李 捷,白利鵬,陳 曦,楊 芳,沈留紅,曹隨忠,左之才,任志華,馬曉平,余樹民
(四川農(nóng)業(yè)大學(xué) 動(dòng)物醫(yī)學(xué)院,四川 成都 611130)
犬骨髓間充質(zhì)干細(xì)胞的體外分離培養(yǎng)及鑒定
李 捷,白利鵬,陳 曦,楊 芳,沈留紅,曹隨忠,左之才,任志華,馬曉平,余樹民*
(四川農(nóng)業(yè)大學(xué) 動(dòng)物醫(yī)學(xué)院,四川 成都 611130)
為了體外高效快捷地分離培養(yǎng)犬(canine)骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells, BMSCs),實(shí)驗(yàn)分別用全骨髓差速貼壁法和密度梯度離心法對(duì)犬BMSCs進(jìn)行分離培養(yǎng),利用免疫組化和流式細(xì)胞術(shù)檢測(cè)獲得細(xì)胞的表面標(biāo)志抗體,并用成骨和成脂方向的誘導(dǎo)分化等方法對(duì)其進(jìn)行鑒定。結(jié)果表明,全骨髓差速貼壁法和密度梯度離心法都能成功培養(yǎng)出犬BMSCs,但后者相對(duì)前者獲得的細(xì)胞經(jīng)培養(yǎng)后其原代細(xì)胞分布更均勻,原代培養(yǎng)達(dá)到傳代所需的時(shí)間更短,成活率更高;兩種方法獲得的P3和P8細(xì)胞的生長(zhǎng)曲線基本保持一致;免疫組化和流式細(xì)胞術(shù)檢測(cè)犬BMSCs表達(dá)CD105、CD90和CD29,但是不表達(dá)CD34和CD31;且能成功誘導(dǎo)為成骨細(xì)胞和脂肪細(xì)胞。證明采用全骨髓差速貼壁法和密度梯度離心法均能夠成功分離和培養(yǎng)犬的BMSCs,而密度梯度離心法是一種較全骨髓差速貼壁法更適合犬BMSCs的分離方法。
犬;骨髓間充質(zhì)干細(xì)胞;分離培養(yǎng)
骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)是一群存在于骨髓腔內(nèi)的非造血干細(xì)胞,具有較強(qiáng)的自我更新能力和多向分化潛能,在體外不同的誘導(dǎo)條件下能被誘導(dǎo)分化為成骨細(xì)胞、肌肉細(xì)胞、神經(jīng)細(xì)胞、內(nèi)皮細(xì)胞、胰島細(xì)胞等各胚層細(xì)胞[1-2],且因其有取材方便和低免疫性等優(yōu)點(diǎn),目前被廣泛用于細(xì)胞及組織多種疾病的替代治療[3-5]。
目前,關(guān)于動(dòng)物來(lái)源的BMSCs研究主要集中于鼠[6-7]、兔[8-9]、馬[10-11]、豬[12-13]等實(shí)驗(yàn)動(dòng)物上,其分離培養(yǎng)條件都比較完善,但由于種屬差異性的存在,在組織工程骨應(yīng)用于臨床及進(jìn)行人的病理生理研究前,仍需有其他動(dòng)物實(shí)驗(yàn)數(shù)據(jù)為之提供理論依據(jù)。
隨著人們生活水平逐步提高,寵物犬貓的飼養(yǎng)數(shù)量越來(lái)越多。同時(shí),寵物疾病尤其是犬貓的骨折、骨營(yíng)養(yǎng)不良性關(guān)節(jié)病、肝臟或腎臟衰竭等逐漸成為影響寵物生活與生存質(zhì)量的嚴(yán)重障礙,對(duì)這些寵物疾病的研究和臨床治療日益受到動(dòng)物醫(yī)學(xué)研究者和臨床工作者的高度重視,因此我們選擇犬的間充質(zhì)干細(xì)胞作為實(shí)驗(yàn)的細(xì)胞來(lái)源。犬來(lái)源的間充質(zhì)干細(xì)胞(MSCs)可取材于骨髓[14]、脂肪[15]、臍帶[16]、羊水[17]等組織,其分離方法主要包括差速貼壁分離法、密度梯度離心法、酶消化法等。骨髓來(lái)源的MSCs因其具有取材方便和較少的倫理道德爭(zhēng)議而被廣大動(dòng)物醫(yī)學(xué)研究工作者所接受。但是由于間充質(zhì)干細(xì)胞沒有特異性表面抗體,因此干細(xì)胞鑒定成為一大難點(diǎn)。相關(guān)研究表明,BMSCs易貼壁生長(zhǎng),呈長(zhǎng)纖維形,且隨著年齡的增長(zhǎng),其自我更新和分化能力逐漸降低[18],表達(dá)CD54、CD44、CD90,不表達(dá)組織相容性復(fù)合物Ⅱ(MHC-Ⅱ)以及CD34和CD45[19]。本研究利用全骨髓差速貼壁法和密度梯度離心法分別分離培養(yǎng)犬BMSCs,并進(jìn)行了擴(kuò)增、鑒定及體外向成骨細(xì)胞和脂肪細(xì)胞的定向分化研究,建立一套較完備而快速的BMSCs培養(yǎng)模式,且證明密度梯度離心法較全骨髓差速貼壁法更適合犬BMSCs的分離培養(yǎng),可為后續(xù)研究及細(xì)胞移植治療提供充足的細(xì)胞材料,為下一步的深入研究和干細(xì)胞移植奠定基礎(chǔ)。
