• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi Normal Sectors and Orbits in Regular Critical Directions of Planar System?

    2017-06-05 03:32:50ShiminLIYulinZHAO

    Shimin LI Yulin ZHAO

    1 Introduction

    One of the classic problems in the qualitative theory of the differential system is to characterize the local phase portraits near an isolated singular point.Consider Ckplanar differential system

    where the dot denotes derivatives with respect to the variable t,k denotes a positive integer,+∞or w,Cwstands for an analytic function,and the origin O(0,0)is the isolated singular point such that X(0,0)=Y(0,0)=0.

    Concerning the simple singular point(those both eigenvalues of the Jacobian matrix at the singular point are different from zero),the Hartman-Grobman theorem completely solved them except when the singularity is monodromic,that is,the solution of the differential system turns around the singular point.The semi-simple singular points(where one of the eigenvalues equal to zero)are also classified(see for instance[3]).

    Regarding the degenerate singular points(where both eigenvalues of the Jacobian matrix at the point equal to zero),the situation is much more difficult.The Andreev theorem(see[2])classifies the nilpotent singular points,whose associated Jacobian matrix is not identically zero,except the monodromic case.If the Jacobian matrix is identically null,the problem is open.In this case,the only possibility is studying each degenerate singular point case by case.

    In polar coordinates x=rcosθ,y=rsinθ,the system(1.1)becomes

    Following Frommer[7],a direction of θ= θ0at the origin is called a critical direction of system(1.2)if there exists a sequence of pointssuch that0,tanαn→ 0 as n → ∞,where αnis the angle turning anti-clockwise from the directionto the vector field at Pn.

    There are several methods to study the number of orbits tending to the singular point in the critical direction.The first method is the so-called Z-sector(see[8]).The small neighborhood U(O,r)near the origin is divided into a finite number of sectors by the branches of Z(x,y)=,these sectors are called Z-sectors.Within a Z-sector,has a fixed sign and contains a finitely number of critical directions.

    The second method is to analysis normal sectors(normal domain)(see[10,14]).A circular sector S:is called a normal sector if(i)neither θ1nor θ2is a critical direction,(ii)withinbetween θ1and θ2there has a finite(possible zero)number of critical directions.Normal sectors usually construct as a small neighborhood of a critical direction,so in each normal sector there has at most one critical direction.

    The third method is generalized normal sectors(see[12–13]),which is developed from normal sectors,do not restrict edges of the sectors to the radial lines but even allow orbits,horizontal isoclines and vertical isoclines to be edges.

    A Z-sector possibly has more than one critical direction,so we can not determine which critical direction an orbit in the sector will be tangent to.Moreover,sometimes Z-branches of Z(x,y)=0 are hardly solved,so it is difficult to find all Z-sector branches.For a normal sector,sometimes it is not always constructible about an critical direction.Construction of generalized normal sector is a technical task,generally drawing horizontal isoclines and vertical isoclines is helpful for analysis.We note that the common point in the above three methods is to apply the classic polar coordinate to analysis.

    In this paper we apply the method of quasi normal sectors,which is a generalization of normal sectors,to determine orbits in the critical direction.

    The organization of this paper is as follows:In Section 2,we construct the method of quasi normal sector and statement some preliminary results.Section 3 contains the main results.In Section 4,we give two concrete examples to show that our method maybe more effective than the above three methods in some cases.In the last section,we introduce the method of Newton polyhedron.

    2 Quasi Normal Sector

    Given p,q,d∈N,we say that a function F(x,y)is called(p,q)-quasi-homogeneous function of weight degree d if F(λpx,λqy)= λdF(x,y).A vector field(P(x,y),Q(x,y))is called(p,q)-quasi-homogeneous of weight degree d if P(x,y)and Q(x,y)are(p,q)-quasi-homogeneous functions of weight degree d+p?1 and d+q?1 respectively.

    For a given Ckdifferential system(1.1),if k is sufficiently large,we can always choose conveniently a pair of positive integers(p,q)by the Newton polyhedron(see[4]),hence the system(1.1)can be written as the following differential system:

    Definition 2.1 Ifthen we sayis a regular critical direction.

    Proposition 2.1 From(2.3)–(2.4),the following statements hold:

    (i)If m

    (ii)If m>n and Yn(0,1)6=0,then are regular critical direction.

    (iii)Assume m=n.

    If p is even and q is odd,then θkis a regular critical direction if and only if?θkis a regular critical direction.

    If p is odd and q is odd,then θkis a regular critical direction if and only ifregular critical direction.

    If p is odd and q is even,then θkis a regular critical direction if and only ifregular critical direction.

    Proof The statements(i)–(ii)are obvious from the Definition of regular critical direction.

    Now we prove the statement(iii).Suppose that p is even and q is odd,then we get that

    Figure 1 Three types of QNS.

