• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Fatigue Crack Growth Closure Considering the Integrative Effect of Cyclic Stress Ratio,Specimen Thickness and Poisson's Ratio

    2012-01-20 04:46:00LIUJiantaoDUPinganLIUXiaobaoandDUQiang

    LIU Jiantao*,DU Pingan,LIU Xiaobao,and DU Qiang

    College of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    1 Introduction

    Key components of large structures,such as space probe,aeroplane,watercraft and so on,often cause fatigue problems due to the periodical loading and lead to catastrophic failures[1-3].Hence,how to predict the rule of FCG process effectively and estimate the fatigue life accurately becomes one of the most important contents for scientific research and reliability design.

    Fatigue crack growth curve typically includes three regions under constant amplitude (CA) loading[4].FCG rates in regionⅠare mainly affected by the microstructural characteristics,surface roughness,debris,Rratio,crack shape and length,and environmental conditions[4-7].The primary influence factors of RegionⅡlie inRratio,loading frequency,specimen thickness,material characteristics and environmental conditions[6-9].Region Ⅲis largely affected byRratio,component thickness,material microstructure and environmental conditions[7-10].Since environmental conditions and material properties are similar for the same kind of structures,FCG rates are mainly affected by the component parameters and loading characteristics.A series of work[4-10]indicates that specimen thickness andRratios have significant influence on FCG rates,while some controversies exist in the literature about the effect[11-15].Shahinian[11]pointed out that specimen thickness has no or negligible effect on FCG rates.PARK,et al[12],COSTA,et al[13]and CHANG,et al[14]indicated that specimen thickness accelerates FCG rates with the specimen thickness increasing.JACK,et al[15]stated that specimen thickness reduces FCG rates with the specimen thickness increasing.A similar situation is found with the influence ofRratio on FCG rates[10].Obviously,the specimen thickness andRratio have an interactive effect on FCG rates.The physical rule of FCG process can be obtained only by taking the effect of specimen thickness andRratio into consideration simultaneously.

    This paper mainly aims at investigating the integrative effect of specimen thickness,Rratio,material properties and so forth on FCG rates and developing a new model with more extensive applicability.At first,the physical rules of crack opening ratio (γ) and effective stress intensity factor range ratio (U) with respect to specimen thickness,Rratios and Poisson's ratio are analyzed systemically with the existing models.Then,a relative thickness of specimen is defined to describe the influence of specimen thickness and material properties on FCG rates conveniently.Moreover,a new model (IIF) is put forward based on the plasticity-induced crack closure theory and the physical rules indicated by the experimental results.The IIF model considers the interactive effects of several influence factors,including specimen thickness,cyclic stress ratio,Poisson's ratio,the maximum applied stress and so forth.Finally,a number of experimental results with various materials,thicknesses andRratios are used to validate the IIF model.

    2 Influence of Specimen Thickness,R Ratio and Poisson's Ratio on Fatigue Crack Growth

    The following parameters are defined for the afterward analysis:

    whereRis the cyclic stress ratio,Kmaxis the maximum stress intensity factor (SIF),Kminis the minimum SIF,Kopis the crack opening SIF,ΔKis the SIF range,ΔKeffis the effective SIF range.Similar definitions apply to the stresses and their ranges.

    The following relation exists among the parameters above:

    2.1 Influence of specimen thickness on FCG rates

    According to the plasticity-induced crack closure theory and the retardation phenomenon after the overload[9-11],FCG rates are largely influenced by the plastic zone size in front of the crack tip.Moreover,the plastic zone size is mainly dependent upon the specimen thickness besides the material properties and loading conditions.With the specimen thickness increasing,the stress state changes from being largely plane stress to being plane strain dominant and the plastic zone size becomes smaller gradually.

    CHANG,et al[14],proposed an integral equation for plastic zone size based on the three-dimensional strip yield model and defined the plastic zone size for small scale yielding case as follows:

    whereμis the Poisson's ratio andσsis the material yield strength.

    VOORWALD,et al[16],considered all constraints(maximum applied stress,material yield strength and specimen thickness) around the crack tip and presented another parametric function forα:

    wheretis the specimen thickness.

    GUO,et al[17]and ZHANG,et al[18],studied the fatigue crack closure effect by theoretical analysis and introduced a constraint factor to account for the thickness effect on FCG process:

    whererp0is the plastic zone size.

    HUANG,et al[19],obtained a new continuous function ofαby theoretical analysis and finite element calculation:

    Since Eqs.(4)-(6) neglect the influence of Poisson's ratio,the following general function ofαis established in this paper by fitting the theoretical results under both of the plane stress state and the plane strain state and the finite element analysis results:

    Eq.(7) considers the integrative effect of specimen thickness,Poisson's ratio and the maximum applied load on the plastic zone size and gives an explicit continuous expression between the plastic zone size and specimen thickness.Furthermore,several experimental results are used to verify the correctness and validity of Eq.(7),which shows great consistency.

    2.2 Influence of R ratio on FCG rates

    Rratio,which is often described by parameterUorγ,is another important influence factor for FCG rates.Lots of experiential equations ofUwith various kinds of materials have been proposed.However,most of these equations regardUas a function ofRratio onlly and can not reflect the integrative effect of specimen thickness,Poisson's ratio and so forth explicitly.

