竇 超,張 敏,趙源征,郭亞培,吳世陶,劉恒方
(鄭州大學(xué)第五附屬醫(yī)院神經(jīng)內(nèi)科,鄭州 450000)
甲狀腺激素T3對(duì)大鼠腦缺血再灌注損傷后NGF和BDNF表達(dá)的影響研究*
竇 超,張 敏,趙源征,郭亞培,吳世陶,劉恒方△
(鄭州大學(xué)第五附屬醫(yī)院神經(jīng)內(nèi)科,鄭州 450000)
目的 探討甲狀腺激素T3對(duì)大鼠腦缺血再灌注損傷的神經(jīng)保護(hù)作用及機(jī)制。方法 雄性SD大鼠分為假手術(shù)+生理鹽水組、假手術(shù)+T3組、大腦中動(dòng)脈栓塞(MCAO)+生理鹽水組、MCAO+T3組。應(yīng)用MCAO法建立大鼠腦缺血再灌注損傷模型,分別于缺血后1 h及再灌注后6 h給予腹腔注射甲狀腺激素10 μg/100 g,生理鹽水為安慰劑。再灌注24 h后,觀察不同組別大鼠神經(jīng)功能損傷情況,梗死體積變化,以及缺血側(cè)腦皮質(zhì)中神經(jīng)生長(zhǎng)因子(NGF)和腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)的mRNA及蛋白表達(dá)水平變化。結(jié)果 與MCAO+生理鹽水組比較,MCAO+T3組大鼠神經(jīng)功能缺損表現(xiàn)減輕,腦梗死體積減小,NGF、BDNF的mRNA和蛋白表達(dá)上升(P<0.05)。結(jié)論 甲狀腺激素對(duì)大鼠腦缺血再灌注損傷有神經(jīng)保護(hù)作用,其機(jī)制與增加腦缺血再灌注損傷中NGF、BDNF的表達(dá)相關(guān)。
腦缺血;再灌注損傷;甲狀腺激素類(lèi);神經(jīng)生長(zhǎng)因子;神經(jīng)保護(hù)作用;腦源性神經(jīng)營(yíng)養(yǎng)因子
缺血性腦血管病是目前威脅人類(lèi)健康與生存的主要疾病之一。及時(shí)恢復(fù)腦組織血液供應(yīng)是修復(fù)腦組織損傷的最佳辦法,但缺血后血流再通又可能導(dǎo)致缺血再灌注損傷,因此減輕再灌注損傷并促進(jìn)腦缺血后神經(jīng)功能恢復(fù)已成為目前研究熱點(diǎn)之一[1]。研究發(fā)現(xiàn),腦缺血后,神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)和腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)水平增加,通過(guò)激活不同的信號(hào)系統(tǒng),促進(jìn)受損神經(jīng)元再生及分化,改善神經(jīng)元的病理狀態(tài)[2-3]。甲狀腺激素在嬰幼兒神經(jīng)系統(tǒng)發(fā)育成熟的過(guò)程中至關(guān)重要[4]。近年來(lái),人們發(fā)現(xiàn)其對(duì)成年甚至老年期中樞神經(jīng)系統(tǒng)亦有至關(guān)重要的作用[5-6]。Mendes-De-Aguiard等[7]將甲狀腺激素T3加入培養(yǎng)的膠質(zhì)細(xì)胞中發(fā)現(xiàn),T3可增加其對(duì)抗高濃度谷氨酸毒性的能力,并增加與膠質(zhì)細(xì)胞共培養(yǎng)神經(jīng)元的存活率,可見(jiàn)T3對(duì)培養(yǎng)的神經(jīng)元有保護(hù)作用。但對(duì)T3在腦缺血再灌注損傷中的作用研究較少。本實(shí)驗(yàn)通過(guò)研究T3對(duì)腦缺血再灌注大鼠腦組織中NGF和BDNF表達(dá)的影響,探討T3對(duì)腦缺血再灌注損傷是否存在保護(hù)作用及其機(jī)制,現(xiàn)報(bào)道如下。
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物 SPF級(jí)成年SD大鼠32只,雄性,8周,體質(zhì)量250~280 g,由鄭州大學(xué)實(shí)驗(yàn)動(dòng)物中心提供。