    The following four lemmas are generalization of the results in[14],and the method of proof these lemmas is similar.

    3 Main Results

    For convenience,in this section we say the orbit(x(t),y(t))of(2.1)tends to the origin if(x(t),y(t))→(0,0)as t→+∞ or t→?∞.

    We want to determine the number of orbits tending to the origin O(0,0)in regular critical direction.According to the number of real roots of equation G(θ)=0,we can distinguish to the following three cases.

    3.1 G(θ)=0 has no real root

    3.2 G(θ)≡ 0,the number of regular critical direction is in finite

    In this case,it is obvious that m=n.Assume that Φ(x,y)and Ψ(x,y)are analytic functions with respect to variables x and y near the origin O(0,0).

    Note that if p is odd,then the positive x directional blow-up provides the information of the negative x directional blow-up.We only need employ the x directional blow-up x=up∈R,

    In the following we only consider the positive x directional blow-up,the negative case is similar.

    Case(a)

    Note that(0,vk)is a nonsingular point of system(3.1)+,then there exists one and only one orbit cutting across the v-axis at(0,vk)in the(u,v)-plane(see Figure 2.1).

    Figure 2 Xm(1,vk)6=0.

    Case(b)and

    In this case,consider the following system

    and Ym(1,v)is a polynomial in variable v with degree less than or equal toTherefore Xm(1,v)is a polynomial in variable v with degree less than or equal to

    Figure 3 Xm(1,vk)=0,The orbit remains in the same half-plane u≥0.

    In this case,(0,vk)is a singular point of system(3.1)+,the behavior of solution near such a singular point may belong to any of the types discussed in the above cases.Since(2.1)is an analytic system,the desingularization theorem(see[6])ensures that after a finite number of such blow-up,it is possible to solve this problem.

    To study the behavior of orbits near the critical directions,we employ the quasi-homogeneous directional blow-up in the positive(resp.negative)y direction x=becomes

    Figure 4 The orbit cuts across the v-axis.

    In the following we also only consider the positive y directional blow-up.

    Case(d)Ym(0,+1)6=0.

    There is a unique orbit of system(3.3)+through the origin O(0,0)and cuts cross the eu-axis on the(see Figure 5.1).

    Case(e)

    In this case,consider the following system

    We know that(0,0)is a nonsingular point of system(3.4)and the unique orbit through(0,0)is tangent to theFigures 6.1 and 7.1 denote that the orbit remains in the same half-planeand cuts across the

    Case(f)Ym(0,+1)=0 and

    In this case,O(0,0)is a singular point of(3.3)+, finite number of such blow-up will solve this problem.

    From the above analysis,we can obtain the following theorems.

    Theorem 3.2 Consider the analytic differential system(2.1)with G(θ)≡ 0,and assume that p and q are odd.

    (i)If,then there is a unique orbit of(2.1)tending to the origin in the direction θkas well as a unique orbit tending to the origin in the direction(see Figure 2.2),where

    Figure 5 Ym(0,1)6=0.

    Tn

    (ii)Let

    If the orbit remains in the same half-plane near(0,vk),say in the half-plane u≥0(resp.u ≤ 0),then there are exactly two orbits tending to the origin in the directionone on each side of the curve and there is no orbit of(2.1)tending to the origin in the direction(see Figure 3.2).

    If the orbit cuts across the u-axis at(0,vk),then there is a unique orbit of(2.1)tending to the origin in the direction θkas well as a unique orbit tending to the origin in the direction

    (iii)If Ym(0,1)6=0,then there is a unique orbit of(2.1)tending to the origin in the directionas well as a unique orbittending to the origin in the direction(see Figure 5.2).

    (iv)Let

    If the orbit remains in the same half-planethen there exist two orbit of(2.1)tending to the origin in the direction,one on each side of the y-axis and there is no orbit of(2.1)tending to the origin in the direction(see Figure 6.2).

    If the orbit cuts across theat(0,0),then there is a unique orbit of(2.1)tending to the origin in the directionas well as a unique orbit tending to the origin in the direction?(see Figure 7.2).

    Figure 6Orbits remains in the same half-plane ev ≥ 0.

    (v)Ifthen successive application of the above transformation can solve this problem.

    Proof Because p and q are odd,we only need employ the x directional blow-upR,y=uqv and y directional blow-up

    (i)In this case,there exist orbits of system(2.1)tending to the origin along the curve.For every generalized polar direction θkin the(x,y)-plane such that Tn θk=,there is a unique orbit of(2.1)tending to the origin in the direction θkas well as a unique orbit tending to the origin in the direction

    (ii)In the first subcase,if u≥0(resp.u≤0),thenSo there are exactly two orbits tending to the origin in the directioneach side of the curve and there is no orbit of(2.1)tending to the origin in the direction(resp.θk).The second subcase is similar to case(i).