    CODRINGTON,et al[10],obtained an experientialUexpression based on the deduction of the strip-yield model and distributed dislocation technique:

    wherehis half of the specimen thickness,σfis the flow stress and defined as

    withσultthe ultimate tensile strength.

    COSTA,et al[13],presented another experiential equation forUby analysis of the experimental data with CK45 steel:

    whereβ=0.716R+0.0121ΔK+0.144(t/w),wthe specimen width.

    NEWMAN,et al[21-22],put forward a model of crack opening ratioγbased on the crack closure theory[22]:

    The coefficients are defined as follows,whenSo≥Smin:

    The constraint factorβis closely related to the specimen thickness and largely affected by the plastic zone size and reversed plastic zone size.

    Recently,HUANG,et al[23],considered the influence of the plastic zone size and the overloading effects onγand presented another equation forβ:

    Observations from Eqs.(8)-(21) suggest thatγvalue andUvalue be mainly affected byRratio,specimen thickness and Poisson's ratio simultaneously.In addition,both of the plane stress state and plane strain state exist in finite-sized structures.Hence,how to determine the constraint factorβunder different states effectively owns much significance for fatigue life prediction and FCG process modeling.

    2.3 Influence of Poisson's ratio on FCG rates

    Figs.1 and 2 show the curves of crack opening ratioγversusRratio with previous models and the theoretical results in Ref.[10].

    The following conclusions are drawn accordingly:

    (1) HUANG's model and NEWMAN model can describe the influence ofRratios onγeffectively in the whole region from -1.0 to 1.0.Moreover,HUANG's model and NEWMAN model are totally superposed with each other under both of the plane stress state and plane strain state withμ=1/3.

    Fig.1.Curves of γ versus R ratio with μ=1/3

    Fig.2.Curves of γ versus R ratio with μ=0.3

    In Fig.2,HUANG's model is superposed with the NEWMAN model under the plane stress state withμ=0.3.Whereas,under the plane strain state,predictions by HUANG's model is higher than NEWMAN model due to the influence of Poisson's ratio.

    (2) Both curves depicted by HUANG's model and NEWMAN model withμ=0.3 under the plane stress state is lower than the theoretical curve in Ref.[10].The main reason lies in that both of HUANG's model and NEWMAN model neglect the Poisson's ratio effect under the plane stress state.

    HUANG's model fits pretty well with the theoretical results in Ref.[10]in highRratio region under the plane strain state whenμequals0.3.Whereas the error between HUANG's model and theoretical results increases with theRratio decreasing due to the integrative effect of Poisson's ratio andRratio.

    (3) CODRINGTON's model is totally consistent with the theoretical curves withμ=0.3 under both plane stress and plane strain conditions when 0≤R<1.But it gives wrong results in the case of negativeRratios due to the quadratic approaching function,which is against the physical rules.

    In brief,NEWMAN model and the theoretical curves represent the physical rules ofγwithμ=1/3 andμ=0.3,respectively.

    As indicated by Eqs.(4)-(7) and (21),parametercan describe the physical rules ofUandγeffectively.Hence,the relative thickness of specimen is defined as

    Figs.3-6 show the rule ofUversus the relative thickness.According to these curves,NEWMAN model defines the upper and the lower boundaries ofUwithμ=1/3.

    Fig.3.Curves of U versus treunder R=0.2 with μ=1/3

    Fig.4.Curves of U versus treunder R=0.2 with μ=0.3

    HUANG's model improves NEWMAN model,considers the Poisson's ratio effect under the plane strain condition and uses linear interpolation function to gain theUvalue with different thicknesses.Whereas the linear approaching effect is very limited and could not describe the physical rule ofUeffectively according to the theoretical results in Ref.[10]and the experimental results in Ref.[13].

    CODRINGTON's model uses exponential function to approach the changes ofUfrom the plane stress state to the plane strain state under variousRratios withμ=0.3 and gives more accurate results.The disadvantage of this model lies in that theUvalue tends to be much smaller with the specimen thickness decreasing,which is inconsistent with the test results.

    Fig.5.Curves of U versus treunder R=-0.2 with μ=1/3

    Fig.6.Curves of U versus treunder R=-0.2 with μ=0.3

    More parts of HUANG's model will be superposed with CODRINGTON's model whenRratio takes larger value.The main reason lies in that CODRINGTON's model is totally consistent with the theoretical result,while HUANG model is only consistent with the theoretical result in highRratio region.

    3 Modeling of the Integrative Effect of R Ratio,Specimen Thickness and Poisson's Ratio on Fatigue Crack Growth Rates

    According to the previous analysis,the IIF model should consider the integrative effect ofRratio,specimen thickness and Poisson' sratio simultaneously and describe the changes ofUversus thickness andγversusRratio continuously and explicitly.Hence,the IIF model will be developed based on NEWMAN model and considers the previous integrative effects.

    3.1 Boundaries of the constraint factor β in consideration of Poisson's ratio

    The following equations can be obtained by previous analysis and the theoretical results in Ref.[10]:

    Eq.(23) gives the upper and lower boundaries ofγwithμ=0.3 andμ=1/3 under both of the plane stress state and the plane strain state,respectively.The following formulation ofβis constructed based on HUANG's model[19]:

    whereβiis the constraint factor under different conditions,i=1-4.ajandbkare the coefficients to be determined,j=1,2,k=1,2.

    Expression ofγunder the plane stress state can be obtained by substituting Eqs.(15)-(20) and (24) into Eq.(23):

    Similarly,expression ofγunder the plane strain state can be further expressed as

    Up to now,boundaries of the constraint factorβconsidering the Poisson's ratio effect are obtained.

    3.2 Modeling of the changes of β versus specimen relative thickness

    The IIF model for parameterβtakes the following form based on the previous analysis:

    As indicated by the Refs.[17-18,22-24],crack opening stress is mainly affected by the plastic zone and reversed plastic zone around the crack tip.The reversed plastic zonerrpis defined as follows[19]:

    Hence,the influence of specimen thickness,material properties and loading characteristics on parametersβcan be established by mapping the relationship from Eq.(7) to Eq.(27).Accordingly,the continuous expression of IIF model is defined as

    The specimen tends to be plane stress state when the relative thicknesstreapproaches to 0 and the constraint factorβapproaches toβstress;the specimen is nearly under the plane strain condition when thetrevalue is greater than 10,and the constraint factorβapproaches toβstrain.

    3.3 Simplification of the parameters for relative thickness expression

    The maximum SIF of center crack specimen is written as follows[3]:

    whereais half of the crack length;F(a,w) is the geometric function and defined as[27]

    Eqs.(30)-(31) suggest thatKmaxis related to crack length,specimen width and the maximum applied load.Furthermore,Kmaxincreases dramatically when the ratioa/wapproaches to 1.0.Accordingly,γalso increases dramatically asa/wapproaches to 1.0 based on Eqs.(14)-(19) and (28)-(30).However,experimental results in Refs.[25]and [26]indicate thatγchanges dramatically near the initial crack lengtha0and approaches to be a constant after some cycles of loading or when the crack length is longer than 2a0.Hence,the relative thickness equation should be independent ofa/wratio.Here,the relative thicknesstreis further defined as follows:

    whereKmax,0is a parameter only related to the maximum applied stressSmaxand material properties,and is further regarded as

    whereAis a constant related to material properties merely and can be determined by the fatigue test data.

    Substituting Eq.(29) into Eq.(25) gives

    Since some existing models use the flow stressσfto describe the influence of specimen thickness,a strength ratio is defined to compare the predictions conveniently:

    Then,Eq.(34) can be further expressed as follows:

    As expressed by Eqs.(34) and (36),the IIF model considers the integrative effect of Poisson's ratio,specimen thickness,Rratio and so forth on parameterUandγ,and reflects the influence of these factors explicitly.

    4 Validation of the IIF Model with Existing Models

    This part mainly concentrates on the validation of the IIF model with existing models.

    4.1 Validation of the IIF model with crack opening ratio γ

    Figs.1 and 2 describe the changes ofγversusRratio withμ=1/3 andμ=0.3,respectively.

    (1) Curves by HUANG's model,NEWMAN model and the IIF model withμ=1/3 in Fig.1 are totally superposed with each other,which indicates that the IIF model describes the physical rules ofγeffectively in the wholeRratio region under both of the plane stress state and plane strain state.

    (2) Predictions by the IIF model fit pretty well with the theoretical results in the highRratio region under the plane stress condition in Fig.2.Though the predictions in the lowRratio region are a little smaller than the theoretical results due to the deficiency of Eq.(15),the approaching effect is better than HUANG's model.Moreover,the IIF model and the theoretical results withμ=0.3 fit very well with each other in the wholeRratio region under the plane strain condition.

    In short,the IIF model describes the rules ofγversusRratio correctly and more effectively.

    4.2 Validation of the IIF model with effective stress intensity factor range ratio U

    Figs.3-6 show the curves ofUversus the relative thicknesstreunder differentRratios withμ=1/3 andμ=0.3,respectively.

    (1) Predictions by the IIF model fit pretty well with Huang's model and are totally superposed with NEWMAN model under both of the plane stress and plane strain conditions whenμequalsμ=1/3.The main reason lies in that the IIF model considers the integrative effect ofRratio,specimen thickness and Poisson's ratio.

    Moreover,the IIF model adopts the exponential function to describe the changes ofUversustre,which is consistent with the experimental results in Ref.[13]and gives more accurate results than HUANG's model.

    (2) Both HUANG's model and NEWMAN model neglect the influence of Poisson's ratio onUunder the plane stress condition,which results in the total superposition of the curves whenμequals 0.3 in Figs.4 and 6.Furthermore,HUANG's model considers the effect of Poisson's ratio onUunder the plane strain condition,which leads to the smaller predictions compared to NEWMAN model.

    The IIF model considers the influence of Poisson's ratio under both of the plane stress state and plane strain state.Thus,the predictions by IIF model are consistent with the theoretical results and smaller than the NEWMAN model whenμ=0.3.Meanwhile,some error exists between Huang's model and the theoretical results in the lowRratio region,which leads to the larger predictions of theUvalue by Huang's model compared with the IIF model.

    To sum up,the IIF model considers the integrative effect ofRratio,specimen thickness and Poisson's ratio on the changes ofUandγ,overcomes the disadvantages of existing models and depicts the changes ofUandγversusRratio effectively in the whole region with different Poisson's ratios.

    5 Validation of the IIF Model with Test Data

    The test data in Ref.[28]are used to validate the IIF model and the NASGRO model[28]is used to describe the whole process of FCG rates:whereC,n,pandqare model coefficients,ΔKthis the cracking threshold range,KICis the material fracture roughness.

    The material parameters are listed in Table 1[28]and the model coefficients of Eq.(37) are listed in Table 2.The Poisson's ratios for these materials are set to be 0.33 according to Ref.[29].The cracking threshold range ΔKthand fracture roughnessKICare calculated with the experiential equation in Ref.[28].Figs.7-12 show the test results and the predictions by the IIF model.

    Table 1.Material parameters

    Table 2.Model coefficients

    Symbol“※”in Figs.7-12 represents the experimental results obtained by several specimens with different thicknesses under the sameRratio.

    Fig.7 Curves of da/dN versus ΔK with 2014 Al-T6

    Fig.8.Curves of da/dN versus ΔK with 2024 Al-T3(R>0)

    Fig.9.Curves of da/dN versus ΔK with 2024 Al-T3(R<0)

    According to the test data and the predictions above,the IIF model describes the whole process of FCG rates from the cracking threshold to the critical fracturing point effectively with explicit expression of Poisson's ratio and specimen thickness,and eliminates the needs for empirical correction factors.

    Most of the test data shown in Figs.7-12 are situated on the predicted curves or between the two predicted curves that represent the different specimen thicknesses under the sameRratio,which indicates that the IIF model can describe the influence of specimen thickness on fatigue crack growth rates effectively.

    Fig.10.Curves of da/dN versus ΔK with 7075 Al-T7351

    Fig.11.Curves of da/dN versus ΔK with 7475 Al-T7351

    Some of the experimental results slightly departure from the predictions due to the surface roughness,uneven material properties,errors in testing and measurement,uneven distribution of specimen thicknesses and so forth.

    The model coefficientsAin Eq.(33) are listed in Table 3

    The coefficientAis closely related to the material properties and has a small variation range for different materials.Moreover,it is a constant for the same material according to the data above and determines the transition process from the plane stress state to the plane strain state.

    6 Conclusions

    (1) A new model named IIF model is developed to account for the integrative effect ofRratio,Poisson's ratio,specimen dimensions and so forth on the fatigue crack growth closure.It adopts the exponential function to approach the changes ofUfrom the plane stress state to the plane strain state,and makes a more accurate and explicit description of the influence of Poisson's ratio,specimen thickness,Rratio and so forth onUandγ.

    (2) The relative thickness of specimen is defined to describe the influence of specimen thickness and material properties on FCG characteristics conveniently.It provides a general parameter to depict the fatigue property of different materials with various thicknesses under different loading conditions.

    (3) The IIF model eliminates the needs for empirical correction factors by fatigue test,and provides a more convenient tool for fatigue life estimation and failure analysis.

    (4) The fatigue properties of real components can be estimated by substituting the material parameters,specimen dimensions and other coefficients into the IIF model.It is very helpful for fatigue experiment design and specimen choosing.

    Fig.12.Curves of da/dN versus ΔK with 7475 Al-T7651

    Table 3.The coefficient A of the IIF model

    [1]METHEE C,AMJAD J A,SREENIVAS A.Dynamic and fatigue response of a truss bridge with fiber reinforced polymer deck[J].International Journal of Fatigue,2007,29(8):1 475-1 489.

    [2]WANG B,SIEGMUND T.A numerical analysis of constraint effects in fatigue crack growth by use of an irreversible cohesive zone model[J].International Journal of Fracture,2005,132(2):175-196.

    [3]LIU J T,DU P A,HUANG M J,et al.New model of propagation rates of long crack due to structure fatigue[J].Applied Mathematics and Mechanics,2009,30(5):575-584.

    [4]ZHAO T W,ZHANG J X,JIANG Y Y.A study of fatigue crack growth of 7075-T651 aluminum alloy[J].International Journal of Fatigue,2008,30(7):1 169-1 180.

    [5]RAY A,PATANKAR R.Fatigue crack growth under variable-amplitude loading:part I-model formulation in state-space setting[J].Applied Mathematical Modeling,2001,25(11):979-994.

    [6]PATANKAR R,QU R.Validation of the state-space model of fatigue crack growth in ductile alloys under variable-amplitude load via comparison of the crack-opening stress data[J].International Journal of Fracture,2005,131(4):337-349.

    [7]JONES R,CHEN B,PITT S.Similitude:fatigue cracking in steels[J].Theoretical and Applied Fracture Mechanics,2007,48(2):161-168.

    [8]ZHU X,JONES J W,ALLISON J E.Effect of frequency,environment,and temperature on fatigue behavior of E319 Cast-Aluminum alloy:small-crack propagation[J].Metallurgical and Materials Transactions,2008,39A(11):2 666-2 680.

    [9]PARIS P C,TADA H,DONALD J K.Service load fatigue damage-a historical perspective[J].International Journal of Fatigue,1999,21:S35-S46.

    [10]CODRINGTON J,KOTOUSOV A.A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions[J].Mechanics of Materials,2009,41(2):165-173.

    [11]SHAHINIAN P.Influence of section thickness on fatigue crack growth in type 304 stainless steel[J].Nuclear Technology,1972,30:390-397.

    [12]PARK H B,LEE B W.Effect of specimen thickness on fatigue crack growth rate[J].Nuclear Engineering and Design,2000,197(1-2):197-203.

    [13]COSTA J D M,FERREIRA J A M.Effect of stress ratio and specimen thickness on fatigue crack growth of CK45 steel[J].Theoretical and Applied Fracture Mechanics,1998,30(1):65-73.

    [14]CHANG T Z,GUO W L.A model for the through-thickness fatigue crack closure[J].Engineering Fracture Mechanics,1999,64(1):59-65.

    [15]JACK A R,PRICE A T.Effect of thickness on fatigue crack initiation and growth in notched mild-stell specimens[J].Acta Metallurgica,1972,20(7):857-866.

    [16]VOORWALD H J C,TORRES M A S,JUNIOR C C E P.Modeling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [17]GUO W L,ZHANG T Z.Effects of three dimensional constraint on crack growth under aircraft spectrum loading[J].Acta Aeronautica et Astronautica Sinica,2000,21(4):294-298.(in Chinese)

    [18]ZHANG T Z,GUO W L,XU F.Theoretical analysis of fatigue crack closure considering stress states[J].Acta Aeronautica et Astronautica Sinica,2001,22(1):24-29.(in Chinese)

    [19]HUANG X P,TORGEIR M,CUI W C.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [20]NEWMAN J C.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4):R131-R135.

    [21]NEWMAN J C,RUSCHAU J J.The stress-level effect on fatigue-crack growth under constant-amplitude loading[J].International Journal of Fatigue,2007,29(9):1 608-1 615.

    [22]ELBER W.The significance of fatigue crack closure in fatigue[C]//Damage Tolerate in Aircraft Structures,ASTM STP 486,American Society for Testing and Material,March 31-April 2,Philadophia,USA,1971:230-242.

    [23]HUANG X P,HAN Y,CUI W C,et al.Fatigue life prediction of weld-joints under variable amplitude fatigue loads[J].Journal of Ship Mechanics,2005,9(1):89-97.(in Chinese)

    [24]WANG J,GAO J X,GUO W L,et al.Effects of specimen thickness,hardening and crack closure for the plastic strip model[J].Theoretical and Applied Fracture Mechanics,1998,29(1):49-57.

    [25]ALIZADEH H,HILLS D A,MATOS P F P,et al.A comparison of two and three-dimensional analyses of fatigue crack closure[J].International Journal of Fatigue,2007,29(2):222-231.

    [26]JIANG Y,FENG M,DING F.A reexamination of plasticity-reduced crack closure in fatigue crack propagation[J].International Journal of Plasticity,2005,21:1 720-1 740.

    [27]YUEN B K C,TAHERI F.The effects of loading frequency,tensile overload and compressive underload on the fatigue crack propagation behavior of polymethyl methacrylate[J].Polymer Testing,2004,23(5):491-500.

    [28]FORMAN R G,SHIVAKUMAR V,CARDINAL J W,et al.Fatigue crack growth database for damage tolerance analysis[R].U.S.Department of Transportation Federal Aviation Administration,2005.

    [29]LU M J.Material manual for mechanical engineering applications[M].Shenyang:Liaoning Science and Technology Press,2004.(in Chinese)

    Biographical notes

    LIU Jiantao,born in 1982,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University ofElectronic Science and Technology of China.He received his bachelor degree fromChongqing Institute of Technology,China,in 2005.His research interests include modeling and numerical simulation of fatigue crack growth,structure robust design and optimization.

    Tel:+86-28-87 634141;E-mail:jiantaoliu.uestc@gmail.com

    DU Pingan,born in 1962 is currently a professor atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:dupingan@uestc.edu.cn

    LIU Xiaobao,born in 1978,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:forcan2008@qq.com

    DU Qiang,born in 1968,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:duqiang2007@hotmail.com

    亚洲欧美日韩卡通动漫| 日韩三级伦理在线观看| 日韩欧美 国产精品| 国产成人精品福利久久| 人人妻人人看人人澡| 亚洲人成网站在线观看播放| 午夜免费观看性视频| 人妻制服诱惑在线中文字幕| 成人免费观看视频高清| 黑丝袜美女国产一区| 婷婷色麻豆天堂久久| 99热网站在线观看| 色视频在线一区二区三区| 春色校园在线视频观看| 亚洲不卡免费看| 国产成人午夜福利电影在线观看| a级毛片在线看网站| 国产伦精品一区二区三区视频9| 国产亚洲午夜精品一区二区久久| 久久国内精品自在自线图片| 三上悠亚av全集在线观看 | 美女大奶头黄色视频| 欧美精品一区二区免费开放| 欧美少妇被猛烈插入视频| 午夜福利视频精品| 丝袜在线中文字幕| 欧美高清成人免费视频www| 欧美日韩综合久久久久久| 最新的欧美精品一区二区| 欧美日韩精品成人综合77777| 高清av免费在线| 两个人的视频大全免费| 一区二区三区精品91| 99久久中文字幕三级久久日本| 免费大片18禁| 亚洲国产色片| 成人美女网站在线观看视频| 国产av码专区亚洲av| 街头女战士在线观看网站| 亚州av有码| 一区二区三区四区激情视频| 欧美3d第一页| 91精品一卡2卡3卡4卡| 免费观看av网站的网址| 亚洲综合色惰| 美女福利国产在线| 狠狠精品人妻久久久久久综合| 一级毛片aaaaaa免费看小| 黄色日韩在线| 最新中文字幕久久久久| 日本av手机在线免费观看| 一本一本综合久久| av在线老鸭窝| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 日日爽夜夜爽网站| 国产乱人偷精品视频| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 免费观看性生交大片5| 午夜激情福利司机影院| 亚洲性久久影院| 久久久久久久久久久久大奶| 日本猛色少妇xxxxx猛交久久| 国产免费一区二区三区四区乱码| 亚洲国产成人一精品久久久| 熟女电影av网| 我的女老师完整版在线观看| 人妻人人澡人人爽人人| 精品亚洲成国产av| 人妻夜夜爽99麻豆av| 99热网站在线观看| 美女cb高潮喷水在线观看| 女的被弄到高潮叫床怎么办| 一个人看视频在线观看www免费| 免费观看在线日韩| 一级片'在线观看视频| 能在线免费看毛片的网站| 中文字幕免费在线视频6| 赤兔流量卡办理| 制服丝袜香蕉在线| 啦啦啦在线观看免费高清www| 噜噜噜噜噜久久久久久91| 在现免费观看毛片| 极品少妇高潮喷水抽搐| 国产精品一区二区在线观看99| 五月伊人婷婷丁香| 久久97久久精品| 国产亚洲一区二区精品| 午夜福利,免费看| 国内少妇人妻偷人精品xxx网站| 99久久中文字幕三级久久日本| 久久6这里有精品| 人妻系列 视频| 一级爰片在线观看| 插逼视频在线观看| 国产伦精品一区二区三区视频9| 色视频在线一区二区三区| 免费在线观看成人毛片| 少妇的逼水好多| 日本-黄色视频高清免费观看| 国产伦精品一区二区三区视频9| 一区二区三区四区激情视频| 免费看日本二区| 亚洲精品一二三| 黄色配什么色好看| 男人舔奶头视频| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 国产深夜福利视频在线观看| 极品少妇高潮喷水抽搐| 在线亚洲精品国产二区图片欧美 | 亚洲国产欧美在线一区| 久久人人爽人人爽人人片va| 久久久久精品久久久久真实原创| 七月丁香在线播放| 国产精品欧美亚洲77777| 人人澡人人妻人| 一区二区三区四区激情视频| 欧美日韩国产mv在线观看视频| 国产黄色视频一区二区在线观看| 欧美丝袜亚洲另类| 观看免费一级毛片| h日本视频在线播放| 男女免费视频国产| 久久精品国产自在天天线| 黄色怎么调成土黄色| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| av免费观看日本| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 伊人久久精品亚洲午夜| 视频区图区小说| av在线播放精品| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 中国三级夫妇交换| 最近手机中文字幕大全| 国产高清三级在线| 街头女战士在线观看网站| 免费大片18禁| 国产一级毛片在线| 国产白丝娇喘喷水9色精品| 国产一区二区在线观看日韩| 91久久精品国产一区二区成人| 91精品国产九色| 两个人免费观看高清视频 | 亚洲综合精品二区| 国产91av在线免费观看| 99视频精品全部免费 在线| 99久久精品热视频| 国模一区二区三区四区视频| 美女中出高潮动态图| 另类精品久久| 性高湖久久久久久久久免费观看| 一本色道久久久久久精品综合| 一区二区三区乱码不卡18| 日日啪夜夜爽| 亚洲成人av在线免费| 日韩不卡一区二区三区视频在线| 最近手机中文字幕大全| a级一级毛片免费在线观看| 久久免费观看电影| 最近中文字幕高清免费大全6| 美女视频免费永久观看网站| 国产精品99久久久久久久久| 91aial.com中文字幕在线观看| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 久久久久久久久久久免费av| 亚州av有码| 老司机亚洲免费影院| av在线老鸭窝| 精品人妻偷拍中文字幕| 多毛熟女@视频| 最近2019中文字幕mv第一页| 一个人看视频在线观看www免费| 午夜av观看不卡| 午夜91福利影院| 高清在线视频一区二区三区| 日韩av在线免费看完整版不卡| 我要看日韩黄色一级片| 日本黄色片子视频| 国产免费一级a男人的天堂| 成人特级av手机在线观看| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 亚洲精品日韩av片在线观看| 亚洲国产精品成人久久小说| 国产伦理片在线播放av一区| 草草在线视频免费看| 美女内射精品一级片tv| 少妇被粗大的猛进出69影院 | 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 两个人的视频大全免费| 免费大片18禁| 亚洲精品一区蜜桃| 永久网站在线| a级毛片免费高清观看在线播放| 国产黄色视频一区二区在线观看| 熟女av电影| 亚洲天堂av无毛| 久久韩国三级中文字幕| 日本欧美视频一区| 国产精品成人在线| 午夜91福利影院| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 午夜久久久在线观看| 国产中年淑女户外野战色| 午夜免费男女啪啪视频观看| 街头女战士在线观看网站| 中文字幕av电影在线播放| 久久精品国产亚洲av天美| 国产精品久久久久久久电影| 国产视频首页在线观看| 成年av动漫网址| 亚洲成人av在线免费| av又黄又爽大尺度在线免费看| 国内精品宾馆在线| 在线精品无人区一区二区三| 我的女老师完整版在线观看| 午夜老司机福利剧场| 夜夜爽夜夜爽视频| 亚洲真实伦在线观看| 啦啦啦中文免费视频观看日本| 亚洲不卡免费看| 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 中文字幕免费在线视频6| 夜夜看夜夜爽夜夜摸| 有码 亚洲区| 日本黄色片子视频| 国产av精品麻豆| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 人人妻人人澡人人看| 尾随美女入室| 久久国产精品大桥未久av | 黄色怎么调成土黄色| 热99国产精品久久久久久7| 欧美日韩亚洲高清精品| 国产在线男女| 国产精品久久久久久久电影| 成人黄色视频免费在线看| 777米奇影视久久| 久久99热这里只频精品6学生| 亚洲国产精品成人久久小说| 中文字幕免费在线视频6| 夜夜爽夜夜爽视频| 午夜日本视频在线| 午夜福利视频精品| 久久这里有精品视频免费| 国产极品粉嫩免费观看在线 | 国产日韩一区二区三区精品不卡 | 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 欧美日本中文国产一区发布| 各种免费的搞黄视频| 久久精品夜色国产| 大香蕉久久网| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 免费看光身美女| 一级毛片 在线播放| 亚洲人与动物交配视频| 欧美激情极品国产一区二区三区 | 久久久国产精品麻豆| 午夜激情久久久久久久| 国产一级毛片在线| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频| 又黄又爽又刺激的免费视频.| 亚洲精品日韩在线中文字幕| 亚洲va在线va天堂va国产| 一个人看视频在线观看www免费| 多毛熟女@视频| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 亚洲国产色片| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 伊人久久精品亚洲午夜| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 我要看黄色一级片免费的| 午夜免费男女啪啪视频观看| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 国产精品一区二区在线观看99| 97在线视频观看| 国产69精品久久久久777片| 老司机影院毛片| 亚洲欧洲日产国产| 高清在线视频一区二区三区| 婷婷色麻豆天堂久久| 18禁在线无遮挡免费观看视频| 精品亚洲乱码少妇综合久久| 日本与韩国留学比较| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 成人漫画全彩无遮挡| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| videossex国产| 日韩在线高清观看一区二区三区| 多毛熟女@视频| 中文在线观看免费www的网站| 久久99精品国语久久久| 老司机影院成人| 黑丝袜美女国产一区| 久久影院123| 丝袜喷水一区| 日韩精品有码人妻一区| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 久久6这里有精品| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 少妇 在线观看| 中文天堂在线官网| 国产成人免费无遮挡视频| 赤兔流量卡办理| av免费在线看不卡| 一级av片app| 成年美女黄网站色视频大全免费 | 国内精品宾馆在线| 黄色日韩在线| 久久久久人妻精品一区果冻| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 国产69精品久久久久777片| 三级国产精品欧美在线观看| 一二三四中文在线观看免费高清| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 免费看日本二区| 日韩欧美 国产精品| 亚洲高清免费不卡视频| 国产伦在线观看视频一区| 中文精品一卡2卡3卡4更新| 高清毛片免费看| 蜜臀久久99精品久久宅男| 亚洲欧美清纯卡通| 性高湖久久久久久久久免费观看| 成人影院久久| 午夜影院在线不卡| 亚洲美女视频黄频| 日本黄色片子视频| 婷婷色麻豆天堂久久| 美女cb高潮喷水在线观看| 黄色配什么色好看| 久久午夜综合久久蜜桃| 又黄又爽又刺激的免费视频.| 最黄视频免费看| 欧美日韩av久久| 高清午夜精品一区二区三区| 高清不卡的av网站| 熟女av电影| 国产男人的电影天堂91| 丝袜在线中文字幕| 国产精品成人在线| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 一本一本综合久久| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| 99热这里只有是精品50| 亚洲av.av天堂| 嘟嘟电影网在线观看| 亚洲av中文av极速乱| 99久国产av精品国产电影| h日本视频在线播放| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 亚洲欧洲日产国产| 亚洲成人一二三区av| 80岁老熟妇乱子伦牲交| 欧美精品亚洲一区二区| 欧美精品高潮呻吟av久久| 久久久久久久久久人人人人人人| 97超视频在线观看视频| 中文乱码字字幕精品一区二区三区| 两个人免费观看高清视频 | 日日撸夜夜添| 亚洲国产色片| 成年女人在线观看亚洲视频| 久久热精品热| 少妇被粗大猛烈的视频| 亚洲婷婷狠狠爱综合网| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花| 青春草亚洲视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱| 人妻人人澡人人爽人人| 国产伦理片在线播放av一区| 各种免费的搞黄视频| 美女视频免费永久观看网站| 亚洲国产精品一区二区三区在线| 日本爱情动作片www.在线观看| 欧美精品高潮呻吟av久久| 国产黄频视频在线观看| 在线观看免费高清a一片| 免费黄网站久久成人精品| 黄片无遮挡物在线观看| 乱系列少妇在线播放| 亚洲欧美一区二区三区黑人 | 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 免费观看的影片在线观看| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 老女人水多毛片| 国产欧美日韩综合在线一区二区 | 精品国产一区二区三区久久久樱花| 久久99热这里只频精品6学生| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 一级毛片aaaaaa免费看小| 免费不卡的大黄色大毛片视频在线观看| 内地一区二区视频在线| 最新中文字幕久久久久| av线在线观看网站| 视频区图区小说| 在线观看人妻少妇| 国产一区二区在线观看av| av在线老鸭窝| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 日韩,欧美,国产一区二区三区| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 看非洲黑人一级黄片| 亚洲精品国产av成人精品| 亚洲国产精品一区二区三区在线| 亚洲综合精品二区| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 国产精品一区二区三区四区免费观看| 在线观看美女被高潮喷水网站| 国产av一区二区精品久久| 桃花免费在线播放| av在线老鸭窝| 亚州av有码| 99热这里只有是精品50| 又粗又硬又长又爽又黄的视频| 国产成人精品一,二区| 一本色道久久久久久精品综合| 日本91视频免费播放| 久久久久精品久久久久真实原创| 国产一级毛片在线| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| av在线观看视频网站免费| 欧美精品亚洲一区二区| 亚洲av中文av极速乱| a级毛色黄片| 亚洲av中文av极速乱| 欧美日韩亚洲高清精品| av福利片在线| 久久精品国产a三级三级三级| 亚洲美女视频黄频| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 久久久久久久久久久丰满| 国产一区二区在线观看av| 一级av片app| 免费播放大片免费观看视频在线观看| 免费黄网站久久成人精品| 亚洲美女视频黄频| 亚洲国产欧美日韩在线播放 | 观看免费一级毛片| xxx大片免费视频| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| 亚洲国产精品999| 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 国产视频首页在线观看| 国产精品99久久久久久久久| 久久综合国产亚洲精品| 免费看不卡的av| 一级毛片久久久久久久久女| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频| 91成人精品电影| 精品午夜福利在线看| a级一级毛片免费在线观看| 国产高清国产精品国产三级| 人妻一区二区av| av在线播放精品| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 久久久国产精品麻豆| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 成人特级av手机在线观看| 免费大片黄手机在线观看| 亚洲国产av新网站| 中文字幕免费在线视频6| 日产精品乱码卡一卡2卡三| 国产中年淑女户外野战色| 欧美日韩在线观看h| 亚洲欧美中文字幕日韩二区| 国内少妇人妻偷人精品xxx网站| 色视频www国产| 午夜日本视频在线| 国产69精品久久久久777片| 又大又黄又爽视频免费| 中文在线观看免费www的网站| 一区在线观看完整版| 亚洲国产毛片av蜜桃av| 国产精品欧美亚洲77777| 国产精品不卡视频一区二区| 色视频在线一区二区三区| 九九在线视频观看精品| 亚洲精品日本国产第一区| 亚洲一区二区三区欧美精品| 免费看日本二区| 亚洲精品,欧美精品| 91成人精品电影| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 最近中文字幕高清免费大全6| 99国产精品免费福利视频| 嫩草影院入口| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩另类电影网站| 日韩av在线免费看完整版不卡| 黑人巨大精品欧美一区二区蜜桃 | 大陆偷拍与自拍| 一本一本综合久久| 日日啪夜夜撸| 国产精品久久久久久精品古装| 免费播放大片免费观看视频在线观看| 91成人精品电影| 亚洲内射少妇av| 色5月婷婷丁香| 高清不卡的av网站| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 免费观看的影片在线观看| 日韩一本色道免费dvd| 婷婷色av中文字幕| 99久久精品热视频| 中文字幕久久专区| 啦啦啦视频在线资源免费观看| 一级毛片黄色毛片免费观看视频| 丰满饥渴人妻一区二区三| 草草在线视频免费看| 亚洲精华国产精华液的使用体验| 国产av国产精品国产| 色网站视频免费| 国产老妇伦熟女老妇高清| 观看av在线不卡| 中文字幕人妻熟人妻熟丝袜美| 国产精品免费大片| 久久毛片免费看一区二区三区| av在线播放精品| 欧美日韩一区二区视频在线观看视频在线| 最近2019中文字幕mv第一页| 只有这里有精品99| 日本欧美视频一区| 一级二级三级毛片免费看| 岛国毛片在线播放| 高清欧美精品videossex| 欧美精品人与动牲交sv欧美| 久久精品国产鲁丝片午夜精品| 日韩av免费高清视频| 亚洲国产精品999| 人人澡人人妻人| 纵有疾风起免费观看全集完整版| 国产无遮挡羞羞视频在线观看| 搡女人真爽免费视频火全软件| 一级爰片在线观看| 国精品久久久久久国模美| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 亚洲电影在线观看av| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美日韩东京热| 亚洲人与动物交配视频| 成人国产av品久久久| 国产精品一区二区在线观看99| 国产日韩欧美视频二区| 亚洲av福利一区| 岛国毛片在线播放| 国产日韩欧美视频二区| 777米奇影视久久| 亚洲成色77777| 日本黄色片子视频| 高清av免费在线| 欧美日韩综合久久久久久| 国产精品久久久久久久久免| 国产精品免费大片| 熟女电影av网| 纯流量卡能插随身wifi吗| 久久影院123| 午夜福利网站1000一区二区三区| 内地一区二区视频在线| 国产精品女同一区二区软件| 久久99一区二区三区| 亚洲国产精品国产精品|