1.1.2 主要試劑 T3購(gòu)自美國(guó)Sigma公司;兔抗神經(jīng)生長(zhǎng)因子抗體(anti-NGF)和兔抗腦源性神經(jīng)營(yíng)養(yǎng)因子抗體(anti-BDNF)購(gòu)自英國(guó)abcam公司;兔抗β-actin抗體、辣根過(guò)氧化物酶(HRP)標(biāo)記山羊抗兔二抗購(gòu)自美國(guó)CST公司;Trizol購(gòu)自美國(guó)Invitrogen公司;NGF、BDNF及β-肌動(dòng)蛋白(β-actin)引物由上海捷瑞生物工程有限公司合成;Western blot相關(guān)試劑購(gòu)自中國(guó)博士德公司;HotStarTaq Master Mix試劑盒購(gòu)自德國(guó)Qiagen公司;TaqMan Reverse Transcription Reagents試劑盒購(gòu)自加拿大Abm公司;紅四氮唑(TTC)購(gòu)自美國(guó)Sigma公司;其余試劑為國(guó)產(chǎn)分析純?cè)噭?/p>
1.1.3 主要儀器 Nonodrop超微量分光光度計(jì)和CL31.1R低溫超速離心機(jī)購(gòu)自美國(guó)Thermo公司;普通/梯度PCR儀購(gòu)自德國(guó)Eppendorf公司;DYY-6C水平電泳儀購(gòu)自北京市六一儀器廠;Mini-PROTEAN Tetra蛋白垂直電泳儀購(gòu)自美國(guó)BIO-RAD公司;Amersham Imager 600化學(xué)發(fā)光成像系統(tǒng)購(gòu)自美國(guó)GE公司。
1.2 方法
1.2.1 實(shí)驗(yàn)分組及給藥 將32只SD大鼠分為4組,每組8只。分別為:假手術(shù)+生理鹽水組、假手術(shù)+T3組、大腦中動(dòng)脈栓塞(MCAO)+生理鹽水組、MCAO+T3組。分別于缺血后1 h及再灌注后6 h腹腔注射T3 10 μg/100 g,以及等量生理鹽水。
1.2.2 大鼠腦缺血再灌注模型制備 根據(jù)改良的Longa法通過(guò)MCAO制備腦缺血再灌注損傷模型[8]。大鼠用10%水合氯醛(30 mg/100 g)腹腔注射麻醉,仰臥位固定,常規(guī)消毒,頸部正中切口。分離右側(cè)頸總、頸外及頸內(nèi)動(dòng)脈,結(jié)扎頸總及頸外動(dòng)脈,頸內(nèi)動(dòng)脈遠(yuǎn)心端用動(dòng)脈夾夾閉后,在頸總動(dòng)脈分叉距頸內(nèi)動(dòng)脈0.5 cm處作1個(gè)切口,將尼龍線導(dǎo)入頸內(nèi)動(dòng)脈,插入線栓深度約為(18.0±0.5)mm,感到輕微阻力時(shí)立即停止插線??p合傷口,留置線頭于體外,2 h后將線栓提至頸總動(dòng)脈內(nèi),完成再灌注。假手術(shù)各組采用相同的手術(shù)步驟,但不插入線栓。術(shù)后將室溫控制在22~25 ℃,將動(dòng)物置于放有清潔墊料的鼠籠中,自由進(jìn)食、水。
1.2.3 大鼠神經(jīng)功能評(píng)分 參照Longa等[8]的5分制評(píng)分標(biāo)準(zhǔn)進(jìn)行神經(jīng)行為學(xué)評(píng)分:(1)無(wú)神經(jīng)功能缺失癥狀、活動(dòng)正常者,0分;(2)不能完全伸展左側(cè)前爪,1分;(3)動(dòng)物爬行時(shí)出現(xiàn)向左轉(zhuǎn)圈(追尾現(xiàn)象),2分;(4)身體向左側(cè)傾倒者,3分;(5)不能自發(fā)行走,意識(shí)喪失者,4分。評(píng)分為0分和4分者均被剔除,神經(jīng)功能評(píng)價(jià)在再灌注后24 h取材前進(jìn)行。
1.2.4 2,3,5-氯化三苯基四氮唑(TTC)染色梗死體積測(cè)量 神經(jīng)行為學(xué)評(píng)分完成后,斷頭取腦,-20 ℃速凍30 min,從額極后2 mm處行連續(xù)冠狀切片,厚2 mm。將切片放入2%TTC溶液中,37 ℃避光染色30 min后,用4%多聚甲醛固定24 h后拍照,正常腦組織染色后呈鮮紅色,而梗死區(qū)呈蒼白色。采用圖像分析系統(tǒng)計(jì)算梗死面積,將各腦片的梗死面積與厚度的乘積進(jìn)行累加,獲得梗死體積。