    (iii)If Ym(0,1)6=0,then it is clearly that the orbit of system(3.3)cuts across theThe statement follows from

    (iv)In the first subcase,ifthen(resp.So there are exactly two orbits tending to the origin in the directionone on each side of the y-axis and there is no orbit of(2.1)tending to the origin in the direction(resp.The second subcase is similar to case(iii).

    Figure 7.Orbits cuts across the eu-axis.

    (v)It is obvious from cases(c)and(f).

    Theorem 3.3 Consider the analytic differential system(2.1)with G(θ)≡ 0,and assume that p and q are even.

    (i)If Xm(1,vk)6=0,then there is a unique orbit of(2.1)tending to the origin in the direction θkas well as a unique orbit tending to the origin in the direction

    (ii)Let

    If the orbit remains in the same-half-plane near(0,vk),say in the half-plane u≥0(resp.u ≤ 0),then there are exactly two orbits tending to the origin in the directionone on each side of the curve and there is no orbit of(2.1)tending to the origin in the direction(see Figure 3.3).

    If the orbit cuts across the u-axis at(0,vk),then there is a unique orbit of(2.1)tending to the origin O(0,0)in the direction θkas well as a unique orbit tending to the origin in the direction

    (iii)If,then there exist two orbits of(2.1)tending to the origin in the directionand there is no orbit tending to the origin in the direction,(see Figure 5.3).

    (iv)If,then there exist two orbit of(2.1)tending to the origin in the directionand there is no orbit of(2.1)tending to the origin in the direction(see Figures 6.3 and 7.3).

    (v)If ,then there exist two orbit of(2.1)tending to the origin in the directionand there is no orbit of(2.1)tending to the origin in thedirection

    (vi)If successive application of the above transformation can solve this problem.

    Proof Because p is odd,we only need to employ the x directional blow-up.Statements(i)and(ii)follow from the proof of Theorem3.2 and the statement(vi)is obvious.

    If employ the quasi-homogeneous directional blow-up in the positive y direction,thenso the statements(iii)and(iv)are proved.

    If ,employ the quasi-homogeneous directional blow-up in the negative y direction,then,so there exist two orbits going into the origin in the directionThe statement(v)is proved.

    Theorem 3.4 Consider the analytic differential system(2.1)with G(θ)≡ 0,and assume that p and q are odd.

    (i)Ifthen there is a unique orbit of(2.1)tending to the origin in the direction θk(resp.)as well as a unique orbit tending to the origin in the direction)(see Figure 2.4).

    (ii)Let

    If the orbit remains in the same half-plane near(0,vk),say in the half-plane u≥0(resp.u ≤ 0),then there are exactly two orbits tending to the origin in the direction sgn(vk)θk(resp.?sgn(vk)θk),one on each side of the curve and there is no orbit of(2.1)tending to the origin in the direction ?sgn(vk)θk(resp.sgn(vk)θk)(see Figure 3.4),where sgn(vk)denotes the sign function of vk.

    If orbit cuts across the u-axis at(0,vk),then there is a unique orbit of(2.1)tending to the origin in the direction θkas well as a unique orbit tending to the origin in the direction ?θk(see Figure 4.4).

    (iii)Let

    If the orbit remains in the same-half-plane near(0,vk),say in the half-plane u≥0(resp.u ≤ 0),then there are exactly two orbits tending to the origin in the direction(resp.,one on each side of the curve and there is no orbit of(2.1)tending to the origin in the direction

    If the orbit cuts across the u-axis at(0,vk),then there is a unique orbit of(2.1)tending to the origin in the directionas well as a unique orbit tending to the origin in the direction

    (iv)If,there is a unique orbit of(2.1)tending to the origin in the directionas well as

    (v)Let

    If the orbit remains in the same half-planethen there exist two orbit of(2.1)tending to the origin in the direction,one on each side of the y-axis and there is no orbit of(2.1)tending to the origin in the direction(see Figure 6.4).

    If the orbit cuts across theat(0,0),then there is a unique orbit of(2.1)tending to the origin in the directionas well as a unique orbit tending to the origin in the direction(see Figure 7.4).

    (vi)If,then successive application of the above transformation can solve this problem.

    Proof Because q is odd,we only need to employ the y directional quasi-homogeneous blow-up,so the statements(iv),(v)and(vi)are obvious from the proof of Theorem 3.2.

    Ifemploy the quasi-homogeneous directional blow-up in the positive x direction,then x ≥ 0 and

    For the first subcase,suppose,then x≥0,y≥0(resp.x≥0,y≤0).There are exactly two orbits of(2.1)tending to the origin in the directionand there is no orbit tending to the origin in the direction,so the statement(ii)is proved.The second subcase is similar.

    If,employ the quasi-homogeneous directional blow-up in the negative x direction,the proof of statement(iii)is similar.

