• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    色视频在线一区二区三区| av在线亚洲专区| 插逼视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 下体分泌物呈黄色| 在线观看人妻少妇| 女人久久www免费人成看片| .国产精品久久| 亚洲经典国产精华液单| 人人妻人人看人人澡| 中文在线观看免费www的网站| 日日啪夜夜爽| 在线观看一区二区三区激情| 九九爱精品视频在线观看| 免费看日本二区| 亚洲国产成人一精品久久久| 国产综合懂色| 亚洲人成网站在线观看播放| 免费大片黄手机在线观看| 插逼视频在线观看| 亚洲精品自拍成人| 在线观看一区二区三区| 黑人高潮一二区| 我要看日韩黄色一级片| 欧美xxxx黑人xx丫x性爽| 国产黄色视频一区二区在线观看| 亚洲精品中文字幕在线视频 | 国产乱人视频| 自拍偷自拍亚洲精品老妇| 26uuu在线亚洲综合色| 免费电影在线观看免费观看| 国产黄a三级三级三级人| 深爱激情五月婷婷| 亚洲婷婷狠狠爱综合网| 成年人午夜在线观看视频| 久久女婷五月综合色啪小说 | 婷婷色综合www| 亚洲精品国产av蜜桃| 天天一区二区日本电影三级| av国产免费在线观看| 欧美日韩视频高清一区二区三区二| 韩国av在线不卡| 国产精品国产av在线观看| av在线蜜桃| 日韩三级伦理在线观看| 插阴视频在线观看视频| tube8黄色片| 全区人妻精品视频| 最近最新中文字幕免费大全7| 久久午夜福利片| 亚洲久久久久久中文字幕| 国产一区二区三区综合在线观看 | 一级毛片久久久久久久久女| 成年免费大片在线观看| 国产成人freesex在线| 国产精品无大码| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 国产精品无大码| 色视频在线一区二区三区| 免费看av在线观看网站| 一个人看视频在线观看www免费| 汤姆久久久久久久影院中文字幕| 久久久久久国产a免费观看| 国产精品99久久99久久久不卡 | 免费大片18禁| 欧美极品一区二区三区四区| h日本视频在线播放| 日韩精品有码人妻一区| 男插女下体视频免费在线播放| 亚洲天堂国产精品一区在线| 免费观看av网站的网址| 夫妻午夜视频| 免费看日本二区| 日本熟妇午夜| 久久久久久久久大av| 欧美成人一区二区免费高清观看| 国产高清三级在线| 中文字幕av成人在线电影| 国产男人的电影天堂91| 91精品伊人久久大香线蕉| 久久久久网色| 韩国高清视频一区二区三区| 国产69精品久久久久777片| 老师上课跳d突然被开到最大视频| 亚洲三级黄色毛片| 日韩视频在线欧美| 高清视频免费观看一区二区| 十八禁网站网址无遮挡 | 亚洲欧美日韩另类电影网站 | 秋霞在线观看毛片| 国产日韩欧美亚洲二区| 日日摸夜夜添夜夜添av毛片| 熟女电影av网| 日本午夜av视频| 一边亲一边摸免费视频| 六月丁香七月| 亚洲精品乱码久久久v下载方式| 国产精品一区二区在线观看99| 国产成人91sexporn| av卡一久久| 中文在线观看免费www的网站| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 国产视频内射| 国产一区二区三区综合在线观看 | 天天躁日日操中文字幕| 男人添女人高潮全过程视频| 亚洲av中文av极速乱| 深爱激情五月婷婷| 中文字幕制服av| 欧美最新免费一区二区三区| 久久久久久国产a免费观看| 青春草国产在线视频| 特级一级黄色大片| 一级毛片 在线播放| 在现免费观看毛片| 亚洲国产精品999| 久久国产乱子免费精品| 亚洲精品国产av成人精品| 男人添女人高潮全过程视频| 国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 国产久久久一区二区三区| 国产av码专区亚洲av| 国产亚洲91精品色在线| 国产精品国产三级国产专区5o| 国产成人freesex在线| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 91狼人影院| 精品久久久久久久久亚洲| 嫩草影院入口| 国产精品人妻久久久久久| 亚洲精品日韩av片在线观看| 春色校园在线视频观看| 熟女av电影| 少妇被粗大猛烈的视频| 国产精品久久久久久精品电影小说 | 又爽又黄a免费视频| 午夜福利在线观看免费完整高清在| 高清av免费在线| 天堂俺去俺来也www色官网| 久久久久国产网址| 日日撸夜夜添| 水蜜桃什么品种好| 女人久久www免费人成看片| 国产精品国产三级国产av玫瑰| 日韩 亚洲 欧美在线| 国产成人一区二区在线| av免费在线看不卡| 日本黄色片子视频| 国产高清不卡午夜福利| 久久ye,这里只有精品| 又爽又黄无遮挡网站| 少妇高潮的动态图| 国产一区二区在线观看日韩| 久久久久网色| 成人亚洲精品一区在线观看 | 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 亚洲自偷自拍三级| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 欧美国产精品一级二级三级 | 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩东京热| av免费在线看不卡| 免费看日本二区| 全区人妻精品视频| 久久人人爽av亚洲精品天堂 | .