• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Fatigue Crack Growth Closure Considering the Integrative Effect of Cyclic Stress Ratio,Specimen Thickness and Poisson's Ratio

    2012-01-20 04:46:00LIUJiantaoDUPinganLIUXiaobaoandDUQiang

    LIU Jiantao*,DU Pingan,LIU Xiaobao,and DU Qiang

    College of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    1 Introduction

    Key components of large structures,such as space probe,aeroplane,watercraft and so on,often cause fatigue problems due to the periodical loading and lead to catastrophic failures[1-3].Hence,how to predict the rule of FCG process effectively and estimate the fatigue life accurately becomes one of the most important contents for scientific research and reliability design.

    Fatigue crack growth curve typically includes three regions under constant amplitude (CA) loading[4].FCG rates in regionⅠare mainly affected by the microstructural characteristics,surface roughness,debris,Rratio,crack shape and length,and environmental conditions[4-7].The primary influence factors of RegionⅡlie inRratio,loading frequency,specimen thickness,material characteristics and environmental conditions[6-9].Region Ⅲis largely affected byRratio,component thickness,material microstructure and environmental conditions[7-10].Since environmental conditions and material properties are similar for the same kind of structures,FCG rates are mainly affected by the component parameters and loading characteristics.A series of work[4-10]indicates that specimen thickness andRratios have significant influence on FCG rates,while some controversies exist in the literature about the effect[11-15].Shahinian[11]pointed out that specimen thickness has no or negligible effect on FCG rates.PARK,et al[12],COSTA,et al[13]and CHANG,et al[14]indicated that specimen thickness accelerates FCG rates with the specimen thickness increasing.JACK,et al[15]stated that specimen thickness reduces FCG rates with the specimen thickness increasing.A similar situation is found with the influence ofRratio on FCG rates[10].Obviously,the specimen thickness andRratio have an interactive effect on FCG rates.The physical rule of FCG process can be obtained only by taking the effect of specimen thickness andRratio into consideration simultaneously.

    This paper mainly aims at investigating the integrative effect of specimen thickness,Rratio,material properties and so forth on FCG rates and developing a new model with more extensive applicability.At first,the physical rules of crack opening ratio (γ) and effective stress intensity factor range ratio (U) with respect to specimen thickness,Rratios and Poisson's ratio are analyzed systemically with the existing models.Then,a relative thickness of specimen is defined to describe the influence of specimen thickness and material properties on FCG rates conveniently.Moreover,a new model (IIF) is put forward based on the plasticity-induced crack closure theory and the physical rules indicated by the experimental results.The IIF model considers the interactive effects of several influence factors,including specimen thickness,cyclic stress ratio,Poisson's ratio,the maximum applied stress and so forth.Finally,a number of experimental results with various materials,thicknesses andRratios are used to validate the IIF model.

    2 Influence of Specimen Thickness,R Ratio and Poisson's Ratio on Fatigue Crack Growth

    The following parameters are defined for the afterward analysis:

    whereRis the cyclic stress ratio,Kmaxis the maximum stress intensity factor (SIF),Kminis the minimum SIF,Kopis the crack opening SIF,ΔKis the SIF range,ΔKeffis the effective SIF range.Similar definitions apply to the stresses and their ranges.

    The following relation exists among the parameters above:

    2.1 Influence of specimen thickness on FCG rates

    According to the plasticity-induced crack closure theory and the retardation phenomenon after the overload[9-11],FCG rates are largely influenced by the plastic zone size in front of the crack tip.Moreover,the plastic zone size is mainly dependent upon the specimen thickness besides the material properties and loading conditions.With the specimen thickness increasing,the stress state changes from being largely plane stress to being plane strain dominant and the plastic zone size becomes smaller gradually.

    CHANG,et al[14],proposed an integral equation for plastic zone size based on the three-dimensional strip yield model and defined the plastic zone size for small scale yielding case as follows:

    whereμis the Poisson's ratio andσsis the material yield strength.

    VOORWALD,et al[16],considered all constraints(maximum applied stress,material yield strength and specimen thickness) around the crack tip and presented another parametric function forα:

    wheretis the specimen thickness.

    GUO,et al[17]and ZHANG,et al[18],studied the fatigue crack closure effect by theoretical analysis and introduced a constraint factor to account for the thickness effect on FCG process:

    whererp0is the plastic zone size.

    HUANG,et al[19],obtained a new continuous function ofαby theoretical analysis and finite element calculation:

    Since Eqs.(4)-(6) neglect the influence of Poisson's ratio,the following general function ofαis established in this paper by fitting the theoretical results under both of the plane stress state and the plane strain state and the finite element analysis results:

    Eq.(7) considers the integrative effect of specimen thickness,Poisson's ratio and the maximum applied load on the plastic zone size and gives an explicit continuous expression between the plastic zone size and specimen thickness.Furthermore,several experimental results are used to verify the correctness and validity of Eq.(7),which shows great consistency.

    2.2 Influence of R ratio on FCG rates

    Rratio,which is often described by parameterUorγ,is another important influence factor for FCG rates.Lots of experiential equations ofUwith various kinds of materials have been proposed.However,most of these equations regardUas a function ofRratio onlly and can not reflect the integrative effect of specimen thickness,Poisson's ratio and so forth explicitly.