    The statement(i)is obvious from the above analysis.

    3.3 G(θ)=0 have finite real roots

    Remark 3.1 If the differential system(2.1)is an analytic system near the origin,then the condition of Proposition 3.2 and the condition(3.8)of Proposition 3.3 are naturally satisfied.

    Furthermore,if l is odd,then the following statements hold.

    4 Applications

    Figure 8 In Figure 8.1 the dashed curve isIn Figure 8.2,the dashed curve is

    Note that if we use the normal sector method for the system(4.1),then G(θ)= ?sin4(θ),H(θ)=cos(θ)sin3(θ).We can not determine the number of orbits tending to the origin in the direction θ=0 and θ= π.

    Example 4.2 Consider the differential system

    where both p and q are positive integers and q≥2,a>0,b>0.The above differential system is considered in[13].We show that our method of QNS is more effective than the method of generalized normal sector in this case.

    Since the system(4.2)has concrete background as stated in[13],we only consider the first quadrant(x≥0,y≥0).

    For the system(4.2),Apply the generalized polar coordinate,we have

    5 Appendix:Method of Newton Polyhedron

    In this appendix we show how to obtain the parameters p,q and d by Newton polyhedron,see for instance[1].

    Consider the following system origin of system(5.1)is degenerate,then(0,0)6∈N.We define the Newton polyhedron as the convex hull of N+R2+in the(i,j)-plane.We call γkthe segments of this polyhedron.If one of these segments is completely in the half-plane i≤ 0(resp.j ≤ 0)we call it γ0(resp.γn+1).The rest of the segments are calledfrom left to right,and they have at least one endpoint in the first quadrant of the(i,j)-plane.For k=1,···,n,the segment γksatisfies the equation of the straight linefor some coprime αWe choose the suitable(p,q,d)from the set,k=1,···,n}provided by

    If(i,j)∈N,then eitheris a monomial of X(x,y),oris a monomial of Y(x,y).We call dk=pi+qj the quasi-degree of type(p,q)of these monomials.The monomials.of quasi-degree dkof type(p,q)are grouped in a polynomial.Hence the vector field χ=(X,Y)can be decomposed into its quasi-homogeneous components of type(p,q)whereandThis is a different way of writing system(5.1).

    AcknowledgementThe authors would like to thank the reviewers for their valuable comments and suggestions,which improve the presentation of this paper a lot.

    [1]Alvarez,M.J.,Ferragut,A.and Jarque,X.,A survey on the blow-up technique,Internat.J.Bifur.Chaos,21,2011,3103–3118.

    [2]Andreev,A.,Investigation of the behavior of the integral curves of a system of two di ff erential equations in the neighborhood of a singular point,Trans.Amer.Math.Soc.,8,1958,187–207.

    [3]Andronov,A.A.,Leontovich,E.A.,Gordon,I.I.and Maier,A.G.,Qualitative Theory of 2nd Ordinary Dynamic Systems,J.Wiley Sons,New York,1973.

    [4]Broer,H.W.,Dumortier,F.,Strien,S.J.and Takens,F.,Structures in Dynamics,Studies Math.Phys.,North-Holland,Elsevier Science Publishers,B.V.,1981.

    [5]Coll,B.,Gasull,G.and Prohens,R.,Differential equations defined by the sum of two quasi-homogeneous vector feilds,Can.J.Math.,49,1997,212–231.

    [6]Dumortier,F.,Singularities of vector fields on the plane,J.Differential Equations,23,1977,53–106.

    [7]Frommer,M.,Die intergralkurven einer gewohnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen,Math.Appl.,99,1928,222–272.

    [8]Lefschetz,S.,Differential Equations:Geometric Theory,Interscience,New York,1957.

    [9]Lyapunov,A.M.,Stability of Motion,Mathematics in Science and Engineering,Academic Press,New York,London,1966.

    [10]Nemytskii,V.V.and Stepanov,V.V.,Qualitative theory of differential equation,Princeton Math.Series,22,Princeton University Press,Princeton,N.J.,1960.

    [11]Oliveira,R.D.S.and Zhao,Y.,On the structural stability of planar quasi-homogeneous polynomial vector fields,Qual.Theory Dyn.Syst.,13,2013,DOI:10.1007/s12346-013-0105-5.

    [12]Tang,Y.,Li,W.and Zhang,Z.,Focus-center problem of planar degenerate system,J.Math.Anal.Appl.,345,2008,934–940.

    [13]Tang,Y.and Zhang,W.,Generalized normal sectors and orbits in exceptional directions,Nonlinearity,17,2004,1407–1426.

    [14]Zhang,Z.,Ding.T.,Huang,W.and Dong,Z.,Qualitative Theory of Differential Equation,Transl.Math.Monogr.,Providence,Rhode Island,1992.