国产精品久久| 一边亲一边摸免费视频| av线在线观看网站| av网站免费在线观看视频| 观看美女的网站| av黄色大香蕉| 亚洲欧美精品专区久久| 一本一本综合久久| 99久久九九国产精品国产免费| 亚洲精品色激情综合| 在线免费观看不下载黄p国产| 久久鲁丝午夜福利片| 亚洲精品乱久久久久久| 建设人人有责人人尽责人人享有的 | 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 精品国产一区二区三区久久久樱花 | 91aial.com中文字幕在线观看| 国产亚洲最大av| 亚洲精品影视一区二区三区av| 色视频www国产| 日韩成人伦理影院| 国产永久视频网站| 精品久久久久久久久av| 日本一二三区视频观看| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 男女下面进入的视频免费午夜| 黄色怎么调成土黄色| 免费看av在线观看网站| 精品少妇黑人巨大在线播放| 黄片无遮挡物在线观看| 欧美性猛交╳xxx乱大交人| 国产69精品久久久久777片| 国产精品99久久久久久久久| 亚洲天堂av无毛| 一区二区三区四区激情视频| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 国产精品国产av在线观看| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区| 在线观看三级黄色| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 嫩草影院精品99| videos熟女内射| 国产极品天堂在线| 国产人妻一区二区三区在| 久久久久国产网址| 男女边吃奶边做爰视频| 亚洲av成人精品一区久久| 欧美xxⅹ黑人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 又爽又黄无遮挡网站| 日本熟妇午夜| 精品国产三级普通话版| 亚洲高清免费不卡视频| 久久精品国产a三级三级三级| 免费av不卡在线播放| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 成年女人在线观看亚洲视频 | 狂野欧美白嫩少妇大欣赏| kizo精华| 国产黄频视频在线观看| 久久久久久国产a免费观看| 精品人妻熟女av久视频| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 在线观看美女被高潮喷水网站| 超碰97精品在线观看| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 久久久久九九精品影院| 国产日韩欧美在线精品| 人妻夜夜爽99麻豆av| 国产精品三级大全| 精品人妻熟女av久视频| 国产伦理片在线播放av一区| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 少妇的逼水好多| 亚洲av.av天堂| 成人鲁丝片一二三区免费| 国产女主播在线喷水免费视频网站| 六月丁香七月| 欧美人与善性xxx| 国产男女内射视频| 黄色欧美视频在线观看| 中国三级夫妇交换| 亚洲av在线观看美女高潮| 只有这里有精品99| 国产成人aa在线观看| 在线天堂最新版资源| 一区二区三区四区激情视频| 欧美激情国产日韩精品一区| 国产亚洲午夜精品一区二区久久 | 国产视频首页在线观看| 日韩欧美一区视频在线观看 | 黄片无遮挡物在线观看| 99热全是精品| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 精品少妇黑人巨大在线播放| 噜噜噜噜噜久久久久久91| 丝袜喷水一区| 国产成人91sexporn| 晚上一个人看的免费电影| 中文字幕av成人在线电影| 婷婷色综合www| 国产成人freesex在线| 日韩强制内射视频| 久热这里只有精品99| 美女主播在线视频| 51国产日韩欧美| 欧美区成人在线视频| 听说在线观看完整版免费高清| 国产探花在线观看一区二区| 亚洲精品色激情综合| 99久久人妻综合| 国产午夜精品久久久久久一区二区三区| 国产成人一区二区在线| 国产亚洲最大av| 一级爰片在线观看| 