• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Weak Specification Properties and Strongly Mixing?

    2017-06-05 03:32:36QiYANJiandongYINTaoWANG

    Qi YANJiandong YINTao WANG

    1 Introduction

    By a topological dynamical system(X,f)(a dynamical system for short),we mean that X is a compact metric space with metric d and f:X→X is continuous.

    The specification property has turned out to be an important notion in the study of dynamical systems.It was firstly introduced by Bowen in[2](see also[1,3,6]for some examples with the specification property and some basic properties).Nowadays,many authors have given their attention to the study of the specification property and raised several kinds of specification properties,such as the strong specification property,the periodic specification property,the almost specification property,the weak specification property,etc.(see[4–5,7]).In this article,we will follow the terminology of[4].

    Definition 1.1(see[4])We say that a surjective continuous map f:X→X has the weak specification property(briefly WSP),if for any δ>0,there is a positive integer Nδsuch that for any two points y1,y2and any sequencewiththere is a point x∈X such that,for each positive integer m=1,2 and all integers i withthe following condition holds:

    WSP is one of the weakest forms of specification property.And it is known that a map with WSP is strongly mixing.This result is strongly dependent on the assumption that f is surjective,since this result may not be true if all the other conditions of WSP but the surjective property are satisfied.See the following example for details.

    Example 1.1 Letn≥1.Under the usual metric of R(the real space),(X,f)is a dynamical system.Then(X,f)satisfies all the other conditions of WSP except the surjective property.

    Therefore,(X,f)satisfies all the other conditions of WSP except the surjective property.

    Conversely,a natural question appears:Does the strongly mixing property imply WSP?In this paper,we first show by an example that the strongly mixing property is not enough to imply WSP;the concrete example will be given in Section 3.Furthermore,we introduce two weaker concepts of specification property than WSP,which are called the quasi-weak specification property and the semi-weak specification property in this article,respectively.See the following Definitions in more details.

    Definition 1.2 We say that a surjective continuous map f:X→X has the quasi-weak specification property(briefly QWSP),if for any δ>0,there is a positive integersuch that for any two points y1,y2and any n≥ Nδthere is a point x∈X such that d(x,y1)< δ and

    Definition 1.3 We say that a surjective continuous map f:X→X has the semi-weak specification property(briefly SWSP),if for any δ>0,there is a positive integersuch that for any two points y1,y2and any sequencethere is a point x∈X and for each positive integer m=1,2 there exists an integer i withsuch that

    On the basis of these concepts,we show the equivalence of the quasi-weak specification property,the semi-weak specification property and strongly mixing.If we note the example given in Section 3,this result shows that QWSP and SWSP are strictly weaker than WSP.

    2 Preliminaries and Basic Concepts

    Let(X,f)be a dynamical system.In this paper,we use Z+to denote the set of all nonnegative integers and use N to denote the set of all positive integers and denote the sets of periodic points,almost periodic points,recurrent points,and non-wandering points of f by P(f),A(f),R(f)and ?(f),respectively.Let x ∈ X,denote by orb(x,f)and ω(x,f)the orbit of x and the ω-limit set of x under f,respectively.

    Denote B(x,ε)by the ε-neighborhood of x,that is

    We set,for nonempty open subsets U,V of X,

    f is(topologically)transitive,if for any two nonempty open sets U,V?X,N(U,V)6=?;

    f is strongly mixing,if N(U,V)is co finite,namely,there exists N∈N such that for any

    Let(X,f),(Y,g)be two dynamical systems with metric d,d1,respectively.The product system of(X,f)and(Y,g)is denoted by(X×Y,f×g).The metricon X×Y is de fi ned as

    whenever(x1,y1),(x2,y2)∈X×Y.

    If there is a continuous surjective map φ :X → Y with φ ?f=g? φ,we will say that f and g are semi-conjugate(by φ).The map φ is called a semi-conjugacy or a factor map(from f to g).The map g is called a factor of f and the map f is called an extension of g.If φ is a homeomorphism,then we call it a conjugacy(from f to g).

    Next,we introduce some basic notations of symbolic dynamical systems.