    欧美大码av| 又大又爽又粗| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区免费| 国产精品 欧美亚洲| 久久久久久亚洲精品国产蜜桃av| 亚洲成人久久爱视频| 香蕉丝袜av| 国产精品精品国产色婷婷| 俄罗斯特黄特色一大片| 久久久久久大精品| 午夜福利一区二区在线看| 国产三级在线视频| 999久久久国产精品视频| 一区二区三区激情视频| 国产精品99久久99久久久不卡| 国产伦一二天堂av在线观看| 看黄色毛片网站| 国产人伦9x9x在线观看| 十分钟在线观看高清视频www| 欧美日韩福利视频一区二区| 免费一级毛片在线播放高清视频| 亚洲av熟女| 深夜精品福利| 久久亚洲精品不卡| 2021天堂中文幕一二区在线观 | 国产激情欧美一区二区| 国产单亲对白刺激| 非洲黑人性xxxx精品又粗又长| 欧美色视频一区免费| 欧美成人一区二区免费高清观看 | 久久热在线av| 两人在一起打扑克的视频| 香蕉国产在线看| 老鸭窝网址在线观看| 国产一区二区激情短视频| 丁香欧美五月| 亚洲全国av大片| 欧美国产精品va在线观看不卡| 精品久久久久久久久久久久久 | 老司机午夜福利在线观看视频| 后天国语完整版免费观看| 成年人黄色毛片网站| 99国产综合亚洲精品| 一二三四社区在线视频社区8| 一区福利在线观看| 老熟妇仑乱视频hdxx| 成年版毛片免费区| 看片在线看免费视频| 亚洲avbb在线观看| 很黄的视频免费| 99精品久久久久人妻精品| 亚洲一码二码三码区别大吗| 听说在线观看完整版免费高清| 老汉色av国产亚洲站长工具| 国产精品免费一区二区三区在线| 巨乳人妻的诱惑在线观看| 久久久久久人人人人人| 日韩免费av在线播放| 国产精品免费视频内射| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻,人人澡人人爽秒播| 亚洲熟女毛片儿| 黑人操中国人逼视频| 久久久久精品国产欧美久久久| 亚洲成人久久爱视频| 日韩大码丰满熟妇| 黄片大片在线免费观看| 香蕉丝袜av| 欧美黄色片欧美黄色片| 亚洲第一av免费看| 999久久久国产精品视频| 色哟哟哟哟哟哟| 一二三四在线观看免费中文在| 久久久久免费精品人妻一区二区 | 美女国产高潮福利片在线看| 欧美精品亚洲一区二区| 一二三四在线观看免费中文在| 超碰成人久久| 香蕉久久夜色| 精品国内亚洲2022精品成人| 精品欧美一区二区三区在线| 十分钟在线观看高清视频www| 精品无人区乱码1区二区| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡人人看| 国产欧美日韩一区二区精品| 国产欧美日韩一区二区精品| 国产欧美日韩一区二区精品| 国产色视频综合| 日韩大码丰满熟妇| 午夜福利视频1000在线观看| 俺也久久电影网| 制服诱惑二区| 午夜免费激情av| 高清毛片免费观看视频网站| 中国美女看黄片| 99国产精品一区二区蜜桃av| 精品免费久久久久久久清纯| 午夜福利免费观看在线| 亚洲精品美女久久av网站| 天堂动漫精品| 美女高潮到喷水免费观看| 国产一区二区三区在线臀色熟女| 免费高清在线观看日韩| 满18在线观看网站| 国产精品精品国产色婷婷| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| 精品久久久久久久末码| 久久久国产成人免费| 国内精品久久久久精免费| 午夜日韩欧美国产| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 欧美日韩黄片免| 日韩大尺度精品在线看网址| bbb黄色大片| 人人澡人人妻人| 亚洲人成网站在线播放欧美日韩| 亚洲成人精品中文字幕电影| av有码第一页| 黄片大片在线免费观看| 人人妻人人澡人人看| 淫妇啪啪啪对白视频| 欧美 亚洲 国产 日韩一| 亚洲 国产 在线| АⅤ资源中文在线天堂| 亚洲精华国产精华精| 亚洲avbb在线观看| av免费在线观看网站| 日本 av在线| 日韩三级视频一区二区三区| 日本免费a在线| 真人一进一出gif抽搐免费| 欧美黄色淫秽网站| 精品一区二区三区av网在线观看| 99久久99久久久精品蜜桃| 亚洲av片天天在线观看| av电影中文网址| 亚洲国产精品合色在线| 黑人巨大精品欧美一区二区mp4| 国产午夜福利久久久久久| 午夜福利高清视频| 久久国产乱子伦精品免费另类| 亚洲国产看品久久| 岛国视频午夜一区免费看| 久久中文字幕人妻熟女| 欧美在线一区亚洲| a在线观看视频网站| 久久久久国内视频| 亚洲欧美一区二区三区黑人| 久久精品成人免费网站| 亚洲精品久久国产高清桃花| 国产成人av教育| 久久久久精品国产欧美久久久| 天堂影院成人在线观看| 久久精品亚洲精品国产色婷小说| 日韩精品青青久久久久久| 久久国产乱子伦精品免费另类| 日韩欧美一区二区三区在线观看| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩一区二区精品| 欧美日韩亚洲国产一区二区在线观看| 久久 成人 亚洲| 亚洲午夜精品一区,二区,三区| 国产99白浆流出| 国产真人三级小视频在线观看| 精品乱码久久久久久99久播| 亚洲狠狠婷婷综合久久图片| 视频在线观看一区二区三区| 国产成人一区二区三区免费视频网站| 午夜福利成人在线免费观看| 日韩大尺度精品在线看网址| 国产精品1区2区在线观看.