产亚洲av| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 黄色视频不卡| 人人澡人人妻人| 久久天堂一区二区三区四区| 高清av免费在线| 亚洲第一av免费看| 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网| 中文欧美无线码| 午夜两性在线视频| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 日本精品一区二区三区蜜桃| 91老司机精品| 捣出白浆h1v1| 黄色a级毛片大全视频| 日本精品一区二区三区蜜桃| 搡老乐熟女国产| 国产91精品成人一区二区三区| 久久久久精品国产欧美久久久| 欧美黑人精品巨大| 欧美国产精品一级二级三级| 丰满的人妻完整版| svipshipincom国产片| 国产真人三级小视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 搡老岳熟女国产| 婷婷丁香在线五月| 国产又爽黄色视频| 老司机福利观看| 欧美黑人精品巨大| 国产精品永久免费网站| 热99久久久久精品小说推荐| 亚洲精品国产色婷婷电影| 国产精品久久久人人做人人爽| 成人18禁在线播放| 国产不卡av网站在线观看| 成人影院久久| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 成人国产一区最新在线观看| 久久这里只有精品19| 日本五十路高清| 久久久国产成人精品二区 | 国产成人系列免费观看| 亚洲一区高清亚洲精品| 精品久久久久久,| 熟女少妇亚洲综合色aaa.| 国产真人三级小视频在线观看| 高清av免费在线| 丰满的人妻完整版| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人av| 成人精品一区二区免费| 国产av精品麻豆| 99国产精品99久久久久| 成在线人永久免费视频| 国产精品久久久久成人av| 欧美在线一区亚洲| 亚洲欧美精品综合一区二区三区| 色精品久久人妻99蜜桃| 国产亚洲精品久久久久久毛片 | 亚洲熟女毛片儿| 国产精品成人在线| 免费在线观看影片大全网站| 久久香蕉激情| 精品人妻1区二区| 18禁裸乳无遮挡动漫免费视频| 日本欧美视频一区| 黑人猛操日本美女一级片| 亚洲男人天堂网一区| 欧美最黄视频在线播放免费 | 天天影视国产精品| 国产精品欧美亚洲77777| 欧美午夜高清在线| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 一区在线观看完整版| 乱人伦中国视频| 大码成人一级视频| 在线观看免费视频网站a站| av天堂久久9| 日韩三级视频一区二区三区| 91在线观看av| 亚洲国产精品一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品成人在线| 伊人久久大香线蕉亚洲五| 亚洲成国产人片在线观看| avwww免费| 精品久久久久久久久久免费视频 | 国产精品久久久av美女十八| 校园春色视频在线观看| 1024香蕉在线观看| 日日夜夜操网爽| 亚洲性夜色夜夜综合| www日本在线高清视频| 一级,二级,三级黄色视频| 亚洲精品中文字幕在线视频| 极品人妻少妇av视频| 国产又色又爽无遮挡免费看|