1.1 供試動(dòng)物
1歲齡左右健康中華田園犬6只,購(gòu)于四川省雅安市。
1.2 主要試劑與儀器
LG-DMEM培養(yǎng)基,GIBCO公司;FBS,HyClone 公司;胰蛋白酶,Sigma公司;CD34、CD31、CD105、CD90、CD29抗體,北京博奧森生物技術(shù)有限公司;免疫組化染色試劑盒、濃縮型DAB試劑盒,北京中杉金橋生物技術(shù)有限公司;地塞米松、β-甘油磷酸鈉、維生素C、胰島素、IBMX、吲哚美辛,sigma分裝;超凈工作臺(tái),蘇州凈化設(shè)備集團(tuán)有限公司;二氧化碳培養(yǎng)箱,Thermo 公司;倒置相差顯微鏡,日本Olympus 公司;流式細(xì)胞儀,BD Accuri C6。
1.3 實(shí)驗(yàn)方法
1.3.1 骨髓液的采集
取1歲齡犬,按體質(zhì)量肌肉注射犬眠寶,全身麻醉后局部剃毛、消毒,做無(wú)菌股骨穿刺,用肝素抗凝,抽取一定量的骨髓液?;靹蚝笃骄譃?份。
1.3.2 原代培養(yǎng)方法
將采集的肝素-骨髓液注入15 mL離心管中,110g離心10 min,吸棄上清液,加5 mL PBS,混勻,平均分為2份,編號(hào)A、B。各重復(fù)離心步驟2~3次。棄上清液。A組采用全骨髓差速貼壁培養(yǎng)法分離BMSCs,即將細(xì)胞沉淀直接用細(xì)胞培養(yǎng)液(LG-DMEM,10%FBS,1%青鏈霉素,2 mmol·L-1L-谷氨酰胺)懸浮細(xì)胞,計(jì)數(shù)后以108~109cells·mL-1的密度接種于一次性塑料培養(yǎng)皿中。B組采用密度梯度離心法分離BMSCs,步驟為:將細(xì)胞沉淀加適量LG-DMEM混勻,制備細(xì)胞懸液,調(diào)整細(xì)胞密度為2×108~1×109cells·mL-1。沿管壁加入到含等量淋巴細(xì)胞分離液的玻璃離心管中,450g離心20~25 min,收集界面霧狀的單個(gè)核細(xì)胞,110g離心10 min,加入適量細(xì)胞清洗液漂洗2次,離心,棄上清。用培養(yǎng)液懸浮細(xì)胞,計(jì)數(shù)后以5×106~5×107cells·mL-1的密度接種于培養(yǎng)皿中。兩種方法獲得的細(xì)胞均放置于37 ℃、5%CO2,飽和濕度條件下培養(yǎng)。72 h后首次換液,之后每3 d換液1次,直到細(xì)胞克隆成片后傳代。首次換液后,每天在顯微鏡下仔細(xì)觀察細(xì)胞形態(tài)變化。
1.3.3 細(xì)胞傳代培養(yǎng)和增殖
原代培養(yǎng)細(xì)胞達(dá)到80%~90%融合時(shí),棄去培養(yǎng)液,用PBS沖洗2次,再用胰蛋白酶(0.25%胰蛋白酶-0.02%EDTA)消化,倒置顯微鏡下密切觀察,見大部分細(xì)胞突起回縮,形態(tài)變圓,細(xì)胞間隙變寬后,立即吸去胰酶,加入細(xì)胞培養(yǎng)液終止消化。用移液槍輕輕吹打,至細(xì)胞脫落,收集細(xì)胞懸液,110g離心10 min,吸除上清,加入新的細(xì)胞培養(yǎng)液重懸,按1∶2~1∶3進(jìn)行傳代培養(yǎng)。經(jīng)2~3 次傳代處理后,即得到純化的BMSCs。
為觀察不同培養(yǎng)方法對(duì)細(xì)胞增殖的影響,取生長(zhǎng)良好的第3代(P3)和第8代(P8)細(xì)胞,制成細(xì)胞懸液, 經(jīng)計(jì)數(shù)后, 以3×104cells·mL-1的密度接種至24孔板,每孔接種0.5 mL,在培養(yǎng)箱中培養(yǎng)8 d,每3 d換液一次,每隔24 h取3 孔用血球計(jì)數(shù)板計(jì)數(shù),連續(xù)8 d,求每日均值,以接種時(shí)間為橫坐標(biāo)、細(xì)胞數(shù)為縱坐標(biāo)作圖,即為細(xì)胞生長(zhǎng)曲線,計(jì)算對(duì)數(shù)生長(zhǎng)期細(xì)胞群體的倍增時(shí)間:Td=T×lg2/lg(Nt/N0)。Td,倍增時(shí)間(h);T,細(xì)胞數(shù)由N0增至Nt所用的時(shí)間(h);Nt與N0分別為t時(shí)刻與初始細(xì)胞數(shù)。
1.3.4 細(xì)胞免疫組織化學(xué)
取第3代犬BMSCs,調(diào)節(jié)細(xì)胞濃度為105cells·mL-1,接種于96孔板,每孔100 μL培養(yǎng),待其達(dá)到80%匯合,吸棄培養(yǎng)液,PBS 洗滌 2 次,4%多聚甲醛室溫固定20 min,吸棄固定液,PBS洗滌3次,過(guò)氧化物酶標(biāo)記的鏈霉卵白素(Streptavidin/Peroxidase)免疫組化染色試劑盒染色。染色步驟參考說(shuō)明書。染色結(jié)束后顯微鏡觀察并照相。