1.2.5 RT-PCR技術(shù)
1.2.5.1 引物設(shè)計(jì) 根據(jù)大鼠基因組序列設(shè)計(jì)引物,由上海捷瑞生物工程有限公司合成,見(jiàn)表1。
1.2.5.2 RT-PCR 取缺血側(cè)皮層腦組織置于1.5 mL RNA-free EP管中,利用TRIzol法提取總RNA,紫外分光光度計(jì)測(cè)定RNA水平,采用TaqMan Reverse Transcription Reagents試劑盒將mRNA反轉(zhuǎn)錄成cDNA。取反轉(zhuǎn)錄產(chǎn)物采用HotStarTaq Master Mix試劑盒進(jìn)行PCR反應(yīng)擴(kuò)增目的基因。所有PCR擴(kuò)增產(chǎn)物均進(jìn)行瓊脂糖凝膠電泳,以β-actin為內(nèi)參照,觀測(cè)其表達(dá)水平變化。
1.2.6 Western blot檢測(cè) 取缺血側(cè)皮層腦組織,置于組織勻漿器中,加入適量RIPA蛋白提取裂解液,置于冰上低溫勻漿裂解。裂解完全后,將裂解液移至1.5 mL EP管中,12 000 r/min,4 ℃離心10 min,取上清液,置于-80 ℃保存。二喹啉甲酸 (BCA)試劑盒測(cè)定蛋白濃度后,按相同蛋白濃度等量體積依次上樣。十二烷基硫酸鈉-聚丙烯酰胺(SDS-PAGE)凝膠電泳分離蛋白后,轉(zhuǎn)移到聚偏二氟乙烯(PVDF)膜,然后用5%脫脂牛奶室溫封閉1 h,之后4 ℃過(guò)夜孵育特異性兔抗NGF(1∶1 000)、兔抗BDNF(1∶1 000)、兔抗β-actin(1∶1 000)、TBST洗膜3次后,HRP標(biāo)記山羊抗兔二抗(1:1 000)室溫孵育1 h后,電化學(xué)發(fā)光(ECL)顯色,Amersham Imager 600化學(xué)發(fā)光成像系統(tǒng)成像。以β-actin為內(nèi)參,用Image J圖像處理系統(tǒng)分析蛋白條帶的相對(duì)灰度值,觀測(cè)不同組別目的蛋白表達(dá)水平變化。
2.1 T3對(duì)腦缺血再灌注大鼠神經(jīng)行為學(xué)評(píng)分的影響 大鼠腦缺血再灌注損傷24 h后,假手術(shù)+生理鹽水組和假手術(shù)+T3組均無(wú)神經(jīng)功能缺損表現(xiàn),Longa評(píng)分0分;MCAO+生理鹽水組大鼠可見(jiàn)明顯的左側(cè)偏癱樣表現(xiàn),左側(cè)追尾,軀體向左側(cè)傾倒,Longa評(píng)分(2.71±0.56)分,明顯高于假手術(shù)各組(P<0.05);MCAO+T3組神經(jīng)功能缺損表現(xiàn)減輕,Longa評(píng)分(1.63±0.58)分,較MCAO+生理鹽水組降低(P<0.05)。
2.2 T3對(duì)腦缺血再灌注大鼠腦梗死體積的影響 大鼠腦缺血再灌注損傷24 h后,假手術(shù)+生理鹽水組和假手術(shù)+T3組TTC染色呈均勻橘紅色,無(wú)缺血梗死灶。MCAO+生理鹽水組和MCAO+T3組腦組織均有不同程度的缺血梗死,TTC染色可見(jiàn)梗死灶成白色,周邊組織呈橘紅色。與MCAO+生理鹽水組[(45.12±2.32)%]相比,[MCAO+T3組(26.36±1.04)%]大鼠的腦梗死體積百分比減少(P<0.05),見(jiàn)圖1。
A:MCAO+生理鹽水組;B:MCAO+T3組。
圖1 腦缺血再灌注大鼠腦組織TTC染色
2.3 T3對(duì)腦缺血再灌注大鼠腦組織NGF和BDNF mRNA表達(dá)水平的影響 與假手術(shù)+生理鹽水組和假手術(shù)+T3組相比,MCAO+生理鹽水組大鼠NGF和BDNF mRNA水平均增加(P<0.05);而與MCAO+生理鹽水組相比,MCAO+T3組大鼠NGF和BDNF mRNA水平進(jìn)一步升高(P<0.05),見(jiàn)圖2。
A:NGF mRNA;B:BDNF mRNA。*:P<0.05,與假手術(shù)+生理鹽水組比較;#:P<0.05,與MCAO+生理鹽水組比較。
圖2 各組大鼠腦組織NGF和BDNF mRNA水平
