王穎潔,左其生,張良良,張文慧,金 晶,王 飛,紀(jì)艷芹,靳 鍇,何娜娜,李碧春,張亞妮
(揚(yáng)州大學(xué) 動物科學(xué)技術(shù)學(xué)院 江蘇省動物遺傳繁育與分子設(shè)計重點(diǎn)實(shí)驗室,江蘇 揚(yáng)州 225009)
靶向雞Stra8基因的miRNA預(yù)測及鑒定
王穎潔,左其生,張良良,張文慧,金 晶,王 飛,紀(jì)艷芹,靳 鍇,何娜娜,李碧春*,張亞妮*
(揚(yáng)州大學(xué) 動物科學(xué)技術(shù)學(xué)院 江蘇省動物遺傳繁育與分子設(shè)計重點(diǎn)實(shí)驗室,江蘇 揚(yáng)州 225009)
為克隆如皋黃雞Stra8基因的3’UTR,尋找靶向Stra8基因的microRNA(miRNA),以雞精原干細(xì)胞的cDNA為模板,根據(jù)NCBI數(shù)據(jù)庫Stra8的CDS序列設(shè)計引物,通過3’RACE技術(shù)克隆Stra8基因的3’UTR,并構(gòu)建相應(yīng)的熒光素酶表達(dá)載體和突變載體;利用生物學(xué)預(yù)測軟件對靶向Stra8 3’UTR的miRNA進(jìn)行預(yù)測,選擇評分最高的miRNA進(jìn)行慢病毒載體構(gòu)建;以pRL-TK為內(nèi)參,分別將miRNA與Stra8 3’UTR熒光素酶表達(dá)載體和突變載體共轉(zhuǎn)染DF-1細(xì)胞,利用雙熒光素酶基因報告系統(tǒng)對miRNA進(jìn)行活性檢測。結(jié)果表明,采用3’RACE技術(shù)成功克隆Stra8 基因的3’UTR;Targetscan生物在線軟件預(yù)測到靶向Stra8基因的4個特異性較高的miRNA,并成功構(gòu)建其相應(yīng)的慢病毒載體;雙熒光素酶活性檢測結(jié)果顯示,gga-miR-1a、gga-miR-31、gga-miR-218均可通過3’UTR序列抑制Stra8基因的表達(dá),其中g(shù)ga-miR-31抑制效果最佳。該結(jié)果可為后續(xù)深入探討gga-miR-31介導(dǎo)調(diào)控的Stra8基因在雄性生殖細(xì)胞分化中的調(diào)控網(wǎng)絡(luò)提供依據(jù)。
雞;miRNA;Stra8;gga-miR-31;雙熒光素酶活性檢測系統(tǒng)
Stra8(stimulated by retinoic acid gene 8)基因是Bouillet等[1]從小鼠全能的P19 胚胎癌細(xì)胞中篩選出的視黃酸反應(yīng)基因之一。隨著高通量測序技術(shù)在生物研究中的大量應(yīng)用,眾多的miRNA被發(fā)現(xiàn)參與調(diào)控精子的發(fā)生過程。miRNA的調(diào)節(jié)機(jī)制主要是通過堿基互補(bǔ)配對原則與目標(biāo)mRNA分子的3’端非編碼區(qū)域(3-untranslated region,3’UTR)結(jié)合從而誘導(dǎo)目標(biāo)mRNA降解或者抑制其翻譯過程[2]。研究表明,miR-124a與Scp3作用,通過與粗線期精母細(xì)胞或精子細(xì)胞的H1t/GC-box 結(jié)合,進(jìn)而激活 H1t 組蛋白啟動子[3];miR-29b[4]通過與Dnmt3a、Dnmt3b作用調(diào)控PGC向雌性生殖細(xì)胞分化;miR-18通過下調(diào)熱休克蛋白2(HSP2)的表達(dá)而在小鼠精子發(fā)生過程中起到一定的調(diào)控作用[5];miR-34c通過靶向Nanos2以促進(jìn)小鼠鼠精原干細(xì)胞的分化[6]。眾多研究結(jié)果提示,miRNA在雄性生殖細(xì)胞的分化中起關(guān)鍵性的調(diào)控作用。