1.3.5 流式細(xì)胞術(shù)檢測(cè)細(xì)胞表面標(biāo)志
取第3 代BMSCs,消化,110g離心10 min,PBS 洗滌 2 次后調(diào)節(jié)細(xì)胞濃度為 1×106cells·mL-1,分為 6 份,各管加細(xì)胞洗液漂洗,離心后收集細(xì)胞,然后將細(xì)胞重懸在含10%山羊血清的孵育緩沖液(含2%BSA的PBS)中,室溫封閉10 min。每份分別滴加CD34、CD31、CD105、CD90、CD29 的一抗(以 PBS 代替一抗作為陰性對(duì)照),室溫孵育 30 min 后,孵育緩沖液洗滌 2 次,滴加FITC 標(biāo)記的羊抗兔 IgG,避光反應(yīng) 40 min 后,重復(fù)洗滌2次,離心回收細(xì)胞,將所得細(xì)胞重懸在適量PBS中,后經(jīng)流式細(xì)胞儀檢測(cè)細(xì)胞表面標(biāo)志物 CD34、CD31、CD105、CD90 、CD29陽(yáng)性細(xì)胞的表達(dá)。
1.3.6 細(xì)胞的體外誘導(dǎo)分化
選擇生長(zhǎng)狀態(tài)良好的第3代(P3)犬BMSCs,用胰蛋白酶消化2~3 min,制成單細(xì)胞懸液,以3×104cells·mL-1密度接種于24孔培養(yǎng)皿中,每孔設(shè)3個(gè)重復(fù),同時(shí)設(shè)置對(duì)照組。待細(xì)胞長(zhǎng)至80% 匯合時(shí)分別換成成骨誘導(dǎo)液(地塞米松10 nmol·L-1,維生素C 50 μmol·L-1,β-甘油磷酸鈉10 mmol·L-1,10%FBS,LG-DMEM)和成脂誘導(dǎo)液(地塞米松1 μmol·L-1,胰島素10 mg ·L-1,IBMX 0.1 mmol·L-1,吲哚美辛200 μmol·L-1,10%FBS,LG-DMEM)進(jìn)行成骨和成脂誘導(dǎo),每3天換液一次。成骨誘導(dǎo)第7天和第21天分別用堿性磷酸酶和茜素紅進(jìn)行成骨細(xì)胞染色,成脂誘導(dǎo)14 d用油紅O進(jìn)行脂肪細(xì)胞染色。
2.1 犬BMSCs的原代培養(yǎng)特征
犬BMSCs全骨髓差速貼壁法原代培養(yǎng)中,接種48 h后,可觀察到有少量細(xì)胞形態(tài)已有所變化,隨著時(shí)間增加,形態(tài)變?yōu)殚L(zhǎng)纖維形、多邊形等,數(shù)量逐漸增多,培養(yǎng)到第6~7天,可見有細(xì)胞集落形成,細(xì)胞呈螺旋狀排列,多數(shù)為長(zhǎng)纖維形,少數(shù)為多角形,但細(xì)胞分布不均勻(圖1);密度梯度離心法獲得的原代細(xì)胞接種48 h后,細(xì)胞即出現(xiàn)形態(tài)上的改變,呈短梭形或小多角形,折光性較強(qiáng),第3~5天貼壁細(xì)胞增多,并逐漸延伸生長(zhǎng)為長(zhǎng)梭形,細(xì)胞分布均勻,第7天,細(xì)胞間界限不清,排列呈漩渦狀(圖1)。以上結(jié)果表明,密度梯度離心法在分離培養(yǎng)原代犬BMSCs時(shí),較全骨髓差速貼壁法用時(shí)短,得到的細(xì)胞也較均一。
2.2 犬BMSCs的傳代培養(yǎng)及生長(zhǎng)曲線的繪制
傳代后犬BMSCs迅速貼壁,6 h左右細(xì)胞全部貼壁,細(xì)胞均勻分布,并開始分裂增殖(圖2-A/a)。3~4 d 細(xì)胞鋪滿皿底,即可消化傳代(圖2-B/b)。開始時(shí)大多為梭形,增殖速度快,細(xì)胞傳代周期較短,待傳至第9 代時(shí),細(xì)胞鋪展得寬大而扁薄,胞內(nèi)顆粒物質(zhì)增多,增殖速度減慢,細(xì)胞傳代周期延長(zhǎng)(圖2-D/d)。兩種方法獲得的傳代細(xì)胞的生長(zhǎng)特點(diǎn)基本一致。
第3代和第8代犬BMSCs生長(zhǎng)曲線分別見圖3-1、2。細(xì)胞接種后,24 h內(nèi)為BMSCs細(xì)胞潛伏期,數(shù)量基本保持不變;此后細(xì)胞開始分裂,進(jìn)入對(duì)數(shù)生長(zhǎng)期,4 d時(shí)達(dá)到細(xì)胞數(shù)量峰值;之后細(xì)胞數(shù)量開始基本保持不變,細(xì)胞已進(jìn)入平臺(tái)期甚至衰退期。兩種方法分離的P3和P8代犬BMSCs生長(zhǎng)曲線基本一致,說(shuō)明細(xì)胞傳到第8代時(shí),犬BMSCs在體外生長(zhǎng)狀態(tài)良好,在體外仍能穩(wěn)定增殖。全骨髓差速貼壁法和密度梯度離心法獲得的犬BMSCs的增殖曲線基本一致,都保持典型的“S”型曲線,且隨著傳代次數(shù)的增加,細(xì)胞生長(zhǎng)速度逐漸下降,已不能在體外穩(wěn)定增殖。