免费av毛片视频| 欧美日韩亚洲高清精品| 国产 一区精品| 日韩 亚洲 欧美在线| 国产免费福利视频在线观看| 国产精品熟女久久久久浪| av福利片在线观看| videossex国产| 特级一级黄色大片| 天美传媒精品一区二区| 高清视频免费观看一区二区| 超碰av人人做人人爽久久| 亚洲人成网站在线观看播放| 成人特级av手机在线观看| 男女那种视频在线观看| 国产一区亚洲一区在线观看| 国产色爽女视频免费观看| 哪个播放器可以免费观看大片| 亚洲成人久久爱视频| 免费观看av网站的网址| 国内精品宾馆在线| 麻豆久久精品国产亚洲av| 能在线免费看毛片的网站| 亚洲最大成人中文| 一区二区三区四区激情视频| 国产毛片a区久久久久| 18禁在线播放成人免费| 伦精品一区二区三区| 搡老乐熟女国产| 欧美97在线视频| 精品久久久久久久久亚洲| 99久久精品国产国产毛片| 欧美日本视频| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 成年免费大片在线观看| 国产精品99久久久久久久久| 日本wwww免费看| 久久久久精品性色| 伊人久久精品亚洲午夜| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的 | 69人妻影院| 国产精品麻豆人妻色哟哟久久| 日韩欧美精品v在线| 欧美日韩国产mv在线观看视频 | 十八禁网站网址无遮挡 | 久久久久国产网址| 深爱激情五月婷婷| 日韩国内少妇激情av| 免费大片18禁| 久久精品国产亚洲av涩爱| 国国产精品蜜臀av免费| 成人欧美大片| 国产成人精品婷婷| 久久这里有精品视频免费| 亚洲自偷自拍三级| 一级毛片aaaaaa免费看小| 一边亲一边摸免费视频| 欧美变态另类bdsm刘玥| 久久影院123| 免费av观看视频| 国产高清国产精品国产三级 | 国产乱人视频| 久久精品夜色国产| 神马国产精品三级电影在线观看| 国产精品国产三级国产专区5o| 汤姆久久久久久久影院中文字幕| 建设人人有责人人尽责人人享有的 | 大香蕉久久网| 男男h啪啪无遮挡| 免费大片黄手机在线观看| 欧美一区二区亚洲| 国产伦理片在线播放av一区| 嫩草影院新地址| 国产精品99久久久久久久久| 丝袜美腿在线中文| 国产白丝娇喘喷水9色精品| 久久97久久精品| 伦理电影大哥的女人| 色播亚洲综合网| 成年版毛片免费区| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| 日韩av在线免费看完整版不卡| 国产亚洲av嫩草精品影院| 成年女人看的毛片在线观看| 五月天丁香电影| 永久免费av网站大全| 国产片特级美女逼逼视频| 午夜福利高清视频| 亚洲四区av| 欧美最新免费一区二区三区| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 精品酒店卫生间| 亚洲国产欧美人成| 日本三级黄在线观看| 国产精品无大码| 黄色视频在线播放观看不卡| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 午夜免费观看性视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美3d第一页| 91久久精品电影网| 久久午夜福利片| 国产伦在线观看视频一区| 黑人高潮一二区| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 91在线精品国自产拍蜜月| 男女无遮挡免费网站观看| 国产精品av视频在线免费观看| 欧美3d第一页| 日韩欧美 国产精品| videossex国产| 精品久久久久久久人妻蜜臀av| 婷婷色综合大香蕉| 美女cb高潮喷水在线观看| 国产成人午夜福利电影在线观看| 九九久久精品国产亚洲av麻豆| 色婷婷久久久亚洲欧美| 色综合色国产| 深爱激情五月婷婷| 成人欧美大片| 最近最新中文字幕免费大全7| 欧美极品一区二区三区四区| 国产亚洲5aaaaa淫片| 五月天丁香电影| 国产有黄有色有爽视频| 久久6这里有精品| 免费av观看视频| 国产成人福利小说| 国产高清三级在线| 菩萨蛮人人尽说江南好唐韦庄| 国产v大片淫在线免费观看| 日韩人妻高清精品专区| 男插女下体视频免费在线播放| 三级经典国产精品| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 国产亚洲91精品色在线| 观看免费一级毛片| 七月丁香在线播放| 午夜视频国产福利| 国产高清有码在线观看视频| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 汤姆久久久久久久影院中文字幕| 国产精品一及| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 