2.4 T3對(duì)腦缺血再灌注大鼠腦組織NGF和BDNF蛋白表達(dá)水平的影響 與假手術(shù)+生理鹽水組和假手術(shù)+T3組相比,MCAO+生理鹽水組大鼠NGF和BDNF蛋白表達(dá)水平均增加(P<0.05);而與MCAO+生理鹽水組相比,MCAO+T3組大鼠NGF和BDNF表達(dá)水平進(jìn)一步升高(P<0.05),見(jiàn)圖3。
A:NGF蛋白;B:BDNF蛋白。*:P<0.05,與假手術(shù)+生理鹽水組比較;#:P<0.05,與MCAO+生理鹽水組比較。
圖3 各組大鼠腦組織NGF和BDNF蛋白表達(dá)水平
腦血管病是目前危害人類(lèi)健康的常見(jiàn)病之一,其中80%約為缺血性腦血管病。本研究通過(guò)MCAO建立局灶性腦缺血再灌注大鼠模型,觀察甲狀腺激素對(duì)大鼠腦缺血再灌注損傷的神經(jīng)保護(hù)作用,結(jié)果顯示,甲狀腺激素T3對(duì)腦缺血再灌注損傷有保護(hù)作用,可減輕缺血再灌注損傷所致神經(jīng)缺損表現(xiàn),減少梗死體積,保護(hù)受損神經(jīng)元,促進(jìn)神經(jīng)元再生等作用。同時(shí)發(fā)現(xiàn),T3的這種神經(jīng)保護(hù)作用與增加腦組織中NGF和BDNF的表達(dá)水平,促進(jìn)新生神經(jīng)元再生相關(guān)。
腦缺血再灌注損傷所致局部梗死灶主要由中心壞死區(qū)和周邊缺血半暗帶組成[9-10]。缺血早期,中心區(qū)的神經(jīng)元壞死,神經(jīng)功能完全喪失;而周邊區(qū)神經(jīng)元暫時(shí)處于休眠狀態(tài)[11-12],只要盡早恢復(fù)其血供,即可及時(shí)修復(fù)受損細(xì)胞。NGF和BDNF均屬于神經(jīng)生長(zhǎng)因子家族,在中樞神經(jīng)發(fā)育過(guò)程至關(guān)重要[13-14]。Tongiorgi等[15]發(fā)現(xiàn),多發(fā)性硬化癥患者中,BDNF可通過(guò)激活PI3K-Akt信號(hào)通路,維持神經(jīng)元生存。Li等[16]發(fā)現(xiàn),局灶性腦缺血后,BDNF通過(guò)調(diào)節(jié)TrkB相關(guān)信號(hào),抑制神經(jīng)細(xì)胞凋亡,促進(jìn)神經(jīng)元再生。此外,BDNF還可通過(guò)NMDA受體及胞核鈣信號(hào)拮抗興奮性氨基酸的神經(jīng)毒性反應(yīng)[17]。據(jù)報(bào)道,NGF可作用于NMDA受體,降低細(xì)胞內(nèi)的Ca2+超載,加速自由基清除、減輕興奮性氨基酸毒性,從而保護(hù)神經(jīng)元[18]??梢?jiàn),適度增加腦組織中NGF和BDNF表達(dá)水平,對(duì)維持神經(jīng)元存活、促進(jìn)受損神經(jīng)修復(fù)、減輕神經(jīng)毒性是有利的。
甲狀腺激素,特別是T3,在哺乳動(dòng)物神經(jīng)系統(tǒng)發(fā)育成熟的過(guò)程中至關(guān)重要,它已被證實(shí)參與胚胎腦細(xì)胞的增殖分化、樹(shù)突軸突生長(zhǎng)、神經(jīng)元遷移及髓鞘形成等[4,19]。然而,其作用并不局限于幼年個(gè)體。近年來(lái),人們逐漸開(kāi)始關(guān)注甲狀腺激素對(duì)于成年動(dòng)物腦組織的影響[5-6,20]。研究發(fā)現(xiàn),成年人甲狀腺激素水平紊亂(過(guò)低或過(guò)高)會(huì)導(dǎo)致情緒障礙、癡呆或混亂[21]。慢性脫髓鞘動(dòng)物模型中,給予外源性的T3能夠促進(jìn)癥狀的緩解和髓鞘再生修復(fù)[22]。Deb等[23]發(fā)現(xiàn),甲狀腺激素可通過(guò)調(diào)節(jié)一氧化氮和pERK1/2信號(hào)通路保護(hù)星形膠質(zhì)細(xì)胞免受嗎啡誘導(dǎo)的細(xì)胞凋亡。此外,研究還發(fā)現(xiàn),T3通過(guò)一種非基因組機(jī)制,減輕神經(jīng)毒性反應(yīng)[7,24]。綜上所述,甲狀腺激素對(duì)正常中樞神經(jīng)系統(tǒng)維持及損傷神經(jīng)系統(tǒng)修復(fù)均具有保護(hù)作用,然而其在腦缺血再灌注后損傷中的作用尚未見(jiàn)報(bào)道。