    Suppose that S={0,1}andis the one-sided symbolic space on S.A distance on Σ2is defined as follows:For

    Thenis a compact metric space.A shift map σ :is defined as follows:for anyis called the one-sided symbolic dynamical system.

    Call V a tuple of S,if V is a finite arrangement of some elements of S.Ifwhere vi∈ S for i=1,···,r,then we call r the length of V,denoted by|V|.Denote by S?the set of all the tuples of S.Let W=w1w2···wsbe another tuple of S,denote

    Then V W is also a tuple of S.V is said to occur in W,denoted by,if there is p≥0 such thatOtherwise,denoted by.Letandbe a tuple of S.We say that V is a tuple of x,if there exists i ≥ 1 such thatwe say that V occurs in x in finite times,if there exists a positive integer sequencesuch thatj=1,2,···,r for any i≥ 1.

    3 Main Results and Proofs

    Firstly,we present some properties of WSP.

    Proposition 3.1 Let(X,f)and(Y,g)be two dynamical systems and f,g be semi-conjugate.If(X,f)has WSP,so does(Y,g).

    Proof Let φ :X → Y be the semi-conjugate map from f to g.For any ε>0,there exists δ>0 such that d1(φ(x),φ(y))< ε for all x,y ∈ X with d(x,y)< δ.Let Nδbe such a positive integer corresponding to δ as in the Definition of WSP.For the above ε,take Nε=Nδ>0.Then for any y1,y2∈ Y,there exist x1,x2∈ X such that φ(x1)=y1, φ(x2)=y2.For any sequence 0=j1≤k1

    Let w=φ(z),then

    Thus(Y,g)has WSP.

    Proposition 3.2 Let(X,f)and(Y,g)be two dynamical systems.If(X,f)and(Y,g)have WSP,then(X×Y,f×g)has WSP.

    Proof For any ε>0,letbe such positive integers given by WSP of(X,f)and(Y,g),respectively.TakeFor anyand any sequencewiththere existsuch that for each positive integer m=1,2 and all integers i with,the following conditions hold:

    for all integers j withThereforehas WSP.

    Remark 3.1 Propositions 3.1–3.3 are also true for QWSP and SWSP.

    Next we list two lemmas,which are helpful for the proofs of our main results.

    Lemma 3.1(see[8])Suppose that there exists x ∈ X such that ω(x,f)=X,then f is strongly mixing if and only if for any ε>0 there is N>0 such that

    for all n≥N.

    Lemma 3.2 Let(X,f)be a dynamical system.If ?(f)=X,then f is surjective.

    Proof The proof is simple,so we omit it.

    As is well known that a dynamical system with WSP is strongly mixing,how about the converse?The following Theorem 3.1 shows that the converse may not be true.

    Lemma 3.3 Let(X,f)be a dynamical system,then(X,f)has QWSP if and only if f is strongly mixing.

    Proof First,we prove the necessity.

    Let U,V ?X be any nonempty open sets,then there existsuch that B(x,δ0) ? U andLet Nδ0be such a positive integer corresponding to δ0as appears in the Definition of QWSP.Since f is surjective,for anythere exists z∈X such that y=fn(z).By the Definition of QWSP,there is r∈ X such that d(r,x)< δ0andThuswhich implies that f is strongly mixing.

    Next,we prove the sufficiency.

    Since f is strongly mixing,?(f)=X.By Lemma 3.2,f is surjective.

    Theorem 3.2 Let(X,f)be a dynamical system,then the following statements are equivalent:

    (1)f is strongly mixing;

    (2)(X,f)has QWSP;

    (3)(X,f)has SWSP.

    Proof By Lemma 3.3,(X,f)has QWSP if and only if f is strongly mixing,and by Lemma 3.4,we have that if(X,f)has SWSP,then f is strongly mixing.Thus,we only need to prove that(X,f)has SWSP if(X,f)has QWSP.

    Suppose that(X,f)has QWSP.For any δ>0,let Nδbe such a positive integer corresponding to δ as appears in the Definition of QWSP.For any two points y1,y2and any sequenceby the surjective property of f,there exist y3,y4such thatLetSince(X,f)has QWSP,there exists z∈ X such thatδ andNote that f is surjective,then there is z1∈X such thatThus

    Hence(X,f)has SWSP.