黄色一级大片看看| 日本一二三区视频观看| 亚洲av中文av极速乱| 香蕉精品网在线| 日韩制服骚丝袜av| 久久这里有精品视频免费| 欧美3d第一页| 精品一区二区免费观看| 亚洲丝袜综合中文字幕| 免费大片18禁| 最近中文字幕2019免费版| 丝袜脚勾引网站| 久久99精品国语久久久| 国产欧美日韩一区二区三区在线 | 特大巨黑吊av在线直播| 国产欧美另类精品又又久久亚洲欧美| 欧美变态另类bdsm刘玥| 日日摸夜夜添夜夜爱| 欧美三级亚洲精品| 国产精品国产三级国产专区5o| 少妇丰满av| 精品亚洲乱码少妇综合久久| 亚洲欧洲日产国产| 国产成人freesex在线| 一本久久精品| 久久久久久九九精品二区国产| 久久久久性生活片| 亚洲怡红院男人天堂| 精品一区二区三卡| 青青草视频在线视频观看| 国产男女超爽视频在线观看| 亚洲欧美中文字幕日韩二区| av国产免费在线观看| 国产高清三级在线| 国产精品精品国产色婷婷| 黄色日韩在线| 久久久色成人| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 亚洲成人av在线免费| 亚洲国产精品成人综合色| 国产精品国产av在线观看| 久久久久久久午夜电影| 中文资源天堂在线| 欧美日韩视频高清一区二区三区二| 国产探花极品一区二区| 久久精品久久精品一区二区三区| 日本熟妇午夜| 一个人观看的视频www高清免费观看| 女人久久www免费人成看片| 久久午夜福利片| 国产av码专区亚洲av| 国产亚洲精品久久久com| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 亚洲精品成人av观看孕妇| 蜜臀久久99精品久久宅男| 国产精品一区www在线观看| 亚洲一区二区三区欧美精品 | 婷婷色麻豆天堂久久| 少妇人妻精品综合一区二区| 午夜福利高清视频| 亚洲欧美日韩另类电影网站 | 午夜免费男女啪啪视频观看| 国产成年人精品一区二区| 久久精品熟女亚洲av麻豆精品| 久久人人爽人人爽人人片va| 秋霞伦理黄片| av一本久久久久| 伦精品一区二区三区| 成人漫画全彩无遮挡| 免费av观看视频| 国产视频首页在线观看| 久久久精品免费免费高清| 国产黄a三级三级三级人| 日韩一区二区视频免费看| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 国产高清国产精品国产三级 | 插逼视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 国产午夜福利久久久久久| 午夜激情福利司机影院| 亚洲真实伦在线观看| 51国产日韩欧美| 免费看a级黄色片| 秋霞在线观看毛片| 日韩av在线免费看完整版不卡| 欧美3d第一页| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 免费av毛片视频| 国产日韩欧美亚洲二区| 亚洲av.av天堂| 精品久久久久久久人妻蜜臀av| 国产一区二区亚洲精品在线观看| 日韩欧美一区视频在线观看 | 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 国产高潮美女av| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 午夜激情久久久久久久| 波多野结衣巨乳人妻| 亚洲精品久久午夜乱码| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 岛国毛片在线播放| 欧美xxxx黑人xx丫x性爽| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 亚洲成人一二三区av| 少妇丰满av| 国产探花在线观看一区二区| 成人国产av品久久久| 直男gayav资源| 各种免费的搞黄视频| 国产色爽女视频免费观看| 日本猛色少妇xxxxx猛交久久| 国产伦理片在线播放av一区| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃 | 精品人妻偷拍中文字幕| a级毛色黄片| 欧美bdsm另类| 国产乱人偷精品视频| 男女边吃奶边做爰视频| 国产成人一区二区在线| 欧美xxxx黑人xx丫x性爽| 精品人妻偷拍中文字幕| 国产精品伦人一区二区| 亚洲国产av新网站| 精品久久久噜噜| 男女国产视频网站| 免费av不卡在线播放| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 男插女下体视频免费在线播放| 身体一侧抽搐| 超碰97精品在线观看| www.色视频.com| 中文字幕久久专区| 超碰av人人做人人爽久久| 亚洲色图av天堂| 久久久久九九精品影院| 日韩欧美 国产精品| 亚洲av不卡在线观看| 菩萨蛮人人尽说江南好唐韦庄|