    CODRINGTON,et al[10],obtained an experientialUexpression based on the deduction of the strip-yield model and distributed dislocation technique:

    wherehis half of the specimen thickness,σfis the flow stress and defined as

    withσultthe ultimate tensile strength.

    COSTA,et al[13],presented another experiential equation forUby analysis of the experimental data with CK45 steel:

    whereβ=0.716R+0.0121ΔK+0.144(t/w),wthe specimen width.

    NEWMAN,et al[21-22],put forward a model of crack opening ratioγbased on the crack closure theory[22]:

    The coefficients are defined as follows,whenSo≥Smin:

    The constraint factorβis closely related to the specimen thickness and largely affected by the plastic zone size and reversed plastic zone size.

    Recently,HUANG,et al[23],considered the influence of the plastic zone size and the overloading effects onγand presented another equation forβ:

    Observations from Eqs.(8)-(21) suggest thatγvalue andUvalue be mainly affected byRratio,specimen thickness and Poisson's ratio simultaneously.In addition,both of the plane stress state and plane strain state exist in finite-sized structures.Hence,how to determine the constraint factorβunder different states effectively owns much significance for fatigue life prediction and FCG process modeling.

    2.3 Influence of Poisson's ratio on FCG rates

    Figs.1 and 2 show the curves of crack opening ratioγversusRratio with previous models and the theoretical results in Ref.[10].

    The following conclusions are drawn accordingly:

    (1) HUANG's model and NEWMAN model can describe the influence ofRratios onγeffectively in the whole region from -1.0 to 1.0.Moreover,HUANG's model and NEWMAN model are totally superposed with each other under both of the plane stress state and plane strain state withμ=1/3.

    Fig.1.Curves of γ versus R ratio with μ=1/3

    Fig.2.Curves of γ versus R ratio with μ=0.3

    In Fig.2,HUANG's model is superposed with the NEWMAN model under the plane stress state withμ=0.3.Whereas,under the plane strain state,predictions by HUANG's model is higher than NEWMAN model due to the influence of Poisson's ratio.

    (2) Both curves depicted by HUANG's model and NEWMAN model withμ=0.3 under the plane stress state is lower than the theoretical curve in Ref.[10].The main reason lies in that both of HUANG's model and NEWMAN model neglect the Poisson's ratio effect under the plane stress state.

    HUANG's model fits pretty well with the theoretical results in Ref.[10]in highRratio region under the plane strain state whenμequals0.3.Whereas the error between HUANG's model and theoretical results increases with theRratio decreasing due to the integrative effect of Poisson's ratio andRratio.

    (3) CODRINGTON's model is totally consistent with the theoretical curves withμ=0.3 under both plane stress and plane strain conditions when 0≤R<1.But it gives wrong results in the case of negativeRratios due to the quadratic approaching function,which is against the physical rules.

    In brief,NEWMAN model and the theoretical curves represent the physical rules ofγwithμ=1/3 andμ=0.3,respectively.

    As indicated by Eqs.(4)-(7) and (21),parametercan describe the physical rules ofUandγeffectively.Hence,the relative thickness of specimen is defined as

    Figs.3-6 show the rule ofUversus the relative thickness.According to these curves,NEWMAN model defines the upper and the lower boundaries ofUwithμ=1/3.

    Fig.3.Curves of U versus treunder R=0.2 with μ=1/3

    Fig.4.Curves of U versus treunder R=0.2 with μ=0.3

    HUANG's model improves NEWMAN model,considers the Poisson's ratio effect under the plane strain condition and uses linear interpolation function to gain theUvalue with different thicknesses.Whereas the linear approaching effect is very limited and could not describe the physical rule ofUeffectively according to the theoretical results in Ref.[10]and the experimental results in Ref.[13].

    CODRINGTON's model uses exponential function to approach the changes ofUfrom the plane stress state to the plane strain state under variousRratios withμ=0.3 and gives more accurate results.The disadvantage of this model lies in that theUvalue tends to be much smaller with the specimen thickness decreasing,which is inconsistent with the test results.

    Fig.5.Curves of U versus treunder R=-0.2 with μ=1/3

    Fig.6.Curves of U versus treunder R=-0.2 with μ=0.3

    More parts of HUANG's model will be superposed with CODRINGTON's model whenRratio takes larger value.The main reason lies in that CODRINGTON's model is totally consistent with the theoretical result,while HUANG model is only consistent with the theoretical result in highRratio region.

    3 Modeling of the Integrative Effect of R Ratio,Specimen Thickness and Poisson's Ratio on Fatigue Crack Growth Rates

    According to the previous analysis,the IIF model should consider the integrative effect ofRratio,specimen thickness and Poisson' sratio simultaneously and describe the changes ofUversus thickness andγversusRratio continuously and explicitly.Hence,the IIF model will be developed based on NEWMAN model and considers the previous integrative effects.

    3.1 Boundaries of the constraint factor β in consideration of Poisson's ratio

    The following equations can be obtained by previous analysis and the theoretical results in Ref.[10]:

    Eq.(23) gives the upper and lower boundaries ofγwithμ=0.3 andμ=1/3 under both of the plane stress state and the plane strain state,respectively.The following formulation ofβis constructed based on HUANG's model[19]:

    whereβiis the constraint factor under different conditions,i=1-4.ajandbkare the coefficients to be determined,j=1,2,k=1,2.