在哺乳動物中,Stra8是生殖細(xì)胞由有絲分裂轉(zhuǎn)變減數(shù)分裂前特異表達(dá)的基因[7-10]。研究表明,RA (retinoic acid) 可調(diào)控Stra8基因的表達(dá),在RA的激活下生殖細(xì)胞表達(dá)Stra8促使細(xì)胞從有絲分裂進(jìn)入減數(shù)分裂前期,產(chǎn)生有性生殖生物配子[11-13];Mark等[12]在小鼠上對Stra8基因進(jìn)行敲除后,發(fā)現(xiàn)敲除鼠除生殖功能發(fā)生變化外,其他表型均未發(fā)生變化;王丹[14]發(fā)現(xiàn)過表達(dá)Stra8能夠促進(jìn)雞胚胎干細(xì)胞分化成精原干細(xì)胞;劉志永等[15]用Am80和TSA聯(lián)合誘導(dǎo)下Stra8啟動子啟動活性增強(qiáng)。但是目前關(guān)于家禽Stra8基因的表達(dá)是否受到miRNA調(diào)控尚屬未知。
本試驗旨在利用3’RACE技術(shù)克隆如皋黃雞Stra8基因的3’UTR序列,預(yù)測直接靶向Stra8基因的miRNA;采用雙熒光素酶報告基因系統(tǒng)尋找活性最佳的miRNA,以期進(jìn)一步研究miRNA介導(dǎo)調(diào)控的Stra8基因在家禽雄性生殖細(xì)胞分化中的作用,為揭示生殖細(xì)胞形成機(jī)制奠定基礎(chǔ)。
1.1 試驗材料
如皋黃雞來自中國農(nóng)業(yè)科學(xué)院家禽研究所;DF-1細(xì)胞為本實(shí)驗室保存;Trizol、大腸埃希菌DH5α感受態(tài)、膠回收試劑盒及小提質(zhì)粒試劑盒均購自北京天根公司(北京);雙熒光素酶檢測試劑盒 Dual-Luciferase?Reporter Assay System 購自Promega 公司(美國);LipofectamineTM2000 購自 Invitrogen公司(美國);Taqpolymerase購自NEB(美國);瓊脂糖購自Bio-Rad(美國);T4 DNA ligase、T4 DNA ligase buffer、DNA ladder、BamHⅠ、EcoRⅠ、XbaⅠ、XhoⅠ、3’Full RACE Core Set with PrimeScriptTMRtase購自TaKaRa(大連);胎牛血清、DMEM、胰酶購自GIBICO(美國);其余試劑均為進(jìn)口或國產(chǎn)分析純。PGL3-CMV-LUC-MCS載體、pGMLV-MA2載體、pRL-TK載體購自吉滿生物,引物合成及測序由生工生物工程(上海)有限公司完成。
1.2 克隆Stra8基因的3’UTR
通過NCBI提供的CDS序列(JX204292.1),設(shè)計3’RACE 引物F1、F2(表1)。首先利用Trizol法提取精原干細(xì)胞總RNA,再使用TaKaRa 3’Full RACE Core Set with PrimeScriptTMRtase 進(jìn)行3’RACE試驗獲取Stra8基因的3’UTR。
1.3 生物信息學(xué)預(yù)測與雞Stra8 基因3’UTR作用的miRNA
使用 Targetscan (http://www.targetscan.org/)在線生物軟件預(yù)測在Stra8基因3’UTR處存在潛在靶標(biāo)關(guān)系的雞源miRNAs,選出可能性最大的4條miRNAs作為候選miRNA進(jìn)行后續(xù)試驗。
表1Stra8 3’RACE引物
Table 1 Primers ofStra8 3’RACE
引物名稱Name引物序列Sequenceofprimer(5′→3′)Stra83’RACE?F1CTGGGTCCTACGGATGCTTGStra83’RACE?F2CGTTTGATGTTGCTGCTGGTT
1.4 報告基因載體及miRNA mimic構(gòu)建
利用3’RACE得到的Stra8基因的3’UTR序列,加上XhoⅠ和XbaⅠ酶切位點(diǎn)(表2),克隆至 PGL3-CMV-LUC-MCS載體中,命名為PGL3-Stra8-3’UTR(野生型,簡寫為WT)。依據(jù)篩選的miRNA序列合成的引物(表2),進(jìn)行PCR擴(kuò)增,克隆至pGMLV-MA2載體中命名為miR-1a、miR-1b、miR-31、miR-218。
