• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On λ-Power Distributional n-Chaos?

    2017-06-05 03:32:38HemanFUFengTAN

    Heman FU Feng TAN

    1 Introduction

    By a dynamical system(in short,a system)we mean a pair(X,f),where X is a compact metric space with metric d and f:X→X is a continuous map.

    As far as we know,the first topological Definition of chaos was introduced by Li and Yorke[6]to describe the complexity of the orbits of points in a system.The Li-Yorke chaos became one of the most discussed topics for the last several decades.Various extensions of Li-Yorke chaos were developed.In 1994,Schweizer B.and Sm′?tal J.[9]introduced distributional chaos and showed that positive topological entropy is equivalent to distributional chaos for interval selfmaps.But the equivalence is no longer valid when a general compact metric space is considered(see[4,7]).

    In 2007,Li-Yorke chaos and distributional chaos have been unified by Xiong et al[14]into the frame of F-chaos,where F is a Furstenberg family.Recently,via F-chaos,Xiong et al[13]have introduced the notion of λ-power distributional chaos to strengthen distributional chaos,where λ∈[0,1].The hierarchical relation of these chaos is intensively discussed in[2].

    The above Definitions of chaos are expressed in terms of dynamics of pairs.Some authors have realized that notions of chaos can also be stated by means of dynamics of tuples,e.g.,n-scrambled tuples(see[5,12]).Following this idea,we extended distributional chaos to distributional n-chaos for n≥2(see[10]).There we discussed several properties of distributional n-chaos and constructed a transitive system which is distributionally n-chaotic without any distributionally(n+1)-scrambled tuples.

    In this paper,we introduce the notion of F-n-chaos generally for a given Furstenberg family F and n ≥ 2.Then we apply F-n-chaos to the study of λ-power distributional n-chaos.Our main aim is to extend some classic results on distributional chaos to be the versions of λ-power distributional n-chaos.This paper is organized as follows.Section 2 is devoted to preliminaries on Furstenberg families and on topological dynamics.In Section 3,for λ∈[0,1],λ-power distributional n-chaos is introduced as a generalization of distributional n-chaos via Furstenberg families,where 0-power distributional n-chaos is the strongest.Then we provide a simple criterion for a system to be 0-power distributionally n-chaotic.In Section 4,we present a transitive system which is 0-power distributionally n-chaotic without any distributionally(n+1)-scrambled tuples.Finally in Section 5,for each λ ∈ [0,1],we show that λ-power distributional n-chaos may exist in minimal systems with zero topological entropy.

    2 Preliminaries

    2.1 Furstenberg families

    We review some notations related to Furstenberg families(see[1]).Denote by Z+,N the set of positive integers and the set of non-negative integers respectively.Denote by P the collection of all subsets of Z+.

    F?P is called a Furstenberg family,if it is hereditary upwards,that is,F1?F2and F1∈F imply F2∈F.Obviously,the family of all in finite subsets of Z+is a Furstenberg family,denoted by B.

    For a family F,denote

    κF is a Furstenber family,called the dual family of F.It is easy to see that κB is the family of co finite subsets.

    A subset F of Z+is thick if it contains arbitrarily long runs of positive integers.The family of all thick subset of Z+is denoted by τB.The set in κτB is said to be syndetic.So F ? Z+is syndetic if and only if it is of bounded gaps,i.e.,there is N such thatfor every i∈Z+.

    where I ranges over intervals ofare said to be the upper density of J and the upper Banach density of J,respectively.The lower densityand the lower Banach density BD?(J)are defined similarly.

    For every t∈[0,1],letare Furstenberg families and

    2.2 Topological dynamics

    A denotes the closure of the set A in X.For given δ>0,letwhere d(x,A)=inf{d(x,y):y∈A}.

    Suppose that(X,f)is a system.A?X is invariant if f(A)?A.(Y,f)is a subsystem ofX is nonempty,closed and invariant.Foris called the meeting time set of U and V.Specially,if U is a singleton{x},is simply written as N(x,V),called the return time set from x to V.(X,f)or f is said to be transitive iffor any two nonempty open setsWe writeand call it the orbit of x.x ∈ X is said to be a recurrent point if x is a limit point of the set Orb(x,f).Clearly,if x is a recurrent point,thenis a transitive system.