倒置顯微鏡觀察細(xì)胞形態(tài)特征(100×),A、B、C為全骨髓差速貼壁培養(yǎng)法培養(yǎng)2、4、8 d分離的原代細(xì)胞;a、b、c為密度梯度離心法培養(yǎng)2、4、8 d分離的原代細(xì)胞Cellular morphology was observed by inverted microscope (100×); A, B, C were primary cells isolated from whole bone marrow differential velocity adherent after cultured for 2, 4, 8 d, respectively; a, b, c were primary cells isolated from density gradient centrifugation after cultured for 2, 4, 8 d, respectively圖1 兩種方法分離的原代犬骨髓間充質(zhì)干細(xì)胞比較Fig.1 Comparison of primary canine bone marrow mesenchymal stem cells derived from two methods
倒置顯微鏡觀察細(xì)胞形態(tài)特征(100×); A—D為全骨髓差速貼壁法;a—d為密度梯度離心法。A/a,第3代接種 6 h;B/b,第3代培養(yǎng)3.5 d;C/c,傳代細(xì)胞P7;D/d,傳代細(xì)胞P9Cellular morphology was observed by inverted microscope (100×); A-D, Cells isolated from whole bone marrow differential velocity adherent; a-d, Cells isolated from density gradient centrifugation. A/a, The 3th cells cultivated for 6 h; B/b, The 3th cells cultivated for 3.5 d; C/c, The 7th cells; D/d, The 9th cells圖2 犬骨髓間充質(zhì)干細(xì)胞培養(yǎng)特征Fig.2 Cultural characteristics of bone marrow mesenchymal stem cells derived from canine
A、B,全骨髓差速貼壁培養(yǎng)法組; a、b,密度梯度離心法組A and B, Whole bone marrow differential velocity adherent; a and b, Density gradient centrifugation圖3 犬骨髓間充質(zhì)干細(xì)胞P3、P8生長(zhǎng)曲線的比較Fig.3 Growth curves of 3th and 8th canine bone marrow mesenchymal stem cells
2.3 犬BMSCs表面抗原鑒定
細(xì)胞免疫組織化學(xué)分析顯示,犬BMSCs表達(dá)CD29、CD90和CD105,不表達(dá)CD31、CD34(圖4)。流式細(xì)胞術(shù)檢測(cè)結(jié)果如表1和圖5(選取其中一次的流式結(jié)果作為代表)。結(jié)果表明,2種方法獲得的細(xì)胞表面標(biāo)志物表達(dá)情況一致,密度梯度離心法所得的細(xì)胞間充質(zhì)干細(xì)胞的標(biāo)志物表達(dá)率顯著高于全骨髓差速貼壁法,即在犬BMSCs純化過(guò)程中,前者所獲得的細(xì)胞較后者均一。
2.4 犬BMSCs的體外分化潛能檢測(cè)
用P3代犬BMSCs進(jìn)行成骨細(xì)胞和成脂細(xì)胞的誘導(dǎo)分化。在細(xì)胞達(dá)到70%匯合后,分別換誘導(dǎo)液。在成骨誘導(dǎo)7 d后,細(xì)胞呈短梭形,用堿性磷酸酯酶(ALP)染色呈現(xiàn)陽(yáng)性細(xì)胞(圖6-A/a),而未經(jīng)誘導(dǎo)的BMSCs染色陰性:誘導(dǎo)21 d,大多數(shù)細(xì)胞呈鱗片形,堆積形成鈣化結(jié)節(jié),形成的鈣結(jié)節(jié)茜素紅染色為紅色(圖6-B/b),未經(jīng)誘導(dǎo)的無(wú)鈣沉積物質(zhì)出現(xiàn)。表明2種分離方法獲得的犬BMSCs均成功誘導(dǎo)為成骨細(xì)胞,成骨分化能力并無(wú)明顯差異。