    Expression ofγunder the plane stress state can be obtained by substituting Eqs.(15)-(20) and (24) into Eq.(23):

    Similarly,expression ofγunder the plane strain state can be further expressed as

    Up to now,boundaries of the constraint factorβconsidering the Poisson's ratio effect are obtained.

    3.2 Modeling of the changes of β versus specimen relative thickness

    The IIF model for parameterβtakes the following form based on the previous analysis:

    As indicated by the Refs.[17-18,22-24],crack opening stress is mainly affected by the plastic zone and reversed plastic zone around the crack tip.The reversed plastic zonerrpis defined as follows[19]:

    Hence,the influence of specimen thickness,material properties and loading characteristics on parametersβcan be established by mapping the relationship from Eq.(7) to Eq.(27).Accordingly,the continuous expression of IIF model is defined as

    The specimen tends to be plane stress state when the relative thicknesstreapproaches to 0 and the constraint factorβapproaches toβstress;the specimen is nearly under the plane strain condition when thetrevalue is greater than 10,and the constraint factorβapproaches toβstrain.

    3.3 Simplification of the parameters for relative thickness expression

    The maximum SIF of center crack specimen is written as follows[3]:

    whereais half of the crack length;F(a,w) is the geometric function and defined as[27]

    Eqs.(30)-(31) suggest thatKmaxis related to crack length,specimen width and the maximum applied load.Furthermore,Kmaxincreases dramatically when the ratioa/wapproaches to 1.0.Accordingly,γalso increases dramatically asa/wapproaches to 1.0 based on Eqs.(14)-(19) and (28)-(30).However,experimental results in Refs.[25]and [26]indicate thatγchanges dramatically near the initial crack lengtha0and approaches to be a constant after some cycles of loading or when the crack length is longer than 2a0.Hence,the relative thickness equation should be independent ofa/wratio.Here,the relative thicknesstreis further defined as follows:

    whereKmax,0is a parameter only related to the maximum applied stressSmaxand material properties,and is further regarded as

    whereAis a constant related to material properties merely and can be determined by the fatigue test data.

    Substituting Eq.(29) into Eq.(25) gives

    Since some existing models use the flow stressσfto describe the influence of specimen thickness,a strength ratio is defined to compare the predictions conveniently:

    Then,Eq.(34) can be further expressed as follows:

    As expressed by Eqs.(34) and (36),the IIF model considers the integrative effect of Poisson's ratio,specimen thickness,Rratio and so forth on parameterUandγ,and reflects the influence of these factors explicitly.

    4 Validation of the IIF Model with Existing Models

    This part mainly concentrates on the validation of the IIF model with existing models.

    4.1 Validation of the IIF model with crack opening ratio γ

    Figs.1 and 2 describe the changes ofγversusRratio withμ=1/3 andμ=0.3,respectively.

    (1) Curves by HUANG's model,NEWMAN model and the IIF model withμ=1/3 in Fig.1 are totally superposed with each other,which indicates that the IIF model describes the physical rules ofγeffectively in the wholeRratio region under both of the plane stress state and plane strain state.

    (2) Predictions by the IIF model fit pretty well with the theoretical results in the highRratio region under the plane stress condition in Fig.2.Though the predictions in the lowRratio region are a little smaller than the theoretical results due to the deficiency of Eq.(15),the approaching effect is better than HUANG's model.Moreover,the IIF model and the theoretical results withμ=0.3 fit very well with each other in the wholeRratio region under the plane strain condition.

    In short,the IIF model describes the rules ofγversusRratio correctly and more effectively.

    4.2 Validation of the IIF model with effective stress intensity factor range ratio U

    Figs.3-6 show the curves ofUversus the relative thicknesstreunder differentRratios withμ=1/3 andμ=0.3,respectively.

    (1) Predictions by the IIF model fit pretty well with Huang's model and are totally superposed with NEWMAN model under both of the plane stress and plane strain conditions whenμequalsμ=1/3.The main reason lies in that the IIF model considers the integrative effect ofRratio,specimen thickness and Poisson's ratio.

    Moreover,the IIF model adopts the exponential function to describe the changes ofUversustre,which is consistent with the experimental results in Ref.[13]and gives more accurate results than HUANG's model.

    (2) Both HUANG's model and NEWMAN model neglect the influence of Poisson's ratio onUunder the plane stress condition,which results in the total superposition of the curves whenμequals 0.3 in Figs.4 and 6.Furthermore,HUANG's model considers the effect of Poisson's ratio onUunder the plane strain condition,which leads to the smaller predictions compared to NEWMAN model.

    The IIF model considers the influence of Poisson's ratio under both of the plane stress state and plane strain state.Thus,the predictions by IIF model are consistent with the theoretical results and smaller than the NEWMAN model whenμ=0.3.Meanwhile,some error exists between Huang's model and the theoretical results in the lowRratio region,which leads to the larger predictions of theUvalue by Huang's model compared with the IIF model.

    To sum up,the IIF model considers the integrative effect ofRratio,specimen thickness and Poisson's ratio on the changes ofUandγ,overcomes the disadvantages of existing models and depicts the changes ofUandγversusRratio effectively in the whole region with different Poisson's ratios.

    5 Validation of the IIF Model with Test Data

    The test data in Ref.[28]are used to validate the IIF model and the NASGRO model[28]is used to describe the whole process of FCG rates:whereC,n,pandqare model coefficients,ΔKthis the cracking threshold range,KICis the material fracture roughness.