    (X,f)or f is said to be minimal if there is no proper subsystem of(X,f).If a subsystem(Y,f)of(X,f)is minimal,then we say that Y is a minimal set of X.Each point in a minimal set is called a minimal point.It is well known that x∈X is a minimal point if and only if N(x,U)is syndetic for any neighborhood U of x.

    For a finite open cover U of X define

    where N(C)is the minimal cardinality among all cardinalities of subcovers of C.The topological entropy ofwhere the supremum is taken over all finite open covers of X.

    Consider the setendowed with the discrete topology.Letwith the product topology.Then Σnis a compact metric space,called a symbolic space(on n symbols).A compatible metric on Σnis given by,where,otherwise 0 when x=y.Define σ :any.It is obvious that σ is continuous.is called the full shift(on n symbols).Any subsystem ofis called a subshift.

    Eachis called a word over E,whereis the set of all k-words.Ifis an l-word,then we call that the length of A is l,denotedis an m-word,the catenation of A and B is denoted by.Then AB is an(l+m)-word.If A1,A2,···is a sequence of words,then·is regarded as a point of.For simplicity,denote A···A(k times),AA···byandrespectively.We say that A occurs in B,denoted,if there issuch thatholds for each j=1,2,···,l.For a point,we get the Definition ofsimilarly and say that A occurs in x.

    Lemma 2.1 comes from[4].

    Lemma 2.1 LetIf for any k ≥ 1,there exists K>0 such thatholds for each i≥ 1,then x is a minimal point of σ.

    Let Y?Σn.For k≥1,denote

    The following Lemma 2.2 is well known,for example see[11].

    Lemma 2.2 Suppose thatis a subshift.Then

    3 λ-Power Distributional n-Chaos

    Suppose that(X,f)is a system and F is a Furstenberg family.

    Let A ? X and δ>0.x∈X is said to be an F-attaching point of A if N(x,A)∈F;an F-adherent point of A if x is an F-attaching point of[A]εfor any ε>0;an F-δ-escape point of A if x is an F-attaching point of the setan F-escape point of A if x is an F-δ′-escape point of A for some δ′>0.

    3.1 F-n-chaos

    Let n≥2.Similar to the Definition of F-chaos in[14],we introduce F-n-chaos.

    Denote by(Xn,f(n))the n-fold product systemPutandfor some i 6=j}.

    Let δ>0.A tupleis said to be F-δ-n-scrambled ifis an F-adherent point of?nand an F-δ-escape point ofin the product system.A subset C of X is said to be F-δ-n-scrambled if each tupleis F-δ-n-scrambled.A system(X,f)is said to be uniformly F-n-chaotic if there exists an uncountable-n-scrambled set for some

    In the same manner,we get the Definitions of F-n-scrambled tuples,F-n-scrambled sets and F-n-chaos.

    3.2 λ-power distributional n-chaos

    Then Dλis a Furstenberg family for each λ ∈ [0,1].It is easy to see that D1=M(1)? τB and that Dλ1? Dλ2for any 0≤ λ1≤ λ2≤ 1.

    Recall that a system is distributionally chaotic if and only if it is D1-chaotic(see[14]),which inspires us to introduce the following intuitive synonyms.

    Let λ ∈ [0,1],n ≥ 2 and δ>0.By a λ-power distributionally δ-n-scrambled tuple(or set),we mean a Dλ-δ-n-scrambled tuple(or set respectively).Likewise,(uniformly) λ-power distributionally n-chaotic systems means(uniformly)Dλ-n-chaotic systems.

    Surely,1-power distributional n-chaos is just distributional n-chaos defined in[10].λ power distributional n-chaos gets stronger and stronger as λ varies from 1 to 0.In[2],Fu et al constructed examples to demonstrate that λ1-power distributional chaos and λ2-power distributional chaos are not equivalent for any different λ1,λ2∈ [0,1].The examples there,in fact,also show that λ1-power distributional n-chaos and λ2-power distributional n-chaos are not equivalent for any different λ1,λ2∈ [0,1].So all of λ-power distributional n-chaos,where λ∈[0,1],form a hierarchy of distributional n-chaos.