    Remark 3.3 By the main results of this paper,one can deduce that both QWSP and SWSP are strictly weaker than WSP.

    Remark 3.4 In particular,WSP,QWSP,SWSP and strongly mixing are equivalent for the case of interval maps.And we believe that WSP,QWSP,SWSP and strongly mixing are equivalent for the case of sub-shifts of finite type.

    AcknowledgementThe authors are grateful to the referee for his(her)critical remarks leading to improvement of the presentation of the work.

    [1]Buzzi,J.,Specification on the interval,Tran.Amer.Soc.,349,1997,2737–2754.

    [2]Bowen,R.,Topological entropy and axiom A,in:Global Analysis,Berkeley,CA,1968,in:Proc.Sympos.Pure Math.,vol.XIV,Amer.Math.Soc.,Providence,RI,1970,23–41.

    [3]Denker,M.,Grillenberger,C.and Sigmund,K.,Ergodic theory on compact spaces,Lecture Notes in Math.,vol.527,Springer-Verlag,Berlin,1976.

    [4]Lampart,M.and Oprocha,P.,Shift spaces,ω-chaos and specification property,Topology and Its Applications,156,2009,2979–2985.

    [5]Oprocha,P.and Stefankova,M.,Specification property and distributional chaos almost everywhere,Proc.Amer.Math.Soc.,136,2008,3931–3940.

    [6]Sigmund,K.,On dynamical systems with the specification property,Trans.Amer.Math.Soc.,190,1974,285–299.

    [7]Yamamoto,K.,On the weaker forms of the specification property and their application,Proc.Amer.Math.Soc.,137,2009,3807–3814.

    [8]Zhou,Z.L.,Yin,J.D.and Xu,S.Y.,Topological Dynamical System-From Topological Method to Ergodic Theory Method,Science Press,Beijing,2011(in Chinese).