    The material parameters are listed in Table 1[28]and the model coefficients of Eq.(37) are listed in Table 2.The Poisson's ratios for these materials are set to be 0.33 according to Ref.[29].The cracking threshold range ΔKthand fracture roughnessKICare calculated with the experiential equation in Ref.[28].Figs.7-12 show the test results and the predictions by the IIF model.

    Table 1.Material parameters

    Table 2.Model coefficients

    Symbol“※”in Figs.7-12 represents the experimental results obtained by several specimens with different thicknesses under the sameRratio.

    Fig.7 Curves of da/dN versus ΔK with 2014 Al-T6

    Fig.8.Curves of da/dN versus ΔK with 2024 Al-T3(R>0)

    Fig.9.Curves of da/dN versus ΔK with 2024 Al-T3(R<0)

    According to the test data and the predictions above,the IIF model describes the whole process of FCG rates from the cracking threshold to the critical fracturing point effectively with explicit expression of Poisson's ratio and specimen thickness,and eliminates the needs for empirical correction factors.

    Most of the test data shown in Figs.7-12 are situated on the predicted curves or between the two predicted curves that represent the different specimen thicknesses under the sameRratio,which indicates that the IIF model can describe the influence of specimen thickness on fatigue crack growth rates effectively.

    Fig.10.Curves of da/dN versus ΔK with 7075 Al-T7351

    Fig.11.Curves of da/dN versus ΔK with 7475 Al-T7351

    Some of the experimental results slightly departure from the predictions due to the surface roughness,uneven material properties,errors in testing and measurement,uneven distribution of specimen thicknesses and so forth.

    The model coefficientsAin Eq.(33) are listed in Table 3

    The coefficientAis closely related to the material properties and has a small variation range for different materials.Moreover,it is a constant for the same material according to the data above and determines the transition process from the plane stress state to the plane strain state.

    6 Conclusions

    (1) A new model named IIF model is developed to account for the integrative effect ofRratio,Poisson's ratio,specimen dimensions and so forth on the fatigue crack growth closure.It adopts the exponential function to approach the changes ofUfrom the plane stress state to the plane strain state,and makes a more accurate and explicit description of the influence of Poisson's ratio,specimen thickness,Rratio and so forth onUandγ.

    (2) The relative thickness of specimen is defined to describe the influence of specimen thickness and material properties on FCG characteristics conveniently.It provides a general parameter to depict the fatigue property of different materials with various thicknesses under different loading conditions.

    (3) The IIF model eliminates the needs for empirical correction factors by fatigue test,and provides a more convenient tool for fatigue life estimation and failure analysis.

    (4) The fatigue properties of real components can be estimated by substituting the material parameters,specimen dimensions and other coefficients into the IIF model.It is very helpful for fatigue experiment design and specimen choosing.

    Fig.12.Curves of da/dN versus ΔK with 7475 Al-T7651

    Table 3.The coefficient A of the IIF model

    [1]METHEE C,AMJAD J A,SREENIVAS A.Dynamic and fatigue response of a truss bridge with fiber reinforced polymer deck[J].International Journal of Fatigue,2007,29(8):1 475-1 489.

    [2]WANG B,SIEGMUND T.A numerical analysis of constraint effects in fatigue crack growth by use of an irreversible cohesive zone model[J].International Journal of Fracture,2005,132(2):175-196.

    [3]LIU J T,DU P A,HUANG M J,et al.New model of propagation rates of long crack due to structure fatigue[J].Applied Mathematics and Mechanics,2009,30(5):575-584.

    [4]ZHAO T W,ZHANG J X,JIANG Y Y.A study of fatigue crack growth of 7075-T651 aluminum alloy[J].International Journal of Fatigue,2008,30(7):1 169-1 180.

    [5]RAY A,PATANKAR R.Fatigue crack growth under variable-amplitude loading:part I-model formulation in state-space setting[J].Applied Mathematical Modeling,2001,25(11):979-994.

    [6]PATANKAR R,QU R.Validation of the state-space model of fatigue crack growth in ductile alloys under variable-amplitude load via comparison of the crack-opening stress data[J].International Journal of Fracture,2005,131(4):337-349.

    [7]JONES R,CHEN B,PITT S.Similitude:fatigue cracking in steels[J].Theoretical and Applied Fracture Mechanics,2007,48(2):161-168.

    [8]ZHU X,JONES J W,ALLISON J E.Effect of frequency,environment,and temperature on fatigue behavior of E319 Cast-Aluminum alloy:small-crack propagation[J].Metallurgical and Materials Transactions,2008,39A(11):2 666-2 680.

    [9]PARIS P C,TADA H,DONALD J K.Service load fatigue damage-a historical perspective[J].International Journal of Fatigue,1999,21:S35-S46.

    [10]CODRINGTON J,KOTOUSOV A.A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions[J].Mechanics of Materials,2009,41(2):165-173.

    [11]SHAHINIAN P.Influence of section thickness on fatigue crack growth in type 304 stainless steel[J].Nuclear Technology,1972,30:390-397.

    [12]PARK H B,LEE B W.Effect of specimen thickness on fatigue crack growth rate[J].Nuclear Engineering and Design,2000,197(1-2):197-203.

    [13]COSTA J D M,FERREIRA J A M.Effect of stress ratio and specimen thickness on fatigue crack growth of CK45 steel[J].Theoretical and Applied Fracture Mechanics,1998,30(1):65-73.