    Corollary 4.4 in[13]has offered a criterion for a system to be uniformly 0-power distributionally chaotic.It can be modified slightly into a version for uniformly 0-power distributionally n-chaotic systems.For proof of Theorem 4.1 here,we merely present a simplified and practical criterion as follows.

    Proposition 3.1 Suppose that(X,f)is a system and n≥2.If f has n distrinct fixed points pj,j=0,1,···,n ? 1,such thatis dense in X for each j,then(X,f)is uniformly 0-power distributionally n-chaotic.

    In fact,Proposition 3.1 implies that(X,f)is generically uniformly 0-power distributionally n-chaotic,that is,the set of 0-power distributionally δ-n-scrambled tuples is residual in Xnfor some fixed δ>0.

    We take the most known systemas an example.Note that all ofΣn,0≤ j≤ n?1 are fi xed points of σ and they satisfy the condition stated in Proposition 3.1.Consequently,we give the following example.

    Example 3.1 The full shiftis uniformly 0-power distributionally n-chaotic.

    4 0-Power Distributionally n-Chaotic Systems Without Distributionally(n+1)-Scrambled Tuples

    For n≥2,we have constructed a transitive system which is distributionally n-chaotic without any distributionally(n+1)-scrambled tuples(see[10]).Analogously,a transitive system is constructed,which is 0-power distributionally n-chaotic without any distributionally(n+1)-scrambled tuples.Before doing it,we need some preparations.

    4.1 Technical preparations

    The following Lemma 4.1 comes from[1,8].

    Lemma 4.1 Suppose that(X,f)is a system,and A?X is nonempty and closed.Then x ∈ X is a τ B-adherent point of A if and only if A contains a minimal set of

    Proposition 4.1 Suppose that(X,f)is a system and n ≥ 2.If there is a τB-escape point of?(n)in the product system,then(X,f)has at least n distrinct minimal points.

    Proof Let∈ Xnbe a τ B-escape point of?(n).Thenis a τ B-attaching point of the setfor some δ>0.By Lemma 4.1,contains a minimal point ofTherefore,y1,···,ynare n distrinct minimal points of(X,f).

    Corollary 4.1 Suppose that(X,f)is a system and n≥2.If(X,f)has a distributionally n-scrambled tuple,then(X,f)has at least n distrinct minimal points.

    Proof Letbe a distributionally n-scrambled tuple.It follows thatis a D1-escape point ofin the product systemthe corollary holds by Proposition 4.1.

    Corollary 4.1 tells us,if a system does not admit n distrinct minimal points,then it has no distributionally n-scrambled tuple.Needless to say,it is not distributionally n-chaotic.

    4.2 Construction of examples

    Suppose n ≥ 2.Below,we de fi ne a sequence of wordsinductively.

    Let A1=1.For k ≥ 2,suppose that Ak?1is de fi ned,and denotethe length of Ak?1.If k=ni+j,where i∈N,0≤j≤ n?1,de fi ne

    For any given M∈Z+,there exists m such that

    5 Minimal Systems

    Liao et al[4]constructed in a symbolic space a minimal and distributionally chaotic system with topological entropy 0.Oprocha[7]obtained an uncountable family of such systems in a symbolic space.Following the ideas in[4,7],for each λ ∈[0,1]and n≥ 2,we construct in a symbolic space a uniformly λ-power distributionally n-chaotic and minimal system with zero topological entropy.

    Consequently,whenever

    On the one hand,for given pk>1,when

    AcknowledgementThe authors would like to thank the referee for the careful reading of this paper and many valuable comments.

    [1]Akin,E.,Recurrence in Topological Dynamical Systems:Furstenberg Families and Ellis Actions,Plenum,New York,1997.