    国产精品人妻久久久久久| 国产老妇伦熟女老妇高清| av又黄又爽大尺度在线免费看 | 99视频精品全部免费 在线| 国产在视频线在精品| 男人的好看免费观看在线视频| 亚洲精品色激情综合| 精品不卡国产一区二区三区| videos熟女内射| 99在线视频只有这里精品首页| 欧美性猛交黑人性爽| 亚洲精品亚洲一区二区| 国产伦在线观看视频一区| 国产精品永久免费网站| 男插女下体视频免费在线播放| 麻豆国产97在线/欧美| 亚洲精品,欧美精品| 麻豆成人av视频| 精品99又大又爽又粗少妇毛片| 人妻系列 视频| 久久精品国产亚洲网站| 国产高清视频在线观看网站| 日韩人妻高清精品专区| 亚洲成av人片在线播放无| 尤物成人国产欧美一区二区三区| 日韩 亚洲 欧美在线| 成人无遮挡网站| 久久久久久国产a免费观看| 大话2 男鬼变身卡| 九九在线视频观看精品| 色5月婷婷丁香| 亚洲人成网站在线播| 晚上一个人看的免费电影| 久久精品国产亚洲网站| videossex国产| 观看美女的网站| 中国国产av一级| 亚洲自偷自拍三级| 久久99热这里只有精品18| 亚洲精品,欧美精品| 精品国产一区二区三区久久久樱花 | 国产精品国产三级专区第一集| 国产日韩欧美在线精品| 少妇熟女欧美另类| 国产精品久久久久久av不卡| 色哟哟·www| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区精品小视频在线| 欧美精品一区二区大全| 日韩在线高清观看一区二区三区| 亚洲不卡免费看| 日韩 亚洲 欧美在线| 一区二区三区免费毛片| 日韩强制内射视频| 亚洲综合色惰| 神马国产精品三级电影在线观看| 国产白丝娇喘喷水9色精品| 大又大粗又爽又黄少妇毛片口| 一级av片app| 中文乱码字字幕精品一区二区三区 | 亚洲欧美精品自产自拍| 亚洲av二区三区四区| 老女人水多毛片| 国产v大片淫在线免费观看| 91精品国产九色| 老司机福利观看| 中文字幕免费在线视频6| 久久午夜福利片| av又黄又爽大尺度在线免费看 | 国产国拍精品亚洲av在线观看| 久久久精品94久久精品| 日韩成人av中文字幕在线观看| 一夜夜www| 亚洲18禁久久av| av免费在线看不卡| 国产精品人妻久久久影院| 成年女人永久免费观看视频| 欧美激情久久久久久爽电影| 一级毛片aaaaaa免费看小| 欧美变态另类bdsm刘玥| 亚洲人成网站在线观看播放| 免费观看精品视频网站| 特大巨黑吊av在线直播| 国产美女午夜福利| 午夜福利视频1000在线观看| 国产亚洲最大av| 午夜福利高清视频| 国产黄片美女视频| 中文字幕制服av| 成人无遮挡网站| 91av网一区二区| 久久热精品热| av天堂中文字幕网| 欧美激情国产日韩精品一区| 久久这里有精品视频免费| 亚洲天堂国产精品一区在线| 久久草成人影院| 亚洲国产精品成人久久小说| 一级毛片我不卡| 中国国产av一级| 国产黄a三级三级三级人| 国产男人的电影天堂91| 婷婷色综合大香蕉| 国产av在哪里看| 国内精品美女久久久久久| 国产黄片美女视频| 日本黄大片高清| 国产一级毛片七仙女欲春2| 久久久久久久久久成人| 免费观看精品视频网站| 免费人成在线观看视频色| 日韩欧美国产在线观看| 18禁动态无遮挡网站| a级毛色黄片| 桃色一区二区三区在线观看| 国产视频内射| 成人美女网站在线观看视频| 国产精品不卡视频一区二区| 亚洲丝袜综合中文字幕| 国产亚洲av片在线观看秒播厂 | www.色视频.com| 91av网一区二区| 波多野结衣高清无吗| 成年女人看的毛片在线观看| av福利片在线观看| 色5月婷婷丁香| 日韩一区二区视频免费看| 亚洲av成人精品一区久久| 91精品国产九色| 久久精品久久久久久久性| 欧美色视频一区免费| 美女cb高潮喷水在线观看| 男人和女人高潮做爰伦理| 嫩草影院入口| 六月丁香七月| 岛国在线免费视频观看| 国产精华一区二区三区| 午夜爱爱视频在线播放| 久久精品久久久久久久性| 2021少妇久久久久久久久久久| 一区二区三区四区激情视频| 视频中文字幕在线观看| 综合色av麻豆| 色综合站精品国产| 有码 亚洲区| 久久人人爽人人爽人人片va| 国产一区亚洲一区在线观看| 久久久久久久久久黄片| 亚洲国产精品专区欧美| 亚洲一级一片aⅴ在线观看| 九色成人免费人妻av| 一个人免费在线观看电影| 国产黄片视频在线免费观看| 九九热线精品视视频播放| 青春草亚洲视频在线观看| 69av精品久久久久久| 免费观看的影片在线观看| 在现免费观看毛片| 国产亚洲av嫩草精品影院| 一边摸一边抽搐一进一小说| 亚洲五月天丁香| 欧美激情在线99| 69人妻影院| 日本av手机在线免费观看| 淫秽高清视频在线观看| 