    [14]CHANG T Z,GUO W L.A model for the through-thickness fatigue crack closure[J].Engineering Fracture Mechanics,1999,64(1):59-65.

    [15]JACK A R,PRICE A T.Effect of thickness on fatigue crack initiation and growth in notched mild-stell specimens[J].Acta Metallurgica,1972,20(7):857-866.

    [16]VOORWALD H J C,TORRES M A S,JUNIOR C C E P.Modeling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [17]GUO W L,ZHANG T Z.Effects of three dimensional constraint on crack growth under aircraft spectrum loading[J].Acta Aeronautica et Astronautica Sinica,2000,21(4):294-298.(in Chinese)

    [18]ZHANG T Z,GUO W L,XU F.Theoretical analysis of fatigue crack closure considering stress states[J].Acta Aeronautica et Astronautica Sinica,2001,22(1):24-29.(in Chinese)

    [19]HUANG X P,TORGEIR M,CUI W C.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [20]NEWMAN J C.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4):R131-R135.

    [21]NEWMAN J C,RUSCHAU J J.The stress-level effect on fatigue-crack growth under constant-amplitude loading[J].International Journal of Fatigue,2007,29(9):1 608-1 615.

    [22]ELBER W.The significance of fatigue crack closure in fatigue[C]//Damage Tolerate in Aircraft Structures,ASTM STP 486,American Society for Testing and Material,March 31-April 2,Philadophia,USA,1971:230-242.

    [23]HUANG X P,HAN Y,CUI W C,et al.Fatigue life prediction of weld-joints under variable amplitude fatigue loads[J].Journal of Ship Mechanics,2005,9(1):89-97.(in Chinese)

    [24]WANG J,GAO J X,GUO W L,et al.Effects of specimen thickness,hardening and crack closure for the plastic strip model[J].Theoretical and Applied Fracture Mechanics,1998,29(1):49-57.

    [25]ALIZADEH H,HILLS D A,MATOS P F P,et al.A comparison of two and three-dimensional analyses of fatigue crack closure[J].International Journal of Fatigue,2007,29(2):222-231.

    [26]JIANG Y,FENG M,DING F.A reexamination of plasticity-reduced crack closure in fatigue crack propagation[J].International Journal of Plasticity,2005,21:1 720-1 740.

    [27]YUEN B K C,TAHERI F.The effects of loading frequency,tensile overload and compressive underload on the fatigue crack propagation behavior of polymethyl methacrylate[J].Polymer Testing,2004,23(5):491-500.

    [28]FORMAN R G,SHIVAKUMAR V,CARDINAL J W,et al.Fatigue crack growth database for damage tolerance analysis[R].U.S.Department of Transportation Federal Aviation Administration,2005.

    [29]LU M J.Material manual for mechanical engineering applications[M].Shenyang:Liaoning Science and Technology Press,2004.(in Chinese)

    Biographical notes

    LIU Jiantao,born in 1982,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University ofElectronic Science and Technology of China.He received his bachelor degree fromChongqing Institute of Technology,China,in 2005.His research interests include modeling and numerical simulation of fatigue crack growth,structure robust design and optimization.

    Tel:+86-28-87 634141;E-mail:jiantaoliu.uestc@gmail.com

    DU Pingan,born in 1962 is currently a professor atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:dupingan@uestc.edu.cn

    LIU Xiaobao,born in 1978,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:forcan2008@qq.com

    DU Qiang,born in 1968,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:duqiang2007@hotmail.com