靶基因雙熒光素酶突變載體的構(gòu)建主要是通過PCR的方法替換掉靶基因上的 miRNA結(jié)合位點(diǎn)。以PGL3-Stra8-3’UTR載體為模板,設(shè)計靶位點(diǎn)區(qū)突變引物(表2),分別與Stra8基因3’UTR引物擴(kuò)增,得到靶基因3’UTR序列結(jié)合位點(diǎn)上下游片段,以上下游片段混合物作為模板,PCR擴(kuò)增無結(jié)合位點(diǎn)的靶基因3’UTR突變序列,然后通過連接至PGL3-CMV-LUC-MCS載體中,構(gòu)建Stra8靶位點(diǎn)突變報告載體PGL3-Stra8-3’UTR-MT(簡寫為MT)。
1.5 細(xì)胞轉(zhuǎn)染與雙熒光素酶檢測
DF-1細(xì)胞用含10%胎牛血清的DMEM高糖培養(yǎng)液,于37 ℃、5% CO2條件下培養(yǎng)。細(xì)胞瞬時轉(zhuǎn)染按照LipofectamineTM2000轉(zhuǎn)染操作說明書進(jìn)行。轉(zhuǎn)染前1 d接種24孔板,每孔細(xì)胞量約1×105個,培養(yǎng)過夜后對每孔細(xì)胞分別轉(zhuǎn)染5組質(zhì)粒,并設(shè)空白對照,具體試驗分組:(1)miR-NC、PGL3-Stra8-3’UTR和 pRL-TK;(2)gga-miR-1a mimic、PGL3-Stra8-3’UTR和 pRL-TK;(3)gga-miR-1b mimic、PGL3-Stra8-3’UTR和pRL-TK;(4)gga-miR-31 mimic、PGL3-Stra8-3’UTR和pRL-TK;(5)gga-miR-218 mimic、PGL3-Stra8-3’UTR和pRL-TK。
轉(zhuǎn)染完成后棄去細(xì)胞培養(yǎng)板中的培養(yǎng)液,按照雙熒光素酶檢測試劑盒說明,檢測螢火蟲熒光素酶和海腎熒光素酶活性,計算每個轉(zhuǎn)染3個平行樣的相對發(fā)光比率(relative light unit,RLU),并計算標(biāo)準(zhǔn)差,根據(jù)得到的比值來比較不同樣品間報告基因的激活程度。同樣的方法對點(diǎn)突變試驗進(jìn)行分組:(1) miR-NC、PGL3-Stra8-3’UTR和pRL-TK;(2) miR-31、PGL3-Stra8-3’UTR和pRL-TK;(3) miR-31、PGL3-Stra8-3’UTR-MT和pRL-TK。
1.6 統(tǒng)計學(xué)處理
所有數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)誤(Mean±SEM) 表示,應(yīng)用GraphPad Prism 6.0統(tǒng)計學(xué)軟件,采用兩樣本均數(shù)間t檢驗的方法,P<0.05表示差異顯著;P<0.01表示差異極顯著。
2.1 雞Stra8 基因3’UTR獲取
以精原干細(xì)胞的cDNA為模板,根據(jù)NCBI數(shù)據(jù)庫Stra8的CDS序列設(shè)計引物進(jìn)行3’RACE擴(kuò)增,克隆出大小約為500 bp和1 000 bp的條帶(圖1-A),經(jīng)連接T載體測序后得到包含多聚ploy A的Stra8的3’UTR序列(圖1-B)。
表2 引物序列
Table 2 Sequence of primers
引物名稱Name引物序列Sequenceofprimer(5′→3′)Stra8?3’UTR?F(XhoⅠ)CCGCTCGAG GTAGTTTCCCTGTTTGTCAATGTTTTGCStra8?3’UTR?R(XbaⅠ)GGCTCTAGA AATTTCAAGACACCATCTGAGCAGTACTACTCMT?F(XhoⅠ)CCGCTCGAG GTAGTTTCCCTGgTgtTaccTGgTggtaaAAGCATCACMT?R(XbaⅠ)CCGCTCTAGA AATTTCAAGACACCATCgga?miR?1a?F(XhoⅠ)CCGCTCGAG ACTGCCTCTTCCCAGCCCTAAgga?miR?1a?R(BamⅢ)CCGGGATCC ATGCCGCAGTCAGCATATTGAAgga?miR?1b?F(XhoⅠ)CCGCTCGAG ATTGGCTGCAGCTGAGTGCCgga?miR?1b?R(BamⅠ)CCGGGATCC TCCTGTCATCTCGTGTCACCTCGgga?miR?31?F(XhoⅠ)CCGCTCGAG AGCACAGAAGTCAAAACAGCCCTTTgga?miR?31?R(BamⅢ)CCGGGATCC AAGGGCTGGAAACAGCTCAGTGgga?miR?218?F(XhoⅠ)CCGCTCGAG GGTGGAGGAAACTTTCAATGTGGTTgga?miR?218?R(BamⅢ)CCGGGATCC GCAGCAAGAATAAATAGATCCTGAATGCC