亚洲国产欧美人成| 高清av免费在线| 床上黄色一级片| 亚洲av福利一区| 尾随美女入室| 可以在线观看毛片的网站| 十八禁国产超污无遮挡网站| kizo精华| 老司机影院毛片| 亚洲精品自拍成人| 男的添女的下面高潮视频| 国产女主播在线喷水免费视频网站 | 亚洲欧美清纯卡通| 一级毛片我不卡| 成人午夜高清在线视频| 最近最新中文字幕免费大全7| 久久久久久久久大av| 国产一区二区三区av在线| 日韩一本色道免费dvd| 欧美精品一区二区大全| 日本-黄色视频高清免费观看| 久久99蜜桃精品久久| 2021天堂中文幕一二区在线观| 色噜噜av男人的天堂激情| 国产精品人妻久久久影院| 亚洲av福利一区| 国产黄a三级三级三级人| 狠狠狠狠99中文字幕| 免费搜索国产男女视频| 美女内射精品一级片tv| 亚洲成人久久爱视频| 欧美成人精品欧美一级黄| 欧美97在线视频| 亚洲av中文字字幕乱码综合| 国产一级毛片在线| 亚洲欧美精品综合久久99| 99热这里只有精品一区| 又爽又黄a免费视频| 99热这里只有是精品50| 赤兔流量卡办理| 成年av动漫网址| 蜜桃久久精品国产亚洲av| 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区免费观看| 亚洲精品乱码久久久久久按摩| 欧美bdsm另类| 亚洲综合色惰| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇人妻一区二区三区视频| 99久久精品热视频| 男人舔女人下体高潮全视频| 日韩欧美三级三区| 成人漫画全彩无遮挡| 欧美xxxx黑人xx丫x性爽| 午夜激情福利司机影院| 成人二区视频| 亚洲国产精品久久男人天堂| 中文字幕av在线有码专区| 看黄色毛片网站| 黄色配什么色好看| 日本-黄色视频高清免费观看| 欧美日韩综合久久久久久| 欧美日本亚洲视频在线播放| 国产亚洲91精品色在线| 99久久无色码亚洲精品果冻| 欧美3d第一页| 黄色欧美视频在线观看| 联通29元200g的流量卡| 国产亚洲精品av在线| 岛国毛片在线播放| 小说图片视频综合网站| 91久久精品电影网| 中文欧美无线码| 婷婷六月久久综合丁香| 国产一区亚洲一区在线观看| or卡值多少钱| 毛片一级片免费看久久久久| 午夜福利视频1000在线观看| 51国产日韩欧美| 国产精品久久久久久久久免| av在线老鸭窝| 亚洲无线观看免费| 网址你懂的国产日韩在线| 亚洲电影在线观看av| 久久精品人妻少妇| 国产不卡一卡二| 97超视频在线观看视频| 国产亚洲最大av| 久久韩国三级中文字幕| 99在线视频只有这里精品首页| 干丝袜人妻中文字幕| 国产精品永久免费网站| 亚洲丝袜综合中文字幕| 欧美区成人在线视频| 日本黄大片高清| 日韩欧美精品v在线| АⅤ资源中文在线天堂| 精品久久久久久久末码| 老司机福利观看| 高清视频免费观看一区二区 | av在线老鸭窝| 国产成人freesex在线| 久久久久久九九精品二区国产| 黄片无遮挡物在线观看| 美女国产视频在线观看| 日日啪夜夜撸| av国产免费在线观看| 日韩三级伦理在线观看| 美女xxoo啪啪120秒动态图| 97热精品久久久久久| 亚洲欧美一区二区三区国产| 亚洲久久久久久中文字幕| 美女被艹到高潮喷水动态| 亚洲性久久影院| 精品不卡国产一区二区三区| 日韩av不卡免费在线播放| 久久精品久久久久久噜噜老黄 | 91精品国产九色| 黄色欧美视频在线观看| 日韩欧美在线乱码| 观看免费一级毛片| 少妇的逼水好多| 三级男女做爰猛烈吃奶摸视频| 不卡视频在线观看欧美| 亚洲在久久综合| 麻豆成人av视频| 欧美不卡视频在线免费观看| 国产高潮美女av| 黑人高潮一二区| 免费观看性生交大片5| 一级黄片播放器| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| 99热这里只有是精品50| 久久精品国产亚洲av涩爱| 22中文网久久字幕| 亚洲av.av天堂| 日韩成人av中文字幕在线观看| 久99久视频精品免费| 最近最新中文字幕大全电影3| 国产成人freesex在线| 日日啪夜夜撸| 变态另类丝袜制服| 丰满少妇做爰视频| 亚洲精品456在线播放app| 真实男女啪啪啪动态图| 人人妻人人澡人人爽人人夜夜 | 国产精品野战在线观看| 伦理电影大哥的女人| 国产精品福利在线免费观看| 国产精品精品国产色婷婷| 嘟嘟电影网在线观看| 波多野结衣巨乳人妻| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 日本欧美国产在线视频| 国产在视频线在精品| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区三区人妻视频| 