    在线观看一区二区三区激情| 91国产中文字幕| 中国三级夫妇交换| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 五月开心婷婷网| 成人手机av| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费一区二区三区四区乱码| 亚洲美女搞黄在线观看| 久久女婷五月综合色啪小说| 免费观看a级毛片全部| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 日韩精品免费视频一区二区三区| 欧美激情高清一区二区三区 | 日日啪夜夜爽| 叶爱在线成人免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| 建设人人有责人人尽责人人享有的| h视频一区二区三区| 男女之事视频高清在线观看 | 亚洲精品国产一区二区精华液| 一本久久精品| 国产色婷婷99| 亚洲精品视频女| 亚洲欧洲日产国产| 欧美日韩av久久| 国产免费又黄又爽又色| 日韩一本色道免费dvd| 一区二区av电影网| 亚洲国产av新网站| 国产麻豆69| 亚洲国产av影院在线观看| 看非洲黑人一级黄片| bbb黄色大片| 99久久精品国产亚洲精品| 中文字幕色久视频| 国产男人的电影天堂91| 成人三级做爰电影| 男女国产视频网站| 国产成人a∨麻豆精品| 在线 av 中文字幕| 国产成人欧美| 无遮挡黄片免费观看| 午夜免费观看性视频| 无遮挡黄片免费观看| 欧美变态另类bdsm刘玥| 国产毛片在线视频| 在线天堂中文资源库| 欧美日韩综合久久久久久| 久久精品国产亚洲av高清一级| 久久久亚洲精品成人影院| 日韩大码丰满熟妇| 欧美日韩视频精品一区| 免费不卡黄色视频| 综合色丁香网| 嫩草影院入口| 无遮挡黄片免费观看| 亚洲第一区二区三区不卡| 国产一区亚洲一区在线观看| 777久久人妻少妇嫩草av网站| 久热这里只有精品99| 国产精品久久久久久人妻精品电影 | 久久久久网色| 精品一品国产午夜福利视频| 亚洲精品久久久久久婷婷小说| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 中文精品一卡2卡3卡4更新| 欧美人与性动交α欧美软件| 国产精品国产av在线观看| 日韩av在线免费看完整版不卡| 国产人伦9x9x在线观看| 欧美亚洲日本最大视频资源| 欧美最新免费一区二区三区| 亚洲精品,欧美精品| 国产精品免费大片| 黄色 视频免费看| 久久久久精品人妻al黑| 国产精品亚洲av一区麻豆 | 免费人妻精品一区二区三区视频| 啦啦啦在线免费观看视频4| 女的被弄到高潮叫床怎么办| 国产精品av久久久久免费| 国产97色在线日韩免费| 久久久久国产精品人妻一区二区| 久久鲁丝午夜福利片| 波多野结衣一区麻豆| 国产免费视频播放在线视频| tube8黄色片| 欧美在线一区亚洲| 免费观看性生交大片5| 久久久久久久大尺度免费视频| 成人免费观看视频高清| 日韩中文字幕视频在线看片| 少妇 在线观看| 亚洲精品久久成人aⅴ小说| 丝袜美腿诱惑在线| 亚洲av男天堂| 国产精品99久久99久久久不卡 | 一二三四中文在线观看免费高清| 搡老岳熟女国产| 午夜福利网站1000一区二区三区| 中国国产av一级| 另类精品久久| 99精国产麻豆久久婷婷| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| videosex国产| 色吧在线观看| 久热爱精品视频在线9| kizo精华| 国产精品一国产av| 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频| av网站免费在线观看视频| 男女高潮啪啪啪动态图| 熟妇人妻不卡中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 久久久久人妻精品一区果冻| 免费看av在线观看网站| 精品国产露脸久久av麻豆| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 在线天堂最新版资源| 久久久久视频综合| 一级a爱视频在线免费观看| 熟女av电影| 观看av在线不卡| 丰满少妇做爰视频| 国产精品国产av在线观看| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 国产片内射在线| 亚洲情色 制服丝袜| 欧美 亚洲 国产 日韩一| 麻豆乱淫一区二区| 极品少妇高潮喷水抽搐| 久久av网站| 在线看a的网站| 欧美人与性动交α欧美精品济南到| 高清av免费在线| 免费观看性生交大片5| 欧美日韩av久久| 在线观看一区二区三区激情| 国产男女超爽视频在线观看| 男人操女人黄网站| 国产精品 欧美亚洲| 亚洲成人手机| 一级毛片我不卡| 免费看av在线观看网站| 久久精品aⅴ一区二区三区四区| 免费观看av网站的网址| 少妇被粗大猛烈的视频| 国产人伦9x9x在线观看| 午夜激情av网站| 巨乳人妻的诱惑在线观看| 叶爱在线成人免费视频播放| 精品国产乱码久久久久久小说| 人人澡人人妻人| 韩国高清视频一区二区三区| 久久毛片免费看一区二区三区| 美女大奶头黄色视频| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区精品视频观看| 看十八女毛片水多多多| 男女国产视频网站| 无遮挡黄片免费观看| 亚洲av国产av综合av卡| 咕卡用的链子| 国产午夜精品一二区理论片| 操美女的视频在线观看| 国产日韩欧美视频二区| 制服丝袜香蕉在线| 国产成人a∨麻豆精品| 精品一区二区三卡| 欧美人与性动交α欧美精品济南到| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美精品济南到| 我要看黄色一级片免费的| 久久亚洲国产成人精品v| 成人国产麻豆网| 欧美国产精品va在线观看不卡| 久久久欧美国产精品| 波多野结衣一区麻豆| 欧美人与性动交α欧美软件| 大香蕉久久网| 国产日韩一区二区三区精品不卡| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 我要看黄色一级片免费的| 熟女av电影| 国产成人91sexporn| 丝袜脚勾引网站| 亚洲精品美女久久av网站| 在线观看三级黄色| av线在线观看网站| 又大又爽又粗| 国产精品熟女久久久久浪| 亚洲国产精品999| 十分钟在线观看高清视频www| 