因此,本研究通過(guò)大鼠腦缺血再灌注模型,觀測(cè)甲狀腺激素對(duì)腦缺血再灌注損傷的作用。結(jié)果表明,甲狀腺激素T3可通過(guò)增加腦組織中NGF和BDNF表達(dá)水平,促進(jìn)神經(jīng)元再生、修復(fù)受損神經(jīng)細(xì)胞、減輕腦梗死體積,從而對(duì)缺血再灌注大鼠起到神經(jīng)保護(hù)作用。
[1]Male S,Nickele C,Elijovich L.Critical care of brain reperfusion[J].Curr Neurol Neurosci Rep,2016,16(3):23.
[2]Fang M,Yuan Y,Lu J,et al.Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia[J].Neurochem Int,2016(97):154-171.
[3]Pendharkar AV,Levy SL,Ho AL,et al.Optogenetic modulation in stroke recovery[J].Neurosurg Focus,2016,40(5):E6.
[4]Rovet JF.The role of thyroid hormones for brain development and cognitive function[J].Endocr Dev,2014(26):26-43.
[5]Sánchez-Huerta K,García-Martínez Y,Vergara P,et al.Thyroid hormones are essential to preserve non-proliferative cells of adult neurogenesis of the dentate gyrus[J].Mol Cell Neurosci,2016(76):1-10.
[6]Hung PL,Huang CC,Huang HM,et al.Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor[J].Stroke,2013,44(8):2275-2283.
[7]Mendes-De-Aguiar CB,Alchini R,Decker H,et al.Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity[J].J Neurosci Res,2008,86(14):3117-3125.
[8]Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats[J].Stroke,1989,20(1):84.
[9]Yu Y,Han Q,Ding X,et al.Defining core and penumbra in ischemic stroke:a voxel and volume-based analysis of whole brain CT perfusion[J].Sci Rep,2016(6):20932.
[10]Lin L,Bivard A,Krishnamurthy V,et al.Whole-brain CT perfusion to quantify acute ischemic penumbra and core[J].Radiology,2016,279(3):876-887.
[11]le Feber J,Tzafi Pavlidou S,Erkamp N,et al.Progression of neuronal damage in an in vitro model of the ischemic penumbra[J].PLoS One,2016,11(2):e0147231.
[12]Hillis AE,Baron JC.Editorial:the ischemic penumbra:still the target for stroke therapies[J].Front Neurol,2015(6):85.