倒置顯微鏡觀察細(xì)胞形態(tài)特征(100×)。1,對(duì)照組;2,CD31;3,CD34;4,CD29;5,CD90;6,CD105Cellular morphological characteristics were observed by inverted microscope (100×). 1, Control; 2, CD31; 3, CD34; 4, CD29; 5, CD90; 6, CD105圖4 犬骨髓間充質(zhì)干細(xì)胞免疫組化結(jié)果Fig.4 Immunohistochemical results of mesenchymal stem cells derived from bone marrow of canine
表1 犬骨髓間充質(zhì)干細(xì)胞表面標(biāo)志物的表達(dá)率
Table 1 The expression ratio of surface markers of bone marrow mesenchymal stem cells of canine
分離方法Isolationmethod表達(dá)率Expressionratio/%CD29CD90CD105CD31CD34全骨髓差速貼壁法Wholebonemarrowdifferentialvelocityadherent89 27±2 2579 53±1 9683 82±1 565 86±0 524 35±0 38密度梯度離心法Densitygradientcentrifugation94 77±2 0789 53±1 8593 87±1 644 90±0 843 63±0 32
A—E為全骨髓差速貼壁培養(yǎng)法;a—e為密度梯度離心法A-E, Whole bone marrow differential velocity adherent; a-e, Density gradient centrifugation圖5 犬骨髓間充質(zhì)干細(xì)胞流式細(xì)胞術(shù)結(jié)果Fig.5 Results of mesenchymal stem cells derived from bone marrow of canine by flow cytometry
A/a,堿性磷酸酶染色(100×);B/b,礦化結(jié)節(jié)茜素紅染色(200×); C/c,脂滴油紅O染色(200×)A/a, ALP staining (100×); B/b, The mineralization crystals by Alizarin red staining (200×); C/c, The lipid droplets by Oil red O staining (200×)圖6 犬骨髓間充質(zhì)干細(xì)胞誘導(dǎo)分化結(jié)果Fig.6 The differentiation results of mesenchymal stem cells derived from canine bone marrow
在成脂細(xì)胞誘導(dǎo)過(guò)程中,細(xì)胞由長(zhǎng)纖維狀,逐漸變短,胞質(zhì)內(nèi)出現(xiàn)發(fā)亮的脂滴,在誘導(dǎo)第15天細(xì)胞內(nèi)脂滴可被油紅O染成紅色(圖6-C/c),未經(jīng)誘導(dǎo)的無(wú)脂滴出現(xiàn)。結(jié)果表明,2種分離方法獲得的犬BMSCs均能成功誘導(dǎo)為脂肪細(xì)胞,成脂分化能力也無(wú)差異。
干細(xì)胞根據(jù)其來(lái)源可分為胚胎干細(xì)胞和成體干細(xì)胞,對(duì)成體干細(xì)胞的研究不像胚胎干細(xì)胞一樣涉及倫理道德方面的問(wèn)題。在成體干細(xì)胞中,間充質(zhì)干細(xì)胞的研究是當(dāng)今的熱點(diǎn),典型的MSCs來(lái)自于成人的骨髓基質(zhì),在新鮮的骨髓中,BMSCs的含量極少,約占有核細(xì)胞的0.001%~0.01%[18-19]。
自20世紀(jì)70年代Friedenstein等[20]建立BMSCs分離及擴(kuò)增的方法以來(lái), 人們又提出了多種從骨髓中分離BMSCs的方案, 但對(duì)BMSCs的體外分離培養(yǎng)、鑒定還沒有統(tǒng)一公認(rèn)的標(biāo)準(zhǔn)方法;同時(shí),也尚未見有報(bào)道探討不同分離方法對(duì)BMSCs體外分離培養(yǎng)的影響。目前,常用于BMSCs 分離的方法有全骨髓差速貼壁篩選法[21]、密度梯度離心法[22]、免疫磁珠法[23]、流式細(xì)胞儀分選法[24]等。流式細(xì)胞儀和免疫磁珠分選技術(shù)雖然可獲得高純度的BMSCs,但對(duì)細(xì)胞活性和分化能力有較大影響,而且實(shí)驗(yàn)條件要求高,需要骨髓量較大[25]。本研究所用的全骨髓差速貼壁法和密度梯度離心法是公認(rèn)的較常用的分離BMSCs的方法。作為組織工程的種子細(xì)胞,細(xì)胞的純度越高越好。全骨髓差速貼壁法是根據(jù)BMSCs貼壁生長(zhǎng)而造血系細(xì)胞懸浮生長(zhǎng)的特性對(duì)二者進(jìn)行分離[26],但所得的細(xì)胞成分復(fù)雜,需經(jīng)過(guò)多次換液才能純化細(xì)胞。密度梯度離心法主要是根據(jù)骨髓中各細(xì)胞成分比重的不同[18],利用淋巴細(xì)胞分離液提取單個(gè)核細(xì)胞,操作上較全骨髓差速貼壁分離法煩瑣,得到的細(xì)胞數(shù)也比后者少,但此方法可排除大量紅細(xì)胞對(duì)BMSCs 貼壁的影響,得到的原代細(xì)胞較純凈。