| 日韩欧美 国产精品| 99re在线观看精品视频| 91成年电影在线观看| 男女之事视频高清在线观看| 亚洲av第一区精品v没综合| 午夜福利在线观看吧| 无人区码免费观看不卡| 人人澡人人妻人| 人妻丰满熟妇av一区二区三区| 亚洲午夜理论影院| 无限看片的www在线观看| 亚洲午夜精品一区,二区,三区| 亚洲色图av天堂| 亚洲精品久久成人aⅴ小说| 国产黄色小视频在线观看| 热99re8久久精品国产| 成熟少妇高潮喷水视频| 国产精品亚洲美女久久久| 一级黄色大片毛片| 国产午夜福利久久久久久| 色在线成人网| 丰满的人妻完整版| 88av欧美| 国产一区二区三区在线臀色熟女| 国产成人精品无人区| 十八禁人妻一区二区| 欧美日韩一级在线毛片| 日韩一卡2卡3卡4卡2021年| 首页视频小说图片口味搜索| 国产成人av激情在线播放| 国产亚洲精品一区二区www| 久久香蕉精品热| 搡老岳熟女国产| 欧美黑人欧美精品刺激| а√天堂www在线а√下载| 国产极品粉嫩免费观看在线| 国产精品一区二区免费欧美| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站 | 男女之事视频高清在线观看| 精品久久久久久久末码| 午夜老司机福利片| 后天国语完整版免费观看| 久久久国产成人免费| 法律面前人人平等表现在哪些方面| 琪琪午夜伦伦电影理论片6080| 黄色视频,在线免费观看| 性色av乱码一区二区三区2| 国产成人影院久久av| 国产单亲对白刺激| 久久国产亚洲av麻豆专区| 婷婷精品国产亚洲av| 中文亚洲av片在线观看爽| 国产又爽黄色视频| 久久久精品欧美日韩精品| 亚洲精华国产精华精| 国产v大片淫在线免费观看| 看免费av毛片| 欧美日韩精品网址| 欧美日本亚洲视频在线播放| 一区福利在线观看| 免费高清视频大片| 久久人妻福利社区极品人妻图片| 亚洲成av人片免费观看| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 国产成+人综合+亚洲专区| 亚洲五月色婷婷综合| 丁香欧美五月| 亚洲av电影在线进入| 久久精品国产亚洲av高清一级| 亚洲国产精品成人综合色| 成年人黄色毛片网站| 亚洲av电影不卡..在线观看| 国产熟女xx| 国产精品综合久久久久久久免费| 亚洲国产精品999在线| 国产精品免费一区二区三区在线| 叶爱在线成人免费视频播放| 老鸭窝网址在线观看| 久99久视频精品免费| 国产v大片淫在线免费观看| 淫妇啪啪啪对白视频| 久久久久免费精品人妻一区二区 | 午夜两性在线视频| 最好的美女福利视频网| 国产午夜精品久久久久久| 在线观看免费日韩欧美大片| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 国产精品久久久久久精品电影 | 美国免费a级毛片| 18禁观看日本| 搡老岳熟女国产| 日韩三级视频一区二区三区| 欧美黑人巨大hd| 三级毛片av免费| 日本一本二区三区精品| 久久久久国产精品人妻aⅴ院| 精品电影一区二区在线| 一区二区日韩欧美中文字幕| 91成年电影在线观看| 后天国语完整版免费观看| 日韩一卡2卡3卡4卡2021年| 最近最新中文字幕大全电影3 | 成人三级黄色视频| 国产一区二区激情短视频| 亚洲成av人片免费观看| 国产片内射在线| 免费无遮挡裸体视频| 午夜影院日韩av| 俄罗斯特黄特色一大片| 久99久视频精品免费| 91老司机精品| 在线观看66精品国产| 免费av毛片视频| av超薄肉色丝袜交足视频| 欧美中文综合在线视频| 我的亚洲天堂| 久久婷婷成人综合色麻豆| 国产av一区二区精品久久| 亚洲黑人精品在线| 欧美黄色淫秽网站| 久久精品国产综合久久久| 日本五十路高清| 久久久国产精品麻豆| 亚洲人成电影免费在线| 亚洲国产欧美网| 久久久久久人人人人人| 亚洲精品粉嫩美女一区| 一级片免费观看大全| 久久久久精品国产欧美久久久| 欧美成人午夜精品| 免费电影在线观看免费观看| 欧美黑人巨大hd| 中文字幕av电影在线播放| 丝袜在线中文字幕| 久久久国产精品麻豆| 麻豆成人午夜福利视频| 欧美久久黑人一区二区| 变态另类成人亚洲欧美熟女| 亚洲片人在线观看| 黑丝袜美女国产一区| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 一区二区三区高清视频在线| 在线永久观看黄色视频| 国产色视频综合| 中文字幕av电影在线播放| av天堂在线播放| 大型av网站在线播放| www.