[13]Hernandez-Morato I,Sharma S,Pitman MJ.Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration[J].Neuroscience,2016,333(12):44-53.
[14]Lian D,He D,Wu J,et al.Exogenous BDNF increases neurogenesis in the hippocampus in experimental Streptococcus pneumoniae meningitis[J].J Neuroimmunol,2016(294):46-55.
[15]Tongiorgi E,Sartori A,Baj G,et al.Altered serum content of brain-derived neurotrophic factor isoforms in multiple sclerosis[J].J Neurol Sci,2012,320(1/2):161-165.
[16]Li X,Zheng W,Bai H,et al.Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model[J].Neuropsychiatr Dis Treat,2016(12):1287-1293.
[17]Lau D,Bengtson CP,Buchthal B,et al.BDNF Reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A[J].Cell Rep,2015,12(8):1353-1366.
[18]Wong H,Kang I,Dong XD,et al.NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors[J].Neuroscience,2014(269):232-244.
[19]Préau L,Fini JB,Morvan-Dubois G,et al.Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption[J].Biochim Biophys Acta,2015,1849(2):112-121.
[20]Remaud S,Gothié JD,Morvan-Dubois G,et al.Thyroid hormone signaling and adult neurogenesis in mammals[J].Front Endocrinol (Lausanne),2014(5):62.
[21]Leyhe T,Müssig K.Cognitive and affective dysfunctions in autoimmune thyroiditis[J].Brain Behav Immun,2014(41):261-266.
[22]El-Tahry H,Marei H,Shams A,et al.The effect of triiodothyronine on maturation and differentiation of oligodendrocyte progenitor cells during remyelination following induced demyelination in male albino rat[J].Tissue Cell,2016,48(3):242-251.
[23]Deb I,Das S.Thyroid hormones protect astrocytes from morphine-induced apoptosis by regulating nitric oxide and pERK 1/2 pathways[J].Neurochem Int,2011,58(8):861-871.
[24]Kumar BK,Reddy AG,Krishna AV,et al.Developmental neurotoxicity of monocrotophos and lead is linked to thyroid disruption[J].Vet World,2016,9(2):133-141.
The influence of thyroid hormones on the expression of NGF and BDNF after cerebral ischemia-reperfusion injury in rats*
DouChao,ZhangMin,ZhaoYuanzheng,GuoYapei,WuShitao,LiuHengfang△
(DepartmentofNeurology,theFifthAffiliatedHospitalofZhengzhouUniversity,Zhengzhou,Henan450000,China)
Objective To investigate the neuroprotective effect of thyroid hormones T3 on cerebral ischemia-reperfusion injury in rats and its mechanism.Methods SD rats were divided into four groups:sham+saline group,sham+T3 group,MCAO+saline group,MCAO+T3 group.The cerebral ischemia-reperfusion injury rat models were established by right middle cerebral artery occlusion.Thyroid hormones (10 μg/100 g) or normal saline were given respectively by intraperitoneal injection twice at 1 h after the onset of ischemia and 6 h after reperfusion.Neurobehavioral score was evaluated at 24 h after reperfusion;TTC staining was used to label infarction area;RT-PCR was used to detect the mRNA level of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in brain tissue;Western blot was employed to determine alterations in protein levels of NGF and BDNF.Results Compared with MCAO+saline group,the neurological deficit and the volume of cerebral infarction of MCAO+T3 group was decreased,and the mRNA and protein expression of NGF and BDNF of MCAO+T3 group were increased(P<0.05).Conclusion Thyroid Hormones could promote the nerve repair,stimulate the nerve regeneration and improve the nervous behavioral function by up-regulating the expression of NGF and BDNF.
brain ischemia;reperfusion injury;thyroid hormones;nerve growth factor;neuroprotective effect;brain-derived neurotrophic factor
10.3969/j.issn.1671-8348.2017.15.005
河南省醫(yī)學(xué)科技攻關(guān)計(jì)劃項(xiàng)目(16A310021)。 作者簡(jiǎn)介:竇超(1988-),住院醫(yī)師,碩士,主要從事腦血管疾病方面研究?!?/p>
,E-mail:liuhf1965@163.com。
R743.3
A
1671-8348(2017)15-2030-04
2016-11-26
2017-01-12)