韩国av在线不卡| 午夜福利在线免费观看网站| 久久人人爽av亚洲精品天堂| 青春草视频在线免费观看| av免费观看日本| 婷婷色综合www| 亚洲成av片中文字幕在线观看| 十分钟在线观看高清视频www| 黄网站色视频无遮挡免费观看| 久久热在线av| 在线观看人妻少妇| 欧美日韩视频精品一区| 精品少妇一区二区三区视频日本电影 | 一级片免费观看大全| 一区二区三区四区激情视频| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 日韩熟女老妇一区二区性免费视频| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 在线观看免费午夜福利视频| 日韩一区二区三区影片| 久久久久久久久久久久大奶| 一本久久精品| 久久久久久久久久久免费av| 欧美日韩视频高清一区二区三区二| 一个人免费看片子| 亚洲国产av影院在线观看| 亚洲欧美激情在线| 国产精品 国内视频| 精品卡一卡二卡四卡免费| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 老司机靠b影院| 你懂的网址亚洲精品在线观看| 天美传媒精品一区二区| 免费看不卡的av| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 18在线观看网站| 超碰成人久久| 九草在线视频观看| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 精品午夜福利在线看| 亚洲专区中文字幕在线 | 欧美日韩亚洲高清精品| 久久性视频一级片| 国产精品一区二区精品视频观看| 你懂的网址亚洲精品在线观看| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 可以免费在线观看a视频的电影网站 | 丝袜人妻中文字幕| 欧美日韩av久久| 精品国产露脸久久av麻豆| 精品少妇久久久久久888优播| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡 | 国产精品人妻久久久影院| 亚洲欧美清纯卡通| 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看 | 国产精品二区激情视频| 精品一区二区三区四区五区乱码 | 亚洲精品国产一区二区精华液| 午夜福利视频精品| 自线自在国产av| 国产在线免费精品| 亚洲免费av在线视频| 曰老女人黄片| 国产毛片在线视频| 精品国产一区二区久久| 2021少妇久久久久久久久久久| 考比视频在线观看| 看非洲黑人一级黄片| 亚洲色图综合在线观看| 精品国产超薄肉色丝袜足j| 捣出白浆h1v1| 国产一区二区在线观看av| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 中文字幕人妻熟女乱码| 亚洲国产欧美网| 精品国产一区二区三区四区第35| 久久久亚洲精品成人影院| 久久青草综合色| 丁香六月天网| 精品福利永久在线观看| 精品第一国产精品| av线在线观看网站| 人成视频在线观看免费观看| 久久综合国产亚洲精品| 亚洲av成人不卡在线观看播放网 | 最近2019中文字幕mv第一页| 国产精品国产av在线观看| 亚洲免费av在线视频| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 热re99久久精品国产66热6| 一级片免费观看大全| 亚洲精品国产av成人精品| 色94色欧美一区二区| 天堂8中文在线网| kizo精华| 国产一区二区 视频在线| avwww免费| 中国三级夫妇交换| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 巨乳人妻的诱惑在线观看| 一级毛片 在线播放| 韩国精品一区二区三区| 精品一区二区三区四区五区乱码 | 搡老岳熟女国产| av片东京热男人的天堂| 久久久国产欧美日韩av| 免费不卡黄色视频| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 老司机靠b影院| 中文欧美无线码| 久久人人爽人人片av| 在线看a的网站| 超碰成人久久| av.在线天堂| 精品卡一卡二卡四卡免费| 精品酒店卫生间| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 岛国毛片在线播放| 欧美 日韩 精品 国产| 欧美黑人精品巨大| 国产日韩欧美在线精品| 亚洲精品美女久久av网站| 国产成人精品无人区| 亚洲第一区二区三区不卡| 在线观看三级黄色| 国产在视频线精品| 亚洲精品日本国产第一区| 巨乳人妻的诱惑在线观看| 免费少妇av软件| 国产高清不卡午夜福利| 宅男免费午夜| 波多野结衣一区麻豆| 中文字幕人妻熟女乱码| 卡戴珊不雅视频在线播放| 日韩免费高清中文字幕av| 韩国精品一区二区三区| 最近中文字幕2019免费版| 91aial.com中文字幕在线观看| 亚洲免费av在线视频| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| 1024香蕉在线观看| 午夜福利乱码中文字幕| 人体艺术视频欧美日本| 国产麻豆69| www.精华液| 我要看黄色一级片免费的| 秋霞伦理黄片| 啦啦啦 在线观看视频| 午夜福利网站1000一区二区三区| 青春草亚洲视频在线观看| 一二三四中文在线观看免费高清| 高清不卡的av网站| 91成人精品电影| 最近最新中文字幕大全免费视频 | 69精品国产乱码久久久| 成人漫画全彩无遮挡| 国产深夜福利视频在线观看| 99热全是精品| 亚洲在久久综合| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 蜜桃国产av成人99| 久久久国产精品麻豆| 国产免费现黄频在线看| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 亚洲三区欧美一区| www.av在线官网国产| 美女脱内裤让男人舔精品视频| 久久久国产一区二区| 国产免费一区二区三区四区乱码| 日韩制服丝袜自拍偷拍| 十八禁网站网址无遮挡| 天天操日日干夜夜撸| 亚洲成人av在线免费| 欧美老熟妇乱子伦牲交| 男女之事视频高清在线观看 | 欧美乱码精品一区二区三区| 久久久国产欧美日韩av| 欧美人与善性xxx| 高清黄色对白视频在线免费看| 国产免费福利视频在线观看| 