    [2]Fu,H.M.,Xiong,J.C.and Wang,H.Y.,The hierarchy of distributional chaos,International Journal of Bifurcation and Chaos,25(1),2015,1550001(10 pages),DOI:10.1142/S0218127415500017.

    [3]Fu,H.M.,Xiong,J.C.and Tan,F.,On distributionally chaotic and null systems,J.Math.Anal.Appl.,375,2011,166–173.

    [4]Liao,G.F.and Fan,Q.J.,Minimal subshifts which display Schweizer-Sm′?tal chaos and have zore topological entropy,Science in China(Series A),41,1998,33–38.

    [5]Li,J.and Oprocha,P.,On n-scrambled tuples and distributional chaos in a sequence,J.Di ff er.Equ.Appl.,19(6),2013,927–941.

    [6]Li,T.Y.and Yorke,J.A.,Period 3 implies chaos,Amer.Math.Monthly,82,1975,985–992.

    [7]Oprocha,P.,Distributional chaos revisited,Tran.Amer.Math.Soc.,361(10),2009,4901–4925.

    [8]Shao,S.,Proximity and distality via Furstenberg families,Topo.and Its Appl.,153,2006,2055–2072.

    [9]Schweieer,B.and Sm′?tal,J.,Measure of chaos and a spectral decomposition of dynamical system on the interval,Trans.Amer.Soc.,334,1994,737–754.

    [10]Tan,F.and Fu,H.M.,On distributional n-chaos,Acta Mathematica Scientia,34(5),2014,1473–1480.

    [11]Walter,P.,An Introduction to Ergodic Theory,Spring-Verlag,New York,1982.

    [12]Xiong,J.C.,Chaos in topological transitive systems,Science in China Series A:Mathematics,48,2005,929–939.

    [13]Xiong,J.C.,Fu,H.M.and Wang,H.Y.,A class of Furstenberg families and their applications to chaotic dynamics,Sci.China Math.,57,2014,823–836.

    [14]Xiong,J.C.,L¨u,J.and Tan,F.,Furstenberg family and chaos,Science in China Series A:Mathematics,50(9),2007,1325–1333.

    丰满人妻一区二区三区视频av| 五月玫瑰六月丁香| 韩国高清视频一区二区三区| 成人国产麻豆网| 九九爱精品视频在线观看| 精品国产三级普通话版| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 久久久精品欧美日韩精品| 亚洲成人中文字幕在线播放| 亚洲精品久久久久久婷婷小说 | 国产午夜精品一二区理论片| 欧美一级a爱片免费观看看| 亚洲av不卡在线观看| 午夜激情福利司机影院| 最近2019中文字幕mv第一页| 午夜精品在线福利| 亚洲高清免费不卡视频| 色哟哟·www| 一边亲一边摸免费视频| 在线免费观看的www视频| 国产精品久久久久久精品电影| 少妇人妻精品综合一区二区| 国产老妇伦熟女老妇高清| 性色avwww在线观看| 日韩欧美精品免费久久| 激情 狠狠 欧美| 精品久久久久久电影网 | 国产亚洲一区二区精品| 美女高潮的动态| 三级国产精品片| 最后的刺客免费高清国语| 免费观看性生交大片5| 日本免费a在线| 69av精品久久久久久| 两个人视频免费观看高清| 欧美zozozo另类| 69av精品久久久久久| 美女内射精品一级片tv| 亚洲综合精品二区| 日韩欧美精品免费久久| 日韩欧美精品免费久久| 亚洲四区av| 亚洲国产色片| 青春草国产在线视频| 精品无人区乱码1区二区| 成年免费大片在线观看| 桃色一区二区三区在线观看| 国产91av在线免费观看| 国产乱人偷精品视频| 亚洲不卡免费看| 最近最新中文字幕大全电影3| 国产在线一区二区三区精 | 免费一级毛片在线播放高清视频| 亚洲精品一区蜜桃| 天堂网av新在线| 97超碰精品成人国产| 91精品一卡2卡3卡4卡| 亚洲国产日韩欧美精品在线观看| 99热这里只有是精品50| 一级毛片aaaaaa免费看小| 国产探花在线观看一区二区| 国产大屁股一区二区在线视频| 亚洲av免费高清在线观看| 欧美精品国产亚洲| 日韩欧美 国产精品| 天堂av国产一区二区熟女人妻| 久久国内精品自在自线图片| 日韩欧美三级三区| 成人亚洲欧美一区二区av| 国产久久久一区二区三区| 欧美xxxx黑人xx丫x性爽| 黑人高潮一二区| 国产午夜福利久久久久久| 国产激情偷乱视频一区二区| 午夜激情福利司机影院| 天美传媒精品一区二区| 在线免费观看的www视频| 亚洲av电影在线观看一区二区三区 | 亚洲精品国产成人久久av| 一级毛片电影观看 | 国产视频内射| 国产精品久久电影中文字幕| 亚洲在线自拍视频| 少妇的逼水好多| 国产精品一区二区三区四区免费观看| 人体艺术视频欧美日本| 日韩一本色道免费dvd| 国产一区二区在线观看日韩| 久久99热这里只有精品18| 欧美性猛交黑人性爽| 超碰av人人做人人爽久久| 69av精品久久久久久| 成人性生交大片免费视频hd| a级毛色黄片| 国产精品麻豆人妻色哟哟久久 | 国产色婷婷99| 国产大屁股一区二区在线视频| 欧美一级a爱片免费观看看| 91精品一卡2卡3卡4卡| 免费看光身美女| eeuss影院久久| 国产精品av视频在线免费观看| 日韩制服骚丝袜av| 亚洲av免费在线观看| 狂野欧美激情性xxxx在线观看| 免费观看人在逋| 午夜老司机福利剧场| 熟女人妻精品中文字幕| 18禁动态无遮挡网站| 国产精品麻豆人妻色哟哟久久 | 国产乱来视频区| 一卡2卡三卡四卡精品乱码亚洲| 国产成人a区在线观看| 欧美高清成人免费视频www| 国产精品一区二区三区四区免费观看| 国产极品精品免费视频能看的| 日韩一本色道免费dvd| 国产一区二区三区av在线| 日韩欧美三级三区| 久久久精品欧美日韩精品| 免费搜索国产男女视频| 国产片特级美女逼逼视频| 一级黄片播放器| 又爽又黄无遮挡网站| 亚洲av成人精品一区久久| a级一级毛片免费在线观看| 看免费成人av毛片| 国产成人精品久久久久久| 亚洲精品成人久久久久久| 亚洲国产欧美在线一区| 91在线精品国自产拍蜜月| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区国产| 亚洲av电影不卡..在线观看| 久久久a久久爽久久v久久| 国产午夜精品论理片| 成人亚洲欧美一区二区av| 久久欧美精品欧美久久欧美| 精品久久久久久久久亚洲| 爱豆传媒免费全集在线观看| 日本免费a在线| 成人av在线播放网站| 内地一区二区视频在线| 国产日韩欧美在线精品| 亚洲久久久久久中文字幕| 真实男女啪啪啪动态图| 啦啦啦韩国在线观看视频| 在线播放国产精品三级| 别揉我奶头 嗯啊视频| 少妇熟女欧美另类| 99久国产av精品| av在线老鸭窝| 亚洲最大成人中文| 中文字幕av成人在线电影| 久久久久久久久久黄片| 天美传媒精品一区二区| 午夜免费激情av| 久久久久性生活片| 国产成人a区在线观看| 亚洲国产精品合色在线| 午夜福利在线观看免费完整高清在| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 