精华液| 老司机在亚洲福利影院| 少妇被粗大的猛进出69影院| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 无遮挡黄片免费观看| 亚洲五月天丁香| 日韩欧美国产在线观看| ponron亚洲| 亚洲九九香蕉| 午夜久久久在线观看| 日本黄色视频三级网站网址| 亚洲性夜色夜夜综合| 亚洲免费av在线视频| 色播在线永久视频| 久久人人精品亚洲av| 中出人妻视频一区二区| 亚洲av五月六月丁香网| 国产成人欧美| 亚洲男人天堂网一区| bbb黄色大片| 午夜久久久久精精品| 成人av一区二区三区在线看| 国产高清激情床上av| a级毛片在线看网站| 99久久精品国产亚洲精品| 香蕉久久夜色| 国产精品久久久av美女十八| av视频在线观看入口| 欧美国产日韩亚洲一区| 亚洲熟女毛片儿| 久久香蕉国产精品| 国产单亲对白刺激| 777久久人妻少妇嫩草av网站| 18禁观看日本| 国产三级黄色录像| 日韩有码中文字幕| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| svipshipincom国产片| 麻豆久久精品国产亚洲av| 久久中文字幕人妻熟女| 欧美中文综合在线视频| 久久精品亚洲精品国产色婷小说| www.自偷自拍.com| 听说在线观看完整版免费高清| 精品无人区乱码1区二区| 搞女人的毛片| 啦啦啦免费观看视频1| 一本久久中文字幕| 亚洲午夜理论影院| 国产高清激情床上av| 青草久久国产| 在线国产一区二区在线| 女人高潮潮喷娇喘18禁视频| 欧美黑人巨大hd| 成人18禁高潮啪啪吃奶动态图| 黄网站色视频无遮挡免费观看| 国产高清激情床上av| 亚洲国产欧美一区二区综合| 观看免费一级毛片| 亚洲精品中文字幕在线视频| 琪琪午夜伦伦电影理论片6080| x7x7x7水蜜桃| 欧美精品啪啪一区二区三区| 色综合亚洲欧美另类图片| 久久久久九九精品影院| 可以在线观看毛片的网站| 亚洲 国产 在线| 久久中文字幕一级| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 国产精品香港三级国产av潘金莲| 国产精品久久视频播放| 国产精品一区二区免费欧美| 日韩欧美国产一区二区入口| 极品教师在线免费播放| 成熟少妇高潮喷水视频| 国产乱人伦免费视频| 久久中文看片网| 18禁黄网站禁片午夜丰满| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 十八禁人妻一区二区| 国产激情偷乱视频一区二区| 国产成人欧美| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 亚洲三区欧美一区| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 两性午夜刺激爽爽歪歪视频在线观看 | 国产v大片淫在线免费观看| 精品国产亚洲在线| 淫秽高清视频在线观看| 老司机福利观看| 国产精品免费视频内射| 亚洲av成人av| 欧美国产日韩亚洲一区| 国产一区二区三区视频了| 精品久久久久久久毛片微露脸| 色av中文字幕| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| 日本三级黄在线观看| 999精品在线视频| 国产高清有码在线观看视频 | 免费看十八禁软件| 热re99久久国产66热| 国产主播在线观看一区二区| 99热6这里只有精品| 一级黄色大片毛片| 视频区欧美日本亚洲| 亚洲国产精品久久男人天堂| 男人舔奶头视频| 欧美黑人巨大hd| 啦啦啦韩国在线观看视频| 国产成人系列免费观看| 在线观看日韩欧美| 亚洲最大成人中文| 变态另类丝袜制服| 成人亚洲精品av一区二区| 999精品在线视频| 91av网站免费观看| 中文字幕最新亚洲高清| 国内少妇人妻偷人精品xxx网站 | 中文字幕高清在线视频| 午夜福利欧美成人| 99在线视频只有这里精品首页| 久久精品亚洲精品国产色婷小说| 免费av毛片视频| 亚洲色图av天堂| 他把我摸到了高潮在线观看| 中文字幕人妻熟女乱码| 欧美国产精品va在线观看不卡| 在线免费观看的www视频| 欧美色欧美亚洲另类二区| 亚洲专区国产一区二区| 国产精品爽爽va在线观看网站 | 琪琪午夜伦伦电影理论片6080| 人妻久久中文字幕网| 亚洲 国产 在线| 男人的好看免费观看在线视频 | 激情在线观看视频在线高清| 国产精品av久久久久免费| 成人欧美大片| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 久久婷婷成人综合色麻豆| 日本 欧美在线| 又黄又粗又硬又大视频| videosex国产| 欧美一级a爱片免费观看看 | 好男人电影高清在线观看| 亚洲五月天丁香| 搞女人的毛片| 国产精品九九99| 国内久久婷婷六月综合欲色啪| 2021天堂中文幕一二区在线观 | 精品福利观看| 99国产综合亚洲精品| 一级毛片女人18水好多| 国产又色又爽无遮挡免费看| 午夜激情福利司机影院| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 丁香六月欧美| 18禁国产床啪视频网站| 中出人妻视频一区二区| 18禁观看日本| 午夜免费激情av| 国产精品国产高清国产av| 亚洲人成77777在线视频| 一本精品99久久精品77| 午夜福利欧美成人| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 啪啪无遮挡十八禁网站| 一本综合久久免费| 国产一区二区在线av高清观看| 午夜久久久久精精品| av欧美777| 久久久国产成人精品二区| 久久久久久九九精品二区国产 | av超薄肉色丝袜交足视频| 久久精品亚洲精品国产色婷小说| 久久久水蜜桃国产精品网| 国产高清videossex| 亚洲自拍偷在线| 无人区码免费观看不卡| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 亚洲熟妇中文字幕五十中出| 国产精品久久电影中文字幕| 丁香欧美五月| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡| 好男人在线观看高清免费视频 | 满18在线观看网站| 超碰成人久久| 亚洲九九香蕉| 中文资源天堂在线| 亚洲中文av在线| 欧美最黄视频在线播放免费| 国产精品二区激情视频| 色尼玛亚洲综合影院| 午夜福利欧美成人| 精品久久蜜臀av无| 村上凉子中文字幕在线| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 中文字幕人妻熟女乱码| 亚洲中文字幕一区二区三区有码在线看 | 国内精品久久久久精免费| 久久久久久人人人人人| 国产三级黄色录像| 九色国产91popny在线| 精品一区二区三区视频在线观看免费| 亚洲熟妇中文字幕五十中出| 欧美日韩亚洲国产一区二区在线观看| www.自偷自拍.com| 久久九九热精品免费| 美女国产高潮福利片在线看| videosex国产| 久久人妻av系列| 美女免费视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清| 亚洲久久久国产精品| 久久草成人影院| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久末码| 国产亚洲精品av在线| 亚洲精品色激情综合| 国产成人啪精品午夜网站| 色在线成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 久久久精品欧美日韩精品| 国产99久久九九免费精品| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 国产精品久久久久久亚洲av鲁大| 黄色片一级片一级黄色片| 日本免费一区二区三区高清不卡| 麻豆国产av国片精品| 久久婷婷成人综合色麻豆| 精品欧美国产一区二区三| 黄色 视频免费看| 成人手机av| 亚洲精品在线美女| 国产色视频综合| 久久久久久免费高清国产稀缺| 大香蕉久久成人网| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 亚洲精品中文字幕在线视频| 真人一进一出gif抽搐免费| 色哟哟哟哟哟哟| 麻豆国产av国片精品| 亚洲 国产 在线| 免费在线观看成人毛片| 国产av在哪里看| 久久久国产成人精品二区| 巨乳人妻的诱惑在线观看| 国产精品亚洲av一区麻豆| 精华霜和精华液先用哪个| 亚洲第一欧美日韩一区二区三区| 国产一区在线观看成人免费| 国产精品永久免费网站| 日韩欧美一区二区三区在线观看| 九色国产91popny在线| 久久久久久久久久黄片| 国产99久久九九免费精品| 亚洲熟妇熟女久久| 亚洲av中文字字幕乱码综合 | 午夜久久久久精精品| 亚洲精品色激情综合| 高潮久久久久久久久久久不卡| 国产欧美日韩精品亚洲av| 国产精品电影一区二区三区| 91成年电影在线观看| 欧美绝顶高潮抽搐喷水| 亚洲精华国产精华精| 精品国产超薄肉色丝袜足j| 午夜精品久久久久久毛片777| 久久久久久人人人人人|