本研究利用全骨髓差速貼壁法和密度梯度離心法分別對(duì)犬BMSCs進(jìn)行分離培養(yǎng),試驗(yàn)結(jié)果表明,經(jīng)原代培養(yǎng)48 h后,鏡下觀察可見全骨髓差速貼壁分離法獲得的細(xì)胞僅有極少量呈細(xì)長(zhǎng)的長(zhǎng)纖維形,密度梯度離心法獲得的細(xì)胞形態(tài)變化的數(shù)目明顯較前者多,細(xì)胞呈短梭形或小多角形,折光性較強(qiáng);兩者達(dá)到可傳代水平所需的時(shí)間,后者也明顯較短。細(xì)胞融合時(shí)都呈紡錘狀,體積小而密集,螺旋狀或平行排列。通過(guò)P3和P8代細(xì)胞生長(zhǎng)曲線的繪制,發(fā)現(xiàn)傳代后兩者得到的BMSCs體外培養(yǎng)時(shí),增殖迅速,沒有明顯差異,說(shuō)明兩者得到的BMSCs自我更新能力強(qiáng)。對(duì)生長(zhǎng)曲線的分析可見,犬BMSCs接種后0~2 d為增殖潛伏期,第3天為指數(shù)生長(zhǎng)期,第4天進(jìn)入平臺(tái)期。經(jīng)計(jì)算,犬BMSCs細(xì)胞倍增時(shí)間為42 h左右。雖然犬BMSCs在體外容易分離培養(yǎng)并進(jìn)行多次傳代,但在傳到10代以后,細(xì)胞的生長(zhǎng)速度有所下降,說(shuō)明其體外傳代次數(shù)也是有限的。
BMSCs 的鑒定問(wèn)題是目前的難點(diǎn)之一,其原因主要在于對(duì)BMSCs 的特異性表面標(biāo)記物仍存在爭(zhēng)議[19]。在體外,BMSCs 以易于貼附于塑料培養(yǎng)板為特征,未分化的基質(zhì)細(xì)胞呈梭形或成纖維細(xì)胞形,通常采用其特征性的形態(tài)以及分化為其他基質(zhì)細(xì)胞系的功能來(lái)鑒定。因此在2005年,ISCT(the International Society for Cellular Therapy)定義了BMSCs 的最低標(biāo)準(zhǔn):首先,BMSCs 在標(biāo)準(zhǔn)培養(yǎng)條件下必須具備貼塑料壁生長(zhǎng)的特點(diǎn);其次,BMSCs 表達(dá)CD105、CD73 和 CD90,而 CD45、CD34、CD14 或CD11b、CD79a或 CD19 及 HLA-DR 表面分子表達(dá)陰性;第三,經(jīng)體外誘導(dǎo),BMSCs 必須能向成骨細(xì)胞、脂肪細(xì)胞及軟骨細(xì)胞分化[27]。本研究結(jié)果表明,獲得的犬BMSCs符合骨髓間充質(zhì)干細(xì)胞的特點(diǎn):第一,無(wú)論是全骨髓差速貼壁分離法還是密度梯度離心法,獲取的BMSCs 開始貼壁生長(zhǎng)時(shí),呈短梭形或多角形,具有長(zhǎng)短不等的數(shù)個(gè)細(xì)胞突起,在細(xì)胞密集區(qū)表現(xiàn)為渦旋狀,隨著培養(yǎng)時(shí)間的延長(zhǎng),相互重疊成多層;第二,2種方法分離出的貼壁細(xì)胞,經(jīng)免疫組化和流式細(xì)胞術(shù)檢測(cè)結(jié)果均表明所得細(xì)胞表達(dá)CD90和CD105,不表達(dá)CD34和CD31;第三,向成骨細(xì)胞和成脂細(xì)胞分別誘導(dǎo)分化后,用成骨細(xì)胞特異標(biāo)記物(茜素紅)及成脂細(xì)胞特異標(biāo)記物(油紅O)染色,均出現(xiàn)陽(yáng)性細(xì)胞。綜上所述,從犬骨髓中分離和純化培養(yǎng)獲得的貼壁細(xì)胞,經(jīng)細(xì)胞形態(tài)、膜表面抗原和誘導(dǎo)能力檢測(cè),均證明為純化的BMSCs。本研究為犬BMSCs進(jìn)一步誘導(dǎo)分化和臨床應(yīng)用研究奠定了基礎(chǔ)。
[1] WANG S .Clinical applications of mesenchymal stem cells[J].JournalofHematology&Oncology, 2012, 5(1):828-829.
[2] 徐麗麗. 成人骨髓間充質(zhì)干細(xì)胞體外誘導(dǎo)分化為胰島樣細(xì)胞的研究進(jìn)展[J]. 中國(guó)組織工程研究與臨床康復(fù), 2008, 12(8):1509-1512. XU L L. Differentiation of adult bone marrow mesenchymal stem cells into islet-like cellsinvitro[J].JournalofClinicalRehabilitativeTissueEngineeringResearch, 2008, 12(8):1509-1512. (in Chinese with English abstract)
[3] INTINI G. The use of platelet-rich plasma in bone reconstruction therapy[J].Biomaterials, 2009, 30(28):4956-4966.
[4] 徐曉斐,王健,徐海艇,等. 組織工程方法修復(fù)羊腭裂骨缺損的初步研究[J]. 組織工程與重建外科,2008,4(2):77-79. XU X F, WANG J, XU H T, et al. A study on tissue-engineered approach of repairing the bony defect: cleft palate of lamb model[J].JouralofTissueEngineetingandReconstructiveSrugery, 2008, 4(2):77-79. (in Chinese with English abstract)
[5] FIGLIUZZI M, COMOTI R, PERICO N, et al. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats[J].TransplantationProceedings, 2009, 41(5):1797-1800.
[6] SOLEIMANI M, NADRI S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow[J].NatureProtocol, 2009, 4(1):102-106.
[7] MEHANNA R A, NABIL I, ATTIA N, et al. The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats[J].BiomedResearchInternational, 2015, 2015(1):110-120.
[8] SAKAI D, MOCHIDA J, IWASHINA T, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration[J].Spine, 2005, 30(21):2379-2387.
[9] 陳曉佩, 于文浩, 王亞丹, 等. 不同分離方法及首次換液時(shí)間對(duì)兔骨髓間充質(zhì)干細(xì)胞生物活性的影響[J]. 中國(guó)獸醫(yī)學(xué)報(bào), 2015, 35(8):1307-1311. CHEN X P, YU W H, WANG Y D, et al. Effect of different isolation methods and time for first medium exchange on biological characteristics of rabbit bone marrow mesenchymal stem cells[J].ChineseJournalofVeterinaryScience, 2015, 35(8):1307-1311. (in Chinese with English abstract)
[10] 張焱如, 劉宗正, 韋林蓋,等. 蒙古馬骨髓間充質(zhì)干細(xì)胞的分離培養(yǎng)及多向分化潛能的研究[J]. 畜牧獸醫(yī)學(xué)報(bào), 2011, 42(10):1357-1361. ZHANG Y R, LIU Z Z, WEI L G, et al. Study of isolation, cultre and multiple differentiation potential of Mongolia horse bone marrow derived mesenchymal stem cells[J].ActaVeterinariaetZootechnicaSinica, 2011, 42(10):1357-1361. (in Chinese with English abstract)
[11] BARBERINI D J, FREITAS N P P, MAGNONI M S, et al. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential[J].StemCellResearch&Therapy, 2014, 5(1):297-302.
[12] LEE W J, LEE S C, LEE J H, et al. Differential regulation of senescence andinvitrodifferentiation by 17 β-estradiol between mesenchymal stem cells derived from male and female mini-pigs[J].JournalofVeterinaryScience, 2016, 17(2):159-170.
[13] 高健,梁桂金,樸英姬,等. 豬骨髓間充質(zhì)干細(xì)胞分離培養(yǎng)及生物學(xué)特性[J]. 中國(guó)獸醫(yī)學(xué)報(bào),2013,33(5):788-794. GAO J, LIANG G J, PIAO Y J, et al. Isolation, culture and biological properties analysis of mesenchymal stem cells from porcine bone marrow[J].ChineseJournalofVeterinaryScience, 2013, 33(5):788-794. (in Chinese with English abstract)
[14] MUIR P, HANS E C, RACETTE M, et al. Autologous bone marrow-derived mesenchymal stem cells modulate molecular markers of inflammation in dogs with cruciate ligament rupture[J].PLoSOne, 2016, 11(8):e0159095.
[15] KIM Y, LEE S H, KANG B J, et al. Comparison of osteogenesis between adipose-derived mesenchymal stem cells and their sheets on poly-ε-caprolactone/β-tricalcium phosphate composite scaffolds in canine bone defects[J].StemCellsInternational, 2016: 8414715.
[16] FILIOLI URANIO M, VALENTINI L, LANGE-CONSIGLIO A, et al. Isolation, proliferation, cytogenetic, and molecular characterization andinvitrodifferentiation potency of canine stem cells from foetal adnexa: A comparative study of amniotic fluid, amnion, and umbilical cord matrix[J].MolecularReptoductionandDevelopmentRevelation, 2011,78(5):361-373.
[17] KIM E Y, LEE K B, YU J, et al. Neuronal cell differentiation of mesenchymal stem cells originating from canine amniotic fluid[J].HumanCell, 2014, 27(2):51-58.
[18] 邴愛英, 宋文剛. 骨髓間充質(zhì)干細(xì)胞分離培養(yǎng)和生物學(xué)特性的研究進(jìn)展[J]. 泰山醫(yī)學(xué)院學(xué)報(bào),2011,32(7):549-552. BING A Y, SONG W G. The progress of isolation, culture and biological properties of mesenchymal stem cells from bone marrow[J].JournalofTaishanMedicalCollege, 2011, 32(7):549-552. (in Chinese)
[19] CLARK K C, KOL A, SHAHBENDERIAN S. Canine and equine mesenchymal stem cells grown in serum free media have altered immunophenotype[J].StemCellReviewsandReports, 2016, 12(2):1-12.
[20] FRIEDENSTEIN A J, GORSKAJA J F, KULAGINA N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].ExperimentalHematology, 1976, 4(5):267-274.
[21] BARBERINI D J, FREITAS N P P, MAGNONI M S, et al. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential[J].StemCellResearch&Therapy, 2014, 5(1):297-302.
[22] AYATOLLAHI M, TALAEI K T, RAZMKHAH M. Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton’s jelly of umbilical cord on PBMCs[J].IranianJournalofBasicMedicalSciences, 2016, 19(2):145-153.
[23] 韓圣,夏照帆,韋多,等. 應(yīng)用免疫磁珠負(fù)選法分離與純化小鼠骨髓間充質(zhì)干細(xì)胞[J]. 中國(guó)組織工程研究,2006,10(41):28-30. HAN S, XIA Z F, WEI D, et al. Isolation and purification of mesenchymal stem cells of mice with immunomagnetic beads negative selection technique[J].ChineseJournalofClinicalRehabilitation, 2006, 10(41):28-30. (in Chinese with English abstract)
[24] PHINNEY D G. Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion[J].MethodsinMolecularBiology, 2008, 449∶171-186.
[25] KERENYI F, TARAPCSAK S, HRUBI E, et al. Comparison of sorting of fluorescently and magnetically labelled dental pulp stem cells[J].FogorvosiSzemle, 2016, 109(1):29-33.
[26] 李魯生,張涵,王成俊,等. 骨髓間充質(zhì)干細(xì)胞的分離方法和生物學(xué)特性[J]. 中國(guó)組織工程研究,2010, 14(10):1869-1873. LI L S, ZHANG H, WANG C J, et al. Isolation methods and biological characteristics of bone marrow mesenchymal stem cells[J].JournalofClinicalRehabilitativeTissueEngineeringResearch, 2010, 14(10):1869-1873. (in Chinese with English abstract)
[27] HORWITZ E M, LE B K, DOMINICI M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement[J].Cytotherapy, 2005, 7(5):393-395.
(責(zé)任編輯 盧福莊)
Isolation, cultivation and identification of canine bone marrow mesenchymal stem cells (BMSCs)invitro
LI Jie, BAI Lipeng, CHEN Xi, YANG Fang, SHEN Liuhong, CAO Suizhong, ZUO Zhicai, REN Zhihua, MA Xiaoping, YU Shumin*
(CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Chengdu611130,China)
In order to explore which way can be more efficient and faster to isolate, culture and identifiy the canine bone marrow mesenchymal stem cells (BMSCs)invitro, the BMSCs were isolatedinvitroby whole bone marrow differential velocity adherent and density gradient centrifugation. Immunohistochemistry and flow cytometry were used to examine the surface markers of the cells, and induced their differentiation into osteoblasts and adipocytes. The results showed that canine BMSCs were successfully cultivated by whole bone marrow differential velocity adherent and density gradient centrifugation. Compared with the former, primary cells from the latter method was more uniform after cultivation, and cost shorter time for primary cells proliferation into full confluency along with higher survival rate. The growth curves of undifferentiated cells in P3 and P8 were similar from the both methods. Immunohistochemistry and flow cytometry showed that CD105, CD90 and CD29 were expressed in the cells and could be induced into osteoblasts and adipocytes, respectively, while CD34 and CD31 were not expressed. These results indicated that canine BMSCs could be isolated and cultivated by the both methods, and the density gradient centrifugation method was better compared to the whole bone marrow differential velocity adherent.
canine; bone marrow mesenchymal stem cell; isolation and cultivation
http://www.zjnyxb.cn
10.3969/j.issn.1004-1524.2017.05.10
2016-11-22
國(guó)家自然科學(xué)基金(31172379)
李捷(1990—),女,河南南陽(yáng)人,碩士研究生,主要從事干細(xì)胞與動(dòng)物生殖生物學(xué)研究。E-mail: hnlijiec@126.com
*通信作者,余樹民,E-mail:yayushumin@163.com
S829.2;Q2-33
A
1004-1524(2017)05-0751-09
浙江農(nóng)業(yè)學(xué)報(bào)ActaAgriculturaeZhejiangensis, 2017,29(5): 751-759
李捷,白利鵬,陳曦,等. 犬骨髓間充質(zhì)干細(xì)胞的體外分離培養(yǎng)及鑒定[J].浙江農(nóng)業(yè)學(xué)報(bào),2017,29(5): 751-759.