標(biāo)有下劃線的為酶切位點(diǎn)。
The underlined expresses restriction site.
2.2 生物信息學(xué)預(yù)測雞Stra8基因靶向miRNAs
本研究利用生物信息學(xué)在線軟件Targetscan反向預(yù)測了雞Stra8基因靶向的miRNAs。根據(jù)預(yù)測結(jié)果選擇評分較高的4個miRNAs: gga-miR-1a、gga-miR-1b、gga-miR-31、gga-miR-218均與Stra8基因的3’UTR存在互補(bǔ)結(jié)合位點(diǎn)(表3),因此以此4個miRNAs作為調(diào)控雞Stra8基因的候選miRNA進(jìn)行下一步篩選。
2.3 miRNA模擬物及雞Stra8基因3’UTR雙熒光素酶靶標(biāo)載體與突變載體構(gòu)建
經(jīng)測序驗證后,構(gòu)建含有雞Stra8基因3’UTR序列的PGL3-Stra8-3’UTR載體,利用XhoⅠ和XbaⅠ進(jìn)行雙酶切鑒定得到679 bp的3’UTR片段及5.4 kb PGL3的骨架載體(圖2-A、D、E)。同樣的方法驗證構(gòu)建好的Stra8基因的3’UTR雙熒光素酶靶標(biāo)突變載體(圖2-C)。
gga-miR-1a、gga-miR-1b、gga-miR-31、gga-miR-218克隆至pGMLV-MA2載體中,分別構(gòu)建其模擬物miR-1a、miR-1b、miR-31、miR-218,經(jīng)測序顯示克隆成功(圖3)。
2.4 miRNA對雞Stra8基因3’UTR的調(diào)控
重組載體PGL3-Stra8-3’UTR分別與4種gga-miRNA mimics轉(zhuǎn)染DF-1細(xì)胞系,同時設(shè)置miR-NC為陰性對照,24 h后用雙熒光素酶檢測試劑盒檢測,結(jié)果如圖4-A所示。經(jīng)t檢驗,miR-1a、miR-31、miR-218對雞Stra8基因3’UTR抑制效果差異顯著,其中miR-31+PGL3-Stra8-3’UTR共轉(zhuǎn)染組的相對熒光素酶活性較miR-NC+PGL3-Stra8-3’UTR共轉(zhuǎn)染組降低了32%(P<0.01),miR-1a組降低了20.3%(P<0.01),miR-218組降低了19.3%(P<0.01);而PGL3-Stra8-3’UTR與miR-1b共轉(zhuǎn)染時,其熒光比率較對照組沒有顯著差異(P>0.05),說明gga-miR-1b對Stra8基因3’UTR無抑制作用。從最開始預(yù)測的4種miRNAs中初步篩選出3種miRNAs(gga-miR-1a、gga-miR-31、gga-miR-218),可通過Stra8-3’UTR靶位點(diǎn)降低PGL3-Stra8-3’UTR的表達(dá),其中g(shù)ga-miR-31的抑制效果最佳。
A, 3’RACE擴(kuò)增Stra8基因3’UTR;B, Stra8基因3’UTR序列A, Amplification of Stra8 3’UTR by 3’RACE;B, Sequence of Stra8 3’UTR圖1 Stra8基因3’UTR克隆Fig.1 Cloning of Stra8 3’UTR
表3 與雞Stra8基因3’UTR有互補(bǔ)結(jié)合位點(diǎn)的可能miRNAs
Table 3 Potential miRNAs targeting 3’UTR ofGallusStra8 gene