国产 一区精品| 国产精品一及| 久久综合国产亚洲精品| 在现免费观看毛片| 亚洲国产精品久久男人天堂| 高清视频免费观看一区二区 | 国产精品国产高清国产av| 婷婷色综合大香蕉| 国产视频首页在线观看| 午夜爱爱视频在线播放| 亚洲三级黄色毛片| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 午夜激情福利司机影院| av黄色大香蕉| 日韩,欧美,国产一区二区三区 | 毛片一级片免费看久久久久| 美女高潮的动态| 日韩在线高清观看一区二区三区| 91久久精品电影网| 国产av不卡久久| 美女cb高潮喷水在线观看| 国产乱人偷精品视频| 国产精品国产高清国产av| 欧美bdsm另类| 亚洲av熟女| 日韩 亚洲 欧美在线| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说 | 99在线视频只有这里精品首页| 十八禁国产超污无遮挡网站| 欧美不卡视频在线免费观看| 高清日韩中文字幕在线| 久久久久网色| 人人妻人人看人人澡| 亚洲av日韩在线播放| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 国产成人午夜福利电影在线观看| 午夜福利在线观看免费完整高清在| 亚洲综合色惰| 99久国产av精品国产电影| 亚洲av成人精品一区久久| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 亚洲四区av| 成人美女网站在线观看视频| 国产精品1区2区在线观看.| 色噜噜av男人的天堂激情| 天美传媒精品一区二区| 干丝袜人妻中文字幕| 亚洲无线观看免费| 亚洲真实伦在线观看| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| a级一级毛片免费在线观看| 边亲边吃奶的免费视频| 国产亚洲91精品色在线| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 国内精品美女久久久久久| 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 亚洲国产欧美在线一区| 1024手机看黄色片| 久久亚洲国产成人精品v| 日日啪夜夜撸| 欧美一区二区亚洲| 人妻系列 视频| 欧美人与善性xxx| 国内精品美女久久久久久| 九九热线精品视视频播放| 蜜桃亚洲精品一区二区三区| 岛国毛片在线播放| 99久久中文字幕三级久久日本| 亚洲欧美日韩高清专用| av在线老鸭窝| 22中文网久久字幕| 免费看美女性在线毛片视频| 中文字幕制服av| 成年女人看的毛片在线观看| 99久久中文字幕三级久久日本| 成人性生交大片免费视频hd| 人人妻人人看人人澡| 最新中文字幕久久久久| 午夜福利在线观看吧| 国产高清三级在线| 波多野结衣高清无吗| 免费搜索国产男女视频| 亚洲不卡免费看| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 日韩一区二区三区影片| 高清视频免费观看一区二区 | av福利片在线观看| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 日韩人妻高清精品专区| 亚洲av电影在线观看一区二区三区 | 直男gayav资源| 插逼视频在线观看| 亚洲av福利一区| 熟女人妻精品中文字幕| 国产激情偷乱视频一区二区| 蜜臀久久99精品久久宅男| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| av天堂中文字幕网| 亚洲av福利一区| 中文字幕精品亚洲无线码一区| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄 | 熟妇人妻久久中文字幕3abv| 亚洲av免费在线观看| 久99久视频精品免费| 老司机影院毛片| 久久久久久大精品| 免费看日本二区| 国产精品1区2区在线观看.