成人特级av手机在线观看| 欧美激情在线99| 国内精品宾馆在线| 蜜桃亚洲精品一区二区三区| 欧美成人午夜免费资源| 黄色欧美视频在线观看| 中文字幕av在线有码专区| 久久精品国产亚洲av涩爱| 1000部很黄的大片| 成人国产麻豆网| 青春草亚洲视频在线观看| 美女内射精品一级片tv| 韩国高清视频一区二区三区| 日韩视频在线欧美| 黄色配什么色好看| 中文字幕av成人在线电影| 亚洲综合色惰| 一夜夜www| 亚洲人与动物交配视频| 亚洲天堂国产精品一区在线| 亚洲人成网站在线观看播放| 一个人看视频在线观看www免费| 1000部很黄的大片| 亚洲怡红院男人天堂| 国产精品精品国产色婷婷| 久久韩国三级中文字幕| 久久久久久久久久黄片| 美女xxoo啪啪120秒动态图| 欧美色视频一区免费| 精品99又大又爽又粗少妇毛片| 欧美高清成人免费视频www| 亚洲成人av在线免费| 免费看a级黄色片| 在线免费观看的www视频| 久久6这里有精品| 最近2019中文字幕mv第一页| 亚洲天堂国产精品一区在线| 久久鲁丝午夜福利片| 亚洲av中文av极速乱| 亚洲精品乱久久久久久| 亚洲高清免费不卡视频| 成人二区视频| 亚洲性久久影院| 欧美又色又爽又黄视频| 亚洲自偷自拍三级| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 国产黄片美女视频| 人妻夜夜爽99麻豆av| 久久精品国产自在天天线| 国产精品久久视频播放| 精品久久久久久久末码| 如何舔出高潮| 伦精品一区二区三区| 日本五十路高清| 久久精品综合一区二区三区| 1024手机看黄色片| 精品久久久噜噜| 欧美日韩一区二区视频在线观看视频在线 | 2022亚洲国产成人精品| 一级二级三级毛片免费看| 国产美女午夜福利| 啦啦啦观看免费观看视频高清| 你懂的网址亚洲精品在线观看 | 日韩视频在线欧美| 欧美一区二区精品小视频在线| 色哟哟·www| 精品人妻熟女av久视频| 青春草视频在线免费观看| 大话2 男鬼变身卡| 国产精品国产三级国产av玫瑰| 少妇猛男粗大的猛烈进出视频 | 亚洲av福利一区| 男人和女人高潮做爰伦理| 99热精品在线国产| 人妻夜夜爽99麻豆av| 少妇的逼好多水| 99在线视频只有这里精品首页| 久久人妻av系列| 99视频精品全部免费 在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲天堂国产精品一区在线| 三级经典国产精品| 少妇被粗大猛烈的视频| 日本爱情动作片www.在线观看| 久久99热6这里只有精品| 久久久久久久久中文| 永久免费av网站大全| 亚洲18禁久久av| 国产精品熟女久久久久浪| videos熟女内射| 在线观看66精品国产| 国产伦精品一区二区三区视频9| 国产黄色小视频在线观看| 久久久国产成人精品二区| 伦精品一区二区三区| 日本与韩国留学比较| a级毛片免费高清观看在线播放| 亚洲人与动物交配视频| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 国产精品日韩av在线免费观看| 久久精品夜色国产| 国产伦理片在线播放av一区| 黄片无遮挡物在线观看| 国产精品精品国产色婷婷| 成年免费大片在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 99热这里只有是精品50| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 精品人妻熟女av久视频| a级一级毛片免费在线观看| 午夜福利高清视频| 久久久久久国产a免费观看| 99热全是精品| 久久亚洲国产成人精品v| 久久99精品国语久久久| 少妇裸体淫交视频免费看高清| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看| 亚洲欧美成人综合另类久久久 | 麻豆成人av视频| 少妇人妻一区二区三区视频| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| 网址你懂的国产日韩在线| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 亚洲自偷自拍三级| 水蜜桃什么品种好| 91狼人影院| eeuss影院久久| 免费观看的影片在线观看| 欧美一级a爱片免费观看看| 中文字幕av成人在线电影| 国产黄a三级三级三级人| 水蜜桃什么品种好| 国产精品人妻久久久久久| 久久久亚洲精品成人影院| 免费看美女性在线毛片视频| 干丝袜人妻中文字幕| 欧美+日韩+精品| 日韩 亚洲 欧美在线| 国产一区有黄有色的免费视频 | 成人欧美大片| 神马国产精品三级电影在线观看| 搡老妇女老女人老熟妇| 