miRNAmiRNAmiRNA比對序列miRNA?align比對模式Alignment基因比對序列Gene?aligngga?miR?1a3’AUGUAUGAAGAAAUGUAAGGU5’|∶||||||:| ||:|||||5’TTTATACTTTTAAACGTTCCA3’gga?miR?1b3’AUGUAUGAAGAAUUGUAAGGU5’|∶||||||∶| ||∶|||||5’TTTATACTTTTAAACGTTCCA3’gga?miR?313’AUACGGUUGUAGAACGG5’|||∶|||∶∶|∶|||||5’TTTGTCAATGTTTTGCC3’gga?miR?2183’UGUACCAAUCUA?GUUCGUGUU5’∶|||| ||||||||∶||||5’GCTTGGAGAGATGCAAGTACAA3’
A,PGL3-CMV-LUC-MCS;B,miR-31靶向Stra8-3’UTR結(jié)合位點(diǎn);C,PGL3-Stra8-3’UTR測序結(jié)果;D,PGL3-Stra8-3’UTR-MT測序結(jié)果;E,雙酶切鑒定PGL3-Stra8-3’UTR及PGL3-Stra8-3’UTR-MT(1,WT;2,MT;M,DL5000 Marker)A, PGL3-CMV-LUC-MCS;B, Binding site of miR-31 to Stra8-3’UTR;C, Sequencing results of PGL3-Stra8-3’UTR;D, Sequencing results of PGL3-Stra8-3’UTR-MT ;E, Dual digestion of PGL3-Stra8-3’UTR and PGL3-Stra8-3’UTR-MT(1, WT;2, MT;M, DL5000 Marker)圖2 PGL3-Stra8-3’UTR及PGL3-Stra8-3’UTR-MT構(gòu)建Fig.2 Construction of PGL3-Stra8-3’UTR and PGL3-Stra8-3’UTR-MT
A, miR-1a;B, miR-1b;C, miR-31;D, miR-218圖3 四個miRNA模擬物測序峰圖Fig.3 Sequencing peak map of 4 miRNA mimics
為了進(jìn)一步驗證gga-miR-31與Stra8-3’UTR結(jié)合的靶位點(diǎn),本試驗將gga-miR-31與Stra8-3’UTR的靶位點(diǎn)進(jìn)行了反義突變(圖2-B),設(shè)計構(gòu)建針對gga-miR-31的Stra8-3’UTR突變載體并命名為PGL3-Stra8-3’UTR-MT(MT)(圖2-C)。并將miR-31與PGL3-Stra8-3’UTR(WT)或PGL3-Stra8-3’UTR-MT(MT)共轉(zhuǎn)染的雙熒光素酶活性差異比較見圖4-B。與miR-NC對照組相比,miR-31能顯著下調(diào)PGL3-Stra8-3’UTR的熒光素酶活性,驗證了miR-31能靶向結(jié)合雞Stra8基因3’UTR,并對其表達(dá)進(jìn)行調(diào)控。
在生物演變過程中,miRNA扮演著重要的角色,miRNA是一種大小約21~23個堿基的單鏈小分子RNA,是由具有發(fā)夾結(jié)構(gòu)的約70~90個堿基大小的單鏈RNA前體經(jīng)過Dicer酶加工后生成,成熟miRNA 引導(dǎo) RISC 以堿基互補(bǔ)配對的方式與靶 mRNA 3’端非翻譯區(qū)(3’UTR)進(jìn)行完全配對或非完全配對結(jié)合,從而引起靶mRNA 的降解或抑制其翻譯。因此本研究通過3’RACE技術(shù)克隆出雞Stra8基因的3’UTR序列,利用Targetscan對靶向其3’UTR的miRNA進(jìn)行了預(yù)測,發(fā)現(xiàn)存在靶向Stra8基因的miRNA,并篩選出能抑制Stra8表達(dá)的最佳miRNA。