香蕉国产在线看| 校园人妻丝袜中文字幕| 曰老女人黄片| 在线观看www视频免费| 久久女婷五月综合色啪小说| 高清黄色对白视频在线免费看| 大码成人一级视频| 最近2019中文字幕mv第一页| 一本久久精品| 人妻 亚洲 视频| 国产精品成人在线| 久久综合国产亚洲精品| 热re99久久精品国产66热6| 精品国产一区二区三区久久久樱花| 日本色播在线视频| 中文字幕av电影在线播放| 欧美成人精品欧美一级黄| 国产午夜精品一二区理论片| 国产黄色免费在线视频| 黑人猛操日本美女一级片| 在线亚洲精品国产二区图片欧美| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 日本wwww免费看| 青春草国产在线视频| 国产毛片在线视频| 天天影视国产精品| 国产一区二区三区av在线| 两个人看的免费小视频| 午夜福利视频精品| 女的被弄到高潮叫床怎么办| 高清黄色对白视频在线免费看| 男女高潮啪啪啪动态图| 国精品久久久久久国模美| 国产成人欧美| 久久精品国产a三级三级三级| 精品福利永久在线观看| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站| 成人黄色视频免费在线看| 精品第一国产精品| 国产在线一区二区三区精| 18在线观看网站| 男女之事视频高清在线观看 | 伊人久久大香线蕉亚洲五| 国产黄色免费在线视频| 可以免费在线观看a视频的电影网站 | 国产男人的电影天堂91| 国产欧美日韩一区二区三区在线| 深夜精品福利| 色吧在线观看| 亚洲精品成人av观看孕妇| 亚洲情色 制服丝袜| 欧美日韩国产mv在线观看视频| 在线观看一区二区三区激情| 亚洲国产欧美网| 美女视频免费永久观看网站| 狠狠婷婷综合久久久久久88av| 久久性视频一级片| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久久久免| 国产精品一区二区在线观看99| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 国产毛片在线视频| av片东京热男人的天堂| 999精品在线视频| 美女午夜性视频免费| 午夜老司机福利片| 欧美少妇被猛烈插入视频| 韩国高清视频一区二区三区| 国产福利在线免费观看视频| av福利片在线| 一区二区三区激情视频| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 下体分泌物呈黄色| 国产精品av久久久久免费| 老司机影院毛片| 中文字幕av电影在线播放| 日日啪夜夜爽| 99re6热这里在线精品视频| 国产精品 欧美亚洲| 性色av一级| 久久狼人影院| 日韩不卡一区二区三区视频在线| 亚洲欧美激情在线| 一级毛片黄色毛片免费观看视频| 日本午夜av视频| 热99国产精品久久久久久7| 欧美黑人精品巨大| 日本vs欧美在线观看视频| 国产片特级美女逼逼视频| 亚洲av成人不卡在线观看播放网 | 午夜免费鲁丝| 亚洲欧美色中文字幕在线| 亚洲欧美色中文字幕在线| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 国产精品.久久久| 国产男女内射视频| 国产爽快片一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 天天添夜夜摸| 欧美日韩国产mv在线观看视频| 少妇精品久久久久久久| 国产一区亚洲一区在线观看| 亚洲少妇的诱惑av| 国产国语露脸激情在线看| 嫩草影视91久久| 狠狠婷婷综合久久久久久88av| 亚洲精品日本国产第一区| 最近最新中文字幕大全免费视频 | 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 男人操女人黄网站| 欧美少妇被猛烈插入视频| avwww免费| 国产亚洲最大av| 蜜桃在线观看..| 一本—道久久a久久精品蜜桃钙片| av在线老鸭窝| 看非洲黑人一级黄片| www.自偷自拍.com| 一级,二级,三级黄色视频| 亚洲国产最新在线播放| 午夜福利在线免费观看网站| 精品一区二区三区av网在线观看 | 国产精品麻豆人妻色哟哟久久| 一本一本久久a久久精品综合妖精| 免费久久久久久久精品成人欧美视频| avwww免费| 亚洲av福利一区| 男人添女人高潮全过程视频| 国产成人啪精品午夜网站| 国产亚洲av片在线观看秒播厂| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 亚洲人成77777在线视频| 日韩免费高清中文字幕av| 永久免费av网站大全| 久久人人爽人人片av| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| av片东京热男人的天堂| 国产日韩欧美在线精品| 男女国产视频网站| 赤兔流量卡办理| 丰满迷人的少妇在线观看| 久久鲁丝午夜福利片| 99久久综合免费| 黑丝袜美女国产一区| 免费在线观看视频国产中文字幕亚洲 | 黄色毛片三级朝国网站| 国产免费现黄频在线看| 夜夜骑夜夜射夜夜干| 亚洲av日韩在线播放| 久久久久精品性色| 亚洲av国产av综合av卡| 悠悠久久av| 国产成人91sexporn| 搡老岳熟女国产| 十分钟在线观看高清视频www| 一区福利在线观看| 男女高潮啪啪啪动态图| 欧美日本中文国产一区发布| 精品少妇内射三级| 天堂中文最新版在线下载| 一二三四在线观看免费中文在| 国产精品成人在线| 嫩草影视91久久| 一级片'在线观看视频| 一区二区日韩欧美中文字幕| 男女国产视频网站| 午夜福利,免费看| 久久97久久精品| 99国产综合亚洲精品| 97人妻天天添夜夜摸| 国产黄频视频在线观看| 久久人人97超碰香蕉20202| 桃花免费在线播放| 人妻 亚洲 视频| av国产精品久久久久影院| 免费观看人在逋| 最近的中文字幕免费完整| 哪个播放器可以免费观看大片| 99久久人妻综合| 一边亲一边摸免费视频| 在线精品无人区一区二区三| av国产久精品久网站免费入址| 永久免费av网站大全| 丝袜在线中文字幕| av片东京热男人的天堂| 日韩一区二区视频免费看| 天堂8中文在线网| 一级毛片黄色毛片免费观看视频| 在线免费观看不下载黄p国产| 69精品国产乱码久久久| 一级爰片在线观看| 制服人妻中文乱码| 成人亚洲欧美一区二区av| 在线免费观看不下载黄p国产| 亚洲一卡2卡3卡4卡5卡精品中文| 日本91视频免费播放| 激情五月婷婷亚洲| 久久久国产精品麻豆|