蜜桃久久精品国产亚洲av| 九九在线视频观看精品| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 麻豆成人av视频| 成人国产麻豆网| 亚洲欧美日韩高清专用| 精品久久久久久久久久久久久| 欧美激情久久久久久爽电影| 99热网站在线观看| 国产真实乱freesex| 国产伦一二天堂av在线观看| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看| 久久久欧美国产精品| 久久精品国产自在天天线| 97热精品久久久久久| 亚洲三级黄色毛片| 村上凉子中文字幕在线| 一二三四中文在线观看免费高清| 级片在线观看| 永久网站在线| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app| 三级经典国产精品| 丰满人妻一区二区三区视频av| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 婷婷六月久久综合丁香| 亚洲欧美日韩高清专用| 国产成人午夜福利电影在线观看| 成人三级黄色视频| 日韩高清综合在线| 精品国内亚洲2022精品成人| 国产极品天堂在线| 免费大片18禁| 亚洲图色成人| 国产爱豆传媒在线观看| 嫩草影院新地址| 国产日韩欧美在线精品| 久久99精品国语久久久| 天天躁日日操中文字幕| 国产淫语在线视频| 亚洲成人中文字幕在线播放| 能在线免费看毛片的网站| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄 | 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 成人鲁丝片一二三区免费| 精品不卡国产一区二区三区| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 在线天堂最新版资源| 精品久久久久久久久av| 晚上一个人看的免费电影| 身体一侧抽搐| 国产黄色小视频在线观看| 十八禁国产超污无遮挡网站| 国产极品天堂在线| 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 久久久午夜欧美精品| 日日干狠狠操夜夜爽| 联通29元200g的流量卡| 亚洲自拍偷在线| 亚洲欧美清纯卡通| 亚洲无线观看免费| 婷婷六月久久综合丁香| 欧美xxxx性猛交bbbb| 国产精品国产高清国产av| 亚洲av成人av| 干丝袜人妻中文字幕| 插逼视频在线观看| 亚洲精品国产成人久久av| 久久久久久久久久久丰满| 国产乱人视频| 亚洲精品影视一区二区三区av| 小蜜桃在线观看免费完整版高清| 精品人妻视频免费看| 一本久久精品| 亚洲国产日韩欧美精品在线观看| www.色视频.com| 久久99热6这里只有精品| 国产熟女欧美一区二区| 最近视频中文字幕2019在线8| 国产在线一区二区三区精 | 国产黄a三级三级三级人| 精品99又大又爽又粗少妇毛片| 国产精品综合久久久久久久免费| 日本免费a在线| 免费观看精品视频网站| 精品久久久久久久久亚洲| 欧美色视频一区免费| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 国内揄拍国产精品人妻在线| 波多野结衣高清无吗| 22中文网久久字幕| 中文亚洲av片在线观看爽| 秋霞伦理黄片| 可以在线观看毛片的网站| 亚洲av成人精品一区久久| 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 国产毛片a区久久久久| 欧美性猛交黑人性爽| 久久人妻av系列| 日本色播在线视频| 一本一本综合久久| 免费无遮挡裸体视频| 男女边吃奶边做爰视频| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| 国产精品国产高清国产av| 淫秽高清视频在线观看| 高清在线视频一区二区三区 | 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 亚洲美女视频黄频| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 日韩成人av中文字幕在线观看| 欧美97在线视频| 国产私拍福利视频在线观看| 色视频www国产| 成人毛片60女人毛片免费| 国产精品爽爽va在线观看网站| 亚洲四区av| 网址你懂的国产日韩在线| or卡值多少钱| 国产高清三级在线| eeuss影院久久| 韩国av在线不卡| 国产免费一级a男人的天堂| 一级毛片我不卡| 少妇熟女aⅴ在线视频| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 能在线免费观看的黄片| 黄色一级大片看看| 乱人视频在线观看| 大又大粗又爽又黄少妇毛片口| 日韩精品有码人妻一区| 51国产日韩欧美| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜添av毛片| 国产成人福利小说| 日韩欧美国产在线观看| 免费观看a级毛片全部| 麻豆乱淫一区二区| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品合色在线| 一级毛片久久久久久久久女| 国产精品野战在线观看| 亚洲av免费在线观看| 国产乱人偷精品视频| 久久精品夜夜夜夜夜久久蜜豆| 国产成人a区在线观看| 国产在线一区二区三区精 | 只有这里有精品99| 亚洲国产色片| 天堂中文最新版在线下载 | 精品久久久久久久人妻蜜臀av| 亚洲精品乱久久久久久| 99久久成人亚洲精品观看| 国产一区二区在线观看日韩| 国产乱来视频区| 午夜福利在线在线| 久久精品国产亚洲网站| 波多野结衣高清无吗| 在线免费十八禁| 国内精品美女久久久久久| 亚洲精品国产av成人精品| 色网站视频免费| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 少妇猛男粗大的猛烈进出视频 | 能在线免费看毛片的网站| 两性午夜刺激爽爽歪歪视频在线观看| a级毛片免费高清观看在线播放| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 九九爱精品视频在线观看| 国产精品无大码| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 一区二区三区乱码不卡18| 在线a可以看的网站| 六月丁香七月| 床上黄色一级片| 欧美色视频一区免费| 波野结衣二区三区在线| 国产黄色小视频在线观看| 日韩欧美在线乱码| 国产亚洲午夜精品一区二区久久 | 在线观看一区二区三区| 国产精品久久久久久久久免| 免费看a级黄色片| 秋霞在线观看毛片| 久久精品人妻少妇| 成人性生交大片免费视频hd| 国产一区有黄有色的免费视频 | 国产白丝娇喘喷水9色精品| 久久6这里有精品| www.av在线官网国产| 69人妻影院| 久久久久国产网址| av视频在线观看入口| 国内精品一区二区在线观看| 狠狠狠狠99中文字幕| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 99久久精品一区二区三区| 亚洲av免费在线观看| 夜夜爽夜夜爽视频| 国产亚洲91精品色在线| 国产综合懂色| 日韩欧美三级三区| 久久久久久久亚洲中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 99热这里只有是精品50| 亚洲自偷自拍三级| 99热这里只有是精品50| 亚洲av福利一区| 联通29元200g的流量卡| 99在线人妻在线中文字幕| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 麻豆一二三区av精品| 久久久久久国产a免费观看| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 国产精品人妻久久久久久| 一级二级三级毛片免费看| 国产免费男女视频| 免费观看性生交大片5| 99久久九九国产精品国产免费| av在线播放精品| 伦理电影大哥的女人| 最后的刺客免费高清国语| 欧美日韩一区二区视频在线观看视频在线 | 欧美xxxx性猛交bbbb| 国产三级中文精品| 国产黄色视频一区二区在线观看 | 日本一二三区视频观看| 不卡视频在线观看欧美| 成人午夜高清在线视频| 伦理电影大哥的女人| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 中文天堂在线官网| 少妇人妻精品综合一区二区| av播播在线观看一区| 亚洲国产成人一精品久久久| 久久精品夜夜夜夜夜久久蜜豆| 99久久人妻综合| 爱豆传媒免费全集在线观看| 天堂网av新在线| 男女边吃奶边做爰视频| 成人午夜精彩视频在线观看| 成人漫画全彩无遮挡| 黄色配什么色好看| 丰满少妇做爰视频| 国产成人精品久久久久久| 能在线免费观看的黄片| 亚洲精品,欧美精品| 国产精品蜜桃在线观看| 久久婷婷人人爽人人干人人爱| 亚洲天堂国产精品一区在线| 亚洲综合色惰| 99热这里只有是精品50| 国国产精品蜜臀av免费| 中国美白少妇内射xxxbb| 狠狠狠狠99中文字幕| 波野结衣二区三区在线| 日本欧美国产在线视频| 亚洲精品aⅴ在线观看| 99热6这里只有精品| 日韩欧美精品v在线| 成人二区视频| 久久亚洲精品不卡| 一级爰片在线观看| 狂野欧美激情性xxxx在线观看| 日韩,欧美,国产一区二区三区 | 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| av在线蜜桃|