Stra8基因是減數(shù)分裂的起始標(biāo)志基因,研究表明,Stra8的表達(dá)不僅受到RA等一些小分子化合物的調(diào)控,還受到一些轉(zhuǎn)錄因子的調(diào)控,但是關(guān)于是否存在miRNA調(diào)控Stra8表達(dá)尚未有研究。本試驗通過Stra8 3’UTR預(yù)測能靶向的miRNA,雙熒光素酶檢測結(jié)果顯示,4個miRNA均能靶向Stra8,即初步說明存在參與雄性生殖分化的miRNA。現(xiàn)有研究表明,miRNA在哺乳動物的精子發(fā)生過程中扮演著重要的角色[16-20]。miR-544能直接下調(diào) PLZF 的表達(dá)[21],從而影響雄性生殖干細(xì)胞的自我更新與分化的平衡;miR-146 在精子發(fā)生分化過程中調(diào)節(jié)RA的影響[22],從而調(diào)節(jié)減數(shù)分裂及精子形成;miR-122可能通過抑制TNP2的表達(dá)以及與精子發(fā)育相關(guān)蛋白的表達(dá)以影響精樣細(xì)胞的生成[23];PTEN可以負(fù)向調(diào)控PGCs的增殖,因此靶向PTEN基因的miR-19a和miR-19b可以通過調(diào)節(jié)PTEN的表達(dá)從而調(diào)控PGCs的生成[24]。這些均揭示了miRNA在生物發(fā)育過程中扮演著重要的角色,尤其是miRNA對基因的調(diào)控直接影響到雄性生殖細(xì)胞分化。
本試驗篩選出miR-31靶向Stra8的活性最佳,因此初步判斷,在生殖細(xì)胞發(fā)育過程中miR-31可通過影響Stra8基因的表達(dá),從而調(diào)控減數(shù)分裂。目前關(guān)于miR-31的研究較少,且大部分是關(guān)于miR-31的研究與癌癥相關(guān):miR-31過表達(dá)會使人肺腺癌細(xì)胞周期阻滯在S期[25];miR-31 通過抑制eNOS表達(dá)參與高糖誘導(dǎo)的內(nèi)皮細(xì)胞功能障礙發(fā)生發(fā)展過程[26];miR-31通過下調(diào)結(jié)直腸癌中抑癌基因FIH-1的表達(dá)從而增加轉(zhuǎn)錄因子HIF-1a的活性,最終間接上調(diào)HIF-1a所調(diào)控的下游腫瘤相關(guān)癌基因的表達(dá)[27]。miR-31在生殖細(xì)胞分化方面并沒有過多的研究,因此本研究后續(xù)將對miR-31在生殖細(xì)胞分化上的功能進(jìn)行進(jìn)一步的研究。
[1] BOUILLET P, OULAD-ABDELGHANI M, VICAIRE S, et al. Efficient cloning of cDNAs of retinoic acid-responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stra1 (mouse LERK-2/Eplg2)[J].DevelopmentalBiology, 1995, 170(2):420-433.
[2] STARK A, BRENNECKE J, BUSHATI N, et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution[J].Cell, 2005, 123(6): 1133-1146.
[3] WILKERSON D C, WOLFE S A, GRIMES S R. H1t/GC-box and H1t/TE1 element are essential for promoter activity of the testis-specific histone H1t gene[J].BiologyofReproduction, 2002, 67(4): 1157-1164.
[4] TAKADA S, BEREZIKOV E, CHOI Y L, et al. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos[J].RNA, 2009, 15(8): 1507-1514.
[5] BJORK J K, SANDQVIST A, ELSING A N, et al. mi R-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis[J].Development, 2010, 137(19): 3177-3184
[6] YU M, MU H, NIU Z, et al. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2[J].JournalofCellularBiochemistry, 2014, 115(2): 232-242.