| 久久久久久久久久黄片| 水蜜桃什么品种好| 搞女人的毛片| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区 | 久久精品国产亚洲网站| 成人亚洲精品av一区二区| 久久精品91蜜桃| 国产一区二区亚洲精品在线观看| 国产片特级美女逼逼视频| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 美女内射精品一级片tv| 国产色婷婷99| 神马国产精品三级电影在线观看| 国产高清有码在线观看视频| 国产免费又黄又爽又色| 久久国产乱子免费精品| 久久久久网色| www.av在线官网国产| 成人特级av手机在线观看| 久久精品国产鲁丝片午夜精品| 国产高潮美女av| 岛国在线免费视频观看| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 欧美成人一区二区免费高清观看| 99热精品在线国产| 日本午夜av视频| 好男人在线观看高清免费视频| 高清视频免费观看一区二区 | 91aial.com中文字幕在线观看| 亚洲精品国产av成人精品| 国产伦一二天堂av在线观看| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 你懂的网址亚洲精品在线观看 | 国产在线男女| av免费在线看不卡| 超碰97精品在线观看| 亚洲成人av在线免费| 中国国产av一级| 国产高清三级在线| 欧美日韩精品成人综合77777| 在线免费十八禁| 国产精品国产高清国产av| 淫秽高清视频在线观看| 亚洲av成人精品一区久久| 亚洲成人中文字幕在线播放| 插阴视频在线观看视频| 国产精品不卡视频一区二区| 久久精品国产自在天天线| 亚洲四区av| 日本熟妇午夜| 亚洲18禁久久av| 国产精品久久久久久精品电影小说 | 我要搜黄色片| 午夜精品一区二区三区免费看| 国产午夜精品久久久久久一区二区三区| 久久午夜福利片| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 天堂中文最新版在线下载 | 国内精品宾馆在线| 亚洲成色77777| 青青草视频在线视频观看| 成人美女网站在线观看视频| 最新中文字幕久久久久| 建设人人有责人人尽责人人享有的 | or卡值多少钱| 久久国内精品自在自线图片| 尾随美女入室| 亚洲精品色激情综合| 亚洲不卡免费看| 午夜福利高清视频| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 寂寞人妻少妇视频99o| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 自拍偷自拍亚洲精品老妇| 中文乱码字字幕精品一区二区三区 | 乱系列少妇在线播放| 99视频精品全部免费 在线| av视频在线观看入口| 久久亚洲国产成人精品v| 国产精品一区二区三区四区久久| 亚洲国产精品国产精品| 久久精品夜夜夜夜夜久久蜜豆| 日韩一区二区三区影片| 国产精品一区二区三区四区免费观看| 日韩强制内射视频| 国产探花在线观看一区二区| 国产成人免费观看mmmm| 欧美另类亚洲清纯唯美| ponron亚洲| 久久精品久久精品一区二区三区| 午夜免费男女啪啪视频观看| 有码 亚洲区| 国产探花在线观看一区二区| 我的女老师完整版在线观看| 国产一级毛片在线| 国产乱人视频| 久久久色成人| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 色综合色国产| 69人妻影院| 欧美+日韩+精品| av在线天堂中文字幕| 国产午夜精品一二区理论片| 丰满人妻一区二区三区视频av| 老司机福利观看| 亚洲精品,欧美精品| 欧美色视频一区免费| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 国产亚洲av片在线观看秒播厂 | 亚洲在线自拍视频| 日韩制服骚丝袜av| 免费看日本二区| 国产午夜精品久久久久久一区二区三区| 国产精品美女特级片免费视频播放器| 天堂中文最新版在线下载 | 建设人人有责人人尽责人人享有的 | 国产国拍精品亚洲av在线观看| 亚洲av电影不卡..在线观看| 人人妻人人澡欧美一区二区| 亚洲欧美一区二区三区国产| 一区二区三区高清视频在线| 国产精品熟女久久久久浪| 亚洲欧美精品自产自拍| 亚洲va在线va天堂va国产| 国语自产精品视频在线第100页| 91久久精品国产一区二区成人| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 小蜜桃在线观看免费完整版高清| 有码 亚洲区| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 最近最新中文字幕免费大全7| 99久久人妻综合| 国产精品av视频在线免费观看| 中文字幕免费在线视频6| 看非洲黑人一级黄片| 老司机福利观看| 91av网一区二区| 久久草成人影院| 免费观看a级毛片全部| 老司机福利观看| eeuss影院久久| 中文字幕制服av| 免费播放大片免费观看视频在线观看 | 亚洲婷婷狠狠爱综合网| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕|