• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Fatigue Crack Growth Closure Considering the Integrative Effect of Cyclic Stress Ratio,Specimen Thickness and Poisson's Ratio

    2012-01-20 04:46:00LIUJiantaoDUPinganLIUXiaobaoandDUQiang

    LIU Jiantao*,DU Pingan,LIU Xiaobao,and DU Qiang

    College of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    1 Introduction

    Key components of large structures,such as space probe,aeroplane,watercraft and so on,often cause fatigue problems due to the periodical loading and lead to catastrophic failures[1-3].Hence,how to predict the rule of FCG process effectively and estimate the fatigue life accurately becomes one of the most important contents for scientific research and reliability design.

    Fatigue crack growth curve typically includes three regions under constant amplitude (CA) loading[4].FCG rates in regionⅠare mainly affected by the microstructural characteristics,surface roughness,debris,Rratio,crack shape and length,and environmental conditions[4-7].The primary influence factors of RegionⅡlie inRratio,loading frequency,specimen thickness,material characteristics and environmental conditions[6-9].Region Ⅲis largely affected byRratio,component thickness,material microstructure and environmental conditions[7-10].Since environmental conditions and material properties are similar for the same kind of structures,FCG rates are mainly affected by the component parameters and loading characteristics.A series of work[4-10]indicates that specimen thickness andRratios have significant influence on FCG rates,while some controversies exist in the literature about the effect[11-15].Shahinian[11]pointed out that specimen thickness has no or negligible effect on FCG rates.PARK,et al[12],COSTA,et al[13]and CHANG,et al[14]indicated that specimen thickness accelerates FCG rates with the specimen thickness increasing.JACK,et al[15]stated that specimen thickness reduces FCG rates with the specimen thickness increasing.A similar situation is found with the influence ofRratio on FCG rates[10].Obviously,the specimen thickness andRratio have an interactive effect on FCG rates.The physical rule of FCG process can be obtained only by taking the effect of specimen thickness andRratio into consideration simultaneously.

    This paper mainly aims at investigating the integrative effect of specimen thickness,Rratio,material properties and so forth on FCG rates and developing a new model with more extensive applicability.At first,the physical rules of crack opening ratio (γ) and effective stress intensity factor range ratio (U) with respect to specimen thickness,Rratios and Poisson's ratio are analyzed systemically with the existing models.Then,a relative thickness of specimen is defined to describe the influence of specimen thickness and material properties on FCG rates conveniently.Moreover,a new model (IIF) is put forward based on the plasticity-induced crack closure theory and the physical rules indicated by the experimental results.The IIF model considers the interactive effects of several influence factors,including specimen thickness,cyclic stress ratio,Poisson's ratio,the maximum applied stress and so forth.Finally,a number of experimental results with various materials,thicknesses andRratios are used to validate the IIF model.

    2 Influence of Specimen Thickness,R Ratio and Poisson's Ratio on Fatigue Crack Growth

    The following parameters are defined for the afterward analysis:

    whereRis the cyclic stress ratio,Kmaxis the maximum stress intensity factor (SIF),Kminis the minimum SIF,Kopis the crack opening SIF,ΔKis the SIF range,ΔKeffis the effective SIF range.Similar definitions apply to the stresses and their ranges.

    The following relation exists among the parameters above:

    2.1 Influence of specimen thickness on FCG rates

    According to the plasticity-induced crack closure theory and the retardation phenomenon after the overload[9-11],FCG rates are largely influenced by the plastic zone size in front of the crack tip.Moreover,the plastic zone size is mainly dependent upon the specimen thickness besides the material properties and loading conditions.With the specimen thickness increasing,the stress state changes from being largely plane stress to being plane strain dominant and the plastic zone size becomes smaller gradually.

    CHANG,et al[14],proposed an integral equation for plastic zone size based on the three-dimensional strip yield model and defined the plastic zone size for small scale yielding case as follows:

    whereμis the Poisson's ratio andσsis the material yield strength.

    VOORWALD,et al[16],considered all constraints(maximum applied stress,material yield strength and specimen thickness) around the crack tip and presented another parametric function forα:

    wheretis the specimen thickness.

    GUO,et al[17]and ZHANG,et al[18],studied the fatigue crack closure effect by theoretical analysis and introduced a constraint factor to account for the thickness effect on FCG process:

    whererp0is the plastic zone size.

    HUANG,et al[19],obtained a new continuous function ofαby theoretical analysis and finite element calculation:

    Since Eqs.(4)-(6) neglect the influence of Poisson's ratio,the following general function ofαis established in this paper by fitting the theoretical results under both of the plane stress state and the plane strain state and the finite element analysis results:

    Eq.(7) considers the integrative effect of specimen thickness,Poisson's ratio and the maximum applied load on the plastic zone size and gives an explicit continuous expression between the plastic zone size and specimen thickness.Furthermore,several experimental results are used to verify the correctness and validity of Eq.(7),which shows great consistency.

    2.2 Influence of R ratio on FCG rates

    Rratio,which is often described by parameterUorγ,is another important influence factor for FCG rates.Lots of experiential equations ofUwith various kinds of materials have been proposed.However,most of these equations regardUas a function ofRratio onlly and can not reflect the integrative effect of specimen thickness,Poisson's ratio and so forth explicitly.

    CODRINGTON,et al[10],obtained an experientialUexpression based on the deduction of the strip-yield model and distributed dislocation technique:

    wherehis half of the specimen thickness,σfis the flow stress and defined as

    withσultthe ultimate tensile strength.

    COSTA,et al[13],presented another experiential equation forUby analysis of the experimental data with CK45 steel:

    whereβ=0.716R+0.0121ΔK+0.144(t/w),wthe specimen width.

    NEWMAN,et al[21-22],put forward a model of crack opening ratioγbased on the crack closure theory[22]:

    The coefficients are defined as follows,whenSo≥Smin:

    The constraint factorβis closely related to the specimen thickness and largely affected by the plastic zone size and reversed plastic zone size.

    Recently,HUANG,et al[23],considered the influence of the plastic zone size and the overloading effects onγand presented another equation forβ:

    Observations from Eqs.(8)-(21) suggest thatγvalue andUvalue be mainly affected byRratio,specimen thickness and Poisson's ratio simultaneously.In addition,both of the plane stress state and plane strain state exist in finite-sized structures.Hence,how to determine the constraint factorβunder different states effectively owns much significance for fatigue life prediction and FCG process modeling.

    2.3 Influence of Poisson's ratio on FCG rates

    Figs.1 and 2 show the curves of crack opening ratioγversusRratio with previous models and the theoretical results in Ref.[10].

    The following conclusions are drawn accordingly:

    (1) HUANG's model and NEWMAN model can describe the influence ofRratios onγeffectively in the whole region from -1.0 to 1.0.Moreover,HUANG's model and NEWMAN model are totally superposed with each other under both of the plane stress state and plane strain state withμ=1/3.

    Fig.1.Curves of γ versus R ratio with μ=1/3

    Fig.2.Curves of γ versus R ratio with μ=0.3

    In Fig.2,HUANG's model is superposed with the NEWMAN model under the plane stress state withμ=0.3.Whereas,under the plane strain state,predictions by HUANG's model is higher than NEWMAN model due to the influence of Poisson's ratio.

    (2) Both curves depicted by HUANG's model and NEWMAN model withμ=0.3 under the plane stress state is lower than the theoretical curve in Ref.[10].The main reason lies in that both of HUANG's model and NEWMAN model neglect the Poisson's ratio effect under the plane stress state.

    HUANG's model fits pretty well with the theoretical results in Ref.[10]in highRratio region under the plane strain state whenμequals0.3.Whereas the error between HUANG's model and theoretical results increases with theRratio decreasing due to the integrative effect of Poisson's ratio andRratio.

    (3) CODRINGTON's model is totally consistent with the theoretical curves withμ=0.3 under both plane stress and plane strain conditions when 0≤R<1.But it gives wrong results in the case of negativeRratios due to the quadratic approaching function,which is against the physical rules.

    In brief,NEWMAN model and the theoretical curves represent the physical rules ofγwithμ=1/3 andμ=0.3,respectively.

    As indicated by Eqs.(4)-(7) and (21),parametercan describe the physical rules ofUandγeffectively.Hence,the relative thickness of specimen is defined as

    Figs.3-6 show the rule ofUversus the relative thickness.According to these curves,NEWMAN model defines the upper and the lower boundaries ofUwithμ=1/3.

    Fig.3.Curves of U versus treunder R=0.2 with μ=1/3

    Fig.4.Curves of U versus treunder R=0.2 with μ=0.3

    HUANG's model improves NEWMAN model,considers the Poisson's ratio effect under the plane strain condition and uses linear interpolation function to gain theUvalue with different thicknesses.Whereas the linear approaching effect is very limited and could not describe the physical rule ofUeffectively according to the theoretical results in Ref.[10]and the experimental results in Ref.[13].

    CODRINGTON's model uses exponential function to approach the changes ofUfrom the plane stress state to the plane strain state under variousRratios withμ=0.3 and gives more accurate results.The disadvantage of this model lies in that theUvalue tends to be much smaller with the specimen thickness decreasing,which is inconsistent with the test results.

    Fig.5.Curves of U versus treunder R=-0.2 with μ=1/3

    Fig.6.Curves of U versus treunder R=-0.2 with μ=0.3

    More parts of HUANG's model will be superposed with CODRINGTON's model whenRratio takes larger value.The main reason lies in that CODRINGTON's model is totally consistent with the theoretical result,while HUANG model is only consistent with the theoretical result in highRratio region.

    3 Modeling of the Integrative Effect of R Ratio,Specimen Thickness and Poisson's Ratio on Fatigue Crack Growth Rates

    According to the previous analysis,the IIF model should consider the integrative effect ofRratio,specimen thickness and Poisson' sratio simultaneously and describe the changes ofUversus thickness andγversusRratio continuously and explicitly.Hence,the IIF model will be developed based on NEWMAN model and considers the previous integrative effects.

    3.1 Boundaries of the constraint factor β in consideration of Poisson's ratio

    The following equations can be obtained by previous analysis and the theoretical results in Ref.[10]:

    Eq.(23) gives the upper and lower boundaries ofγwithμ=0.3 andμ=1/3 under both of the plane stress state and the plane strain state,respectively.The following formulation ofβis constructed based on HUANG's model[19]:

    whereβiis the constraint factor under different conditions,i=1-4.ajandbkare the coefficients to be determined,j=1,2,k=1,2.

    Expression ofγunder the plane stress state can be obtained by substituting Eqs.(15)-(20) and (24) into Eq.(23):

    Similarly,expression ofγunder the plane strain state can be further expressed as

    Up to now,boundaries of the constraint factorβconsidering the Poisson's ratio effect are obtained.

    3.2 Modeling of the changes of β versus specimen relative thickness

    The IIF model for parameterβtakes the following form based on the previous analysis:

    As indicated by the Refs.[17-18,22-24],crack opening stress is mainly affected by the plastic zone and reversed plastic zone around the crack tip.The reversed plastic zonerrpis defined as follows[19]:

    Hence,the influence of specimen thickness,material properties and loading characteristics on parametersβcan be established by mapping the relationship from Eq.(7) to Eq.(27).Accordingly,the continuous expression of IIF model is defined as

    The specimen tends to be plane stress state when the relative thicknesstreapproaches to 0 and the constraint factorβapproaches toβstress;the specimen is nearly under the plane strain condition when thetrevalue is greater than 10,and the constraint factorβapproaches toβstrain.

    3.3 Simplification of the parameters for relative thickness expression

    The maximum SIF of center crack specimen is written as follows[3]:

    whereais half of the crack length;F(a,w) is the geometric function and defined as[27]

    Eqs.(30)-(31) suggest thatKmaxis related to crack length,specimen width and the maximum applied load.Furthermore,Kmaxincreases dramatically when the ratioa/wapproaches to 1.0.Accordingly,γalso increases dramatically asa/wapproaches to 1.0 based on Eqs.(14)-(19) and (28)-(30).However,experimental results in Refs.[25]and [26]indicate thatγchanges dramatically near the initial crack lengtha0and approaches to be a constant after some cycles of loading or when the crack length is longer than 2a0.Hence,the relative thickness equation should be independent ofa/wratio.Here,the relative thicknesstreis further defined as follows:

    whereKmax,0is a parameter only related to the maximum applied stressSmaxand material properties,and is further regarded as

    whereAis a constant related to material properties merely and can be determined by the fatigue test data.

    Substituting Eq.(29) into Eq.(25) gives

    Since some existing models use the flow stressσfto describe the influence of specimen thickness,a strength ratio is defined to compare the predictions conveniently:

    Then,Eq.(34) can be further expressed as follows:

    As expressed by Eqs.(34) and (36),the IIF model considers the integrative effect of Poisson's ratio,specimen thickness,Rratio and so forth on parameterUandγ,and reflects the influence of these factors explicitly.

    4 Validation of the IIF Model with Existing Models

    This part mainly concentrates on the validation of the IIF model with existing models.

    4.1 Validation of the IIF model with crack opening ratio γ

    Figs.1 and 2 describe the changes ofγversusRratio withμ=1/3 andμ=0.3,respectively.

    (1) Curves by HUANG's model,NEWMAN model and the IIF model withμ=1/3 in Fig.1 are totally superposed with each other,which indicates that the IIF model describes the physical rules ofγeffectively in the wholeRratio region under both of the plane stress state and plane strain state.

    (2) Predictions by the IIF model fit pretty well with the theoretical results in the highRratio region under the plane stress condition in Fig.2.Though the predictions in the lowRratio region are a little smaller than the theoretical results due to the deficiency of Eq.(15),the approaching effect is better than HUANG's model.Moreover,the IIF model and the theoretical results withμ=0.3 fit very well with each other in the wholeRratio region under the plane strain condition.

    In short,the IIF model describes the rules ofγversusRratio correctly and more effectively.

    4.2 Validation of the IIF model with effective stress intensity factor range ratio U

    Figs.3-6 show the curves ofUversus the relative thicknesstreunder differentRratios withμ=1/3 andμ=0.3,respectively.

    (1) Predictions by the IIF model fit pretty well with Huang's model and are totally superposed with NEWMAN model under both of the plane stress and plane strain conditions whenμequalsμ=1/3.The main reason lies in that the IIF model considers the integrative effect ofRratio,specimen thickness and Poisson's ratio.

    Moreover,the IIF model adopts the exponential function to describe the changes ofUversustre,which is consistent with the experimental results in Ref.[13]and gives more accurate results than HUANG's model.

    (2) Both HUANG's model and NEWMAN model neglect the influence of Poisson's ratio onUunder the plane stress condition,which results in the total superposition of the curves whenμequals 0.3 in Figs.4 and 6.Furthermore,HUANG's model considers the effect of Poisson's ratio onUunder the plane strain condition,which leads to the smaller predictions compared to NEWMAN model.

    The IIF model considers the influence of Poisson's ratio under both of the plane stress state and plane strain state.Thus,the predictions by IIF model are consistent with the theoretical results and smaller than the NEWMAN model whenμ=0.3.Meanwhile,some error exists between Huang's model and the theoretical results in the lowRratio region,which leads to the larger predictions of theUvalue by Huang's model compared with the IIF model.

    To sum up,the IIF model considers the integrative effect ofRratio,specimen thickness and Poisson's ratio on the changes ofUandγ,overcomes the disadvantages of existing models and depicts the changes ofUandγversusRratio effectively in the whole region with different Poisson's ratios.

    5 Validation of the IIF Model with Test Data

    The test data in Ref.[28]are used to validate the IIF model and the NASGRO model[28]is used to describe the whole process of FCG rates:whereC,n,pandqare model coefficients,ΔKthis the cracking threshold range,KICis the material fracture roughness.

    The material parameters are listed in Table 1[28]and the model coefficients of Eq.(37) are listed in Table 2.The Poisson's ratios for these materials are set to be 0.33 according to Ref.[29].The cracking threshold range ΔKthand fracture roughnessKICare calculated with the experiential equation in Ref.[28].Figs.7-12 show the test results and the predictions by the IIF model.

    Table 1.Material parameters

    Table 2.Model coefficients

    Symbol“※”in Figs.7-12 represents the experimental results obtained by several specimens with different thicknesses under the sameRratio.

    Fig.7 Curves of da/dN versus ΔK with 2014 Al-T6

    Fig.8.Curves of da/dN versus ΔK with 2024 Al-T3(R>0)

    Fig.9.Curves of da/dN versus ΔK with 2024 Al-T3(R<0)

    According to the test data and the predictions above,the IIF model describes the whole process of FCG rates from the cracking threshold to the critical fracturing point effectively with explicit expression of Poisson's ratio and specimen thickness,and eliminates the needs for empirical correction factors.

    Most of the test data shown in Figs.7-12 are situated on the predicted curves or between the two predicted curves that represent the different specimen thicknesses under the sameRratio,which indicates that the IIF model can describe the influence of specimen thickness on fatigue crack growth rates effectively.

    Fig.10.Curves of da/dN versus ΔK with 7075 Al-T7351

    Fig.11.Curves of da/dN versus ΔK with 7475 Al-T7351

    Some of the experimental results slightly departure from the predictions due to the surface roughness,uneven material properties,errors in testing and measurement,uneven distribution of specimen thicknesses and so forth.

    The model coefficientsAin Eq.(33) are listed in Table 3

    The coefficientAis closely related to the material properties and has a small variation range for different materials.Moreover,it is a constant for the same material according to the data above and determines the transition process from the plane stress state to the plane strain state.

    6 Conclusions

    (1) A new model named IIF model is developed to account for the integrative effect ofRratio,Poisson's ratio,specimen dimensions and so forth on the fatigue crack growth closure.It adopts the exponential function to approach the changes ofUfrom the plane stress state to the plane strain state,and makes a more accurate and explicit description of the influence of Poisson's ratio,specimen thickness,Rratio and so forth onUandγ.

    (2) The relative thickness of specimen is defined to describe the influence of specimen thickness and material properties on FCG characteristics conveniently.It provides a general parameter to depict the fatigue property of different materials with various thicknesses under different loading conditions.

    (3) The IIF model eliminates the needs for empirical correction factors by fatigue test,and provides a more convenient tool for fatigue life estimation and failure analysis.

    (4) The fatigue properties of real components can be estimated by substituting the material parameters,specimen dimensions and other coefficients into the IIF model.It is very helpful for fatigue experiment design and specimen choosing.

    Fig.12.Curves of da/dN versus ΔK with 7475 Al-T7651

    Table 3.The coefficient A of the IIF model

    [1]METHEE C,AMJAD J A,SREENIVAS A.Dynamic and fatigue response of a truss bridge with fiber reinforced polymer deck[J].International Journal of Fatigue,2007,29(8):1 475-1 489.

    [2]WANG B,SIEGMUND T.A numerical analysis of constraint effects in fatigue crack growth by use of an irreversible cohesive zone model[J].International Journal of Fracture,2005,132(2):175-196.

    [3]LIU J T,DU P A,HUANG M J,et al.New model of propagation rates of long crack due to structure fatigue[J].Applied Mathematics and Mechanics,2009,30(5):575-584.

    [4]ZHAO T W,ZHANG J X,JIANG Y Y.A study of fatigue crack growth of 7075-T651 aluminum alloy[J].International Journal of Fatigue,2008,30(7):1 169-1 180.

    [5]RAY A,PATANKAR R.Fatigue crack growth under variable-amplitude loading:part I-model formulation in state-space setting[J].Applied Mathematical Modeling,2001,25(11):979-994.

    [6]PATANKAR R,QU R.Validation of the state-space model of fatigue crack growth in ductile alloys under variable-amplitude load via comparison of the crack-opening stress data[J].International Journal of Fracture,2005,131(4):337-349.

    [7]JONES R,CHEN B,PITT S.Similitude:fatigue cracking in steels[J].Theoretical and Applied Fracture Mechanics,2007,48(2):161-168.

    [8]ZHU X,JONES J W,ALLISON J E.Effect of frequency,environment,and temperature on fatigue behavior of E319 Cast-Aluminum alloy:small-crack propagation[J].Metallurgical and Materials Transactions,2008,39A(11):2 666-2 680.

    [9]PARIS P C,TADA H,DONALD J K.Service load fatigue damage-a historical perspective[J].International Journal of Fatigue,1999,21:S35-S46.

    [10]CODRINGTON J,KOTOUSOV A.A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions[J].Mechanics of Materials,2009,41(2):165-173.

    [11]SHAHINIAN P.Influence of section thickness on fatigue crack growth in type 304 stainless steel[J].Nuclear Technology,1972,30:390-397.

    [12]PARK H B,LEE B W.Effect of specimen thickness on fatigue crack growth rate[J].Nuclear Engineering and Design,2000,197(1-2):197-203.

    [13]COSTA J D M,FERREIRA J A M.Effect of stress ratio and specimen thickness on fatigue crack growth of CK45 steel[J].Theoretical and Applied Fracture Mechanics,1998,30(1):65-73.

    [14]CHANG T Z,GUO W L.A model for the through-thickness fatigue crack closure[J].Engineering Fracture Mechanics,1999,64(1):59-65.

    [15]JACK A R,PRICE A T.Effect of thickness on fatigue crack initiation and growth in notched mild-stell specimens[J].Acta Metallurgica,1972,20(7):857-866.

    [16]VOORWALD H J C,TORRES M A S,JUNIOR C C E P.Modeling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [17]GUO W L,ZHANG T Z.Effects of three dimensional constraint on crack growth under aircraft spectrum loading[J].Acta Aeronautica et Astronautica Sinica,2000,21(4):294-298.(in Chinese)

    [18]ZHANG T Z,GUO W L,XU F.Theoretical analysis of fatigue crack closure considering stress states[J].Acta Aeronautica et Astronautica Sinica,2001,22(1):24-29.(in Chinese)

    [19]HUANG X P,TORGEIR M,CUI W C.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [20]NEWMAN J C.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4):R131-R135.

    [21]NEWMAN J C,RUSCHAU J J.The stress-level effect on fatigue-crack growth under constant-amplitude loading[J].International Journal of Fatigue,2007,29(9):1 608-1 615.

    [22]ELBER W.The significance of fatigue crack closure in fatigue[C]//Damage Tolerate in Aircraft Structures,ASTM STP 486,American Society for Testing and Material,March 31-April 2,Philadophia,USA,1971:230-242.

    [23]HUANG X P,HAN Y,CUI W C,et al.Fatigue life prediction of weld-joints under variable amplitude fatigue loads[J].Journal of Ship Mechanics,2005,9(1):89-97.(in Chinese)

    [24]WANG J,GAO J X,GUO W L,et al.Effects of specimen thickness,hardening and crack closure for the plastic strip model[J].Theoretical and Applied Fracture Mechanics,1998,29(1):49-57.

    [25]ALIZADEH H,HILLS D A,MATOS P F P,et al.A comparison of two and three-dimensional analyses of fatigue crack closure[J].International Journal of Fatigue,2007,29(2):222-231.

    [26]JIANG Y,FENG M,DING F.A reexamination of plasticity-reduced crack closure in fatigue crack propagation[J].International Journal of Plasticity,2005,21:1 720-1 740.

    [27]YUEN B K C,TAHERI F.The effects of loading frequency,tensile overload and compressive underload on the fatigue crack propagation behavior of polymethyl methacrylate[J].Polymer Testing,2004,23(5):491-500.

    [28]FORMAN R G,SHIVAKUMAR V,CARDINAL J W,et al.Fatigue crack growth database for damage tolerance analysis[R].U.S.Department of Transportation Federal Aviation Administration,2005.

    [29]LU M J.Material manual for mechanical engineering applications[M].Shenyang:Liaoning Science and Technology Press,2004.(in Chinese)

    Biographical notes

    LIU Jiantao,born in 1982,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University ofElectronic Science and Technology of China.He received his bachelor degree fromChongqing Institute of Technology,China,in 2005.His research interests include modeling and numerical simulation of fatigue crack growth,structure robust design and optimization.

    Tel:+86-28-87 634141;E-mail:jiantaoliu.uestc@gmail.com

    DU Pingan,born in 1962 is currently a professor atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:dupingan@uestc.edu.cn

    LIU Xiaobao,born in 1978,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:forcan2