[7] MENKE D B, KOUBOVA J, PAGE D C. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior to-posterior wave[J].DevelopmentalBiology, 2003, 262(2): 303-312.
[8] CHEUNG A M S, TAM C K H, CHOW H C H, et al. All-trans retinoic acid induces proliferation of an irradiated stem cell supporting stromal cell line AFT024[J].ExperimentalHematology,2007,35(1):56-63.
[9] VOLLE D H, DUGGAVATH I R, MAGNIER B C, et al. The small heterodiner partner is a gonadal gatekeeper of sexual maturation in male mice[J].Genes&Development, 2007, 21(3) :303-315.
[10] Lambrot R, Coffigny H, Pairault C, et al. Use of organ culture to study the human fetal testis development: effect of retinoic acid[J].JournalofClinicalEndocrinology&Metabolism, 2006, 91(7):2696-703.
[11] ANDERSON E L, BALTUS A E, ROEPERS-GAJADIEN H L, et al. Stra8 and its inducer,retinoic acid,regulate meiotic initiationinboth spermatogenesis and oogenesis in mice[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2008, 105(39):14976-14980.
[12] MARK M,JACOBS H,OULAD-ABDELGHANI M,et al. STRA8-deficient spermatocytes initiate,but fail to complete,meiosis and undergo premature chromosome condensation[J].JournalofCellScience, 2008, 121(19):3233-3242.
[13] BALTUS A E,MENKE D B,HU Y C,et al. In germ cells of mouse embryonic ovaries,the decision to enter meiosis precedes premeiotic DNA replication[J].NatureGenetics, 2006, 38(12):1430-1434.
[14] 王丹. Stra8基因克隆表達(dá)及其功能的初步研究[D].揚(yáng)州:揚(yáng)州大學(xué),2013. WANG D. Study on gene cloning, expression of Stra8 and its function[D]Yangzhou: Yangzhou University, 2013.(in Chinese with English abstract)
[15] 劉志永,左其生,肖天榮,等. Am80和TSA對雞Stra8基因啟動子活性的調(diào)控作用[J]. 畜牧獸醫(yī)學(xué)報,2015,46(6):896-902. LIU Z Y,ZUO Q S,XIAO T R, et al. Regulatory effects of Am80 and TSA on chicken Stra8 gene promoter activity.[J]ChineseJournalofAnimalandVeterinarySciences, 2015,46(6):896-902. (in Chinese with English abstract)
[16] BJORK J K, SANDQVIST A, ELSING A N, et al. miR-18, amember of Oncomir-1, targets heat shock transcription factor 2 inspermatogenesis[J].Development, 2010, 137(19):3177-3184.
[17] LUO L, YE L, LIU G, et al. Microarray-based approach identifies differentially expressed micro RNAs in porcine sexually immature and mature testes[J].PLoSOne, 2010, 5(8):e11744.
[18] MCLVER S C, ROMAN S D, NIXON B, et al. miRNA and mammalian male germ cells[J].HumanReproductionUpdate, 2012,18(1):44-59.
[19] TONG M H, MITCHELL D A, MC GOWAN S D, et al. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice[J].BiologyofReproduction,2012, 86(3):72.
[20] RO S, SONG R, PARK C, et al. Cloning and expression profiling of small RNAs expressed in the mouse ovary[J].RNA, 2007. 13(12):2366-2380.
[21] 宋文聰. miR-544靶向PLZF調(diào)控奶山羊雄性生殖干細(xì)胞的自我更新[D].楊凌:西北農(nóng)林科技大學(xué),2014. SONG W C. Mir-544 Regulates the dairy goat male-germ line stem cells’ selerenewal by targeting to PLZF [D].Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)
[22] HUSZAR J M, PAYNE C J. Micro RNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice[J].BiologyofReproduction,2013,88(1):15.
[23] LIU T, HUANG Y, LIU J, et al. MicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression[J].StemCells&Development,2013, 22(12):1839-1850.
[24] KIMURA T, SUZUKI A, FUJITA Y, et al. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production[J].Development, 2003, 130(8): 1691-1700.
[25] ZHONG Z, DONG Z, YANG L, et al. Micro RNA-31-5pmodulates cell cycle by targeting human mutL homolog 1 in human cancer cells[J].TumorBiology, 2013, 34( 3) : 1959-1965.
[26] 劉慰華, 黎佼, 劉彬,等. miRNA-31在高糖誘導(dǎo)內(nèi)皮細(xì)胞功能障礙中的作用[J]. 廣東醫(yī)學(xué), 2014, 35(22):3449-3452.
LIU W H, LI J, LIU B, et al. The role of miRNA-31 in high glucose-induced endothelial cell dysfunction[J].GuangdongMedicalJournal, 2014, 35(22):3449-3452. (in Chinese with English abstract)
[27] 陳濤. MicroRNA-31/FIH-1調(diào)控關(guān)系在結(jié)直腸癌發(fā)生發(fā)展中的作用及其機(jī)制研究[D]. 上海:復(fù)旦大學(xué), 2014. CHEN T. The role of MiRNA-31/FIH-1 nexus in the progression of colorectal cancer and the mechanism study[D].Shanghai: Fudan University,2014. (in Chinese with English abstract)
(責(zé)任編輯 張 韻)
Prediction and validation of miRNA targeting chickenStra8 gene
WANG Yingjie, ZUO Qisheng, ZHANG Liangliang, ZHANG Wenhui, JIN Jing, WANG Fei, JI Yanqin, JIN Kai, HE Nana, LI Bichun*, ZHANG Yani*
(CollegeofAnimalScienceandTechnology,YangzhouUniversity,KeyLaboratoryofAnimalBreedingReproductionandMolecularDesignforJiangsuProvince,Yangzhou225009,China)
This paper was aimed to clone 3’UTR ofStra8 gene of Rugao yellow chicken, and predicted the microRNAs (miRNA) targeting the gene to provide theoretical basis for further function study of Stra8 in the process of embryonic stem cells differentiation into the male germ cell mediated by miRNAs. 3′UTR ofStra8 was cloned by 3′RACE based on primers designed from cDNA ofGallusgallusin NCBI, then the vectors of Luciferase expression and mutation was constructed. Targetscan bioinformatics database was used to predict the prospective miRNAs targeting toStra8 and synthesize miRNA mimics. The candidate miRNA mimics and the vectors of Stra8-3’UTR were transiently co-transfected with into DF-1 cells, and pRL-TK vector was used as an internal control reporter. The dual-luciferase reporter assay system was used to evaluate the activity of luciferase. The results showed that 3′UTR ofStra8 was cloned. Four miRNAs has been predicted that targeting toStra8 by using the online bioinformatics database and their lentiviral vectors were constructed successfully. Dual luciferase activity test results showed that gga-miR-1a,gga-miR-31,gga-miR-218 can inhibit gene expression ofStra8, but inhibitor of gga-miR-31 was the best. The gga-miR-31 could significantly inhibit expression ofStra8, the results will provide references for the investigation onStra8 gene regulatory networks in male germ cell differentiation.
Gallusgallus; miRNA;Stra8; gga-miR-31; dual luciferase activity detection
http://www.zjnyxb.cn
10.3969/j.issn.1004-1524.2017.05.07
2016-12-08
國家自然科學(xué)基金(31301959);江蘇省自然科學(xué)基金(BK20161331);校大學(xué)生學(xué)術(shù)科技創(chuàng)新基金資助項目(x20160665);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目
王穎潔(1992—),女,江蘇鎮(zhèn)江人,博士研究生,主要從事動物胚胎工程與遺傳工程研究。E-mail: maggieyingjie@foxmail.com
*通信作者,張亞妮,E-mail: ynzhang@yzu.edu.cn;李碧春,E-mail: yubcli@yzu.edu.cn
S831.2
A
1004-1524(2017)05-0729-08
浙江農(nóng)業(yè)學(xué)報ActaAgriculturaeZhejiangensis, 2017,29(5): 729-736
王穎潔,左其生,張良良,等. 靶向雞Stra8基因的miRNA預(yù)測及鑒定[J].浙江農(nóng)業(yè)學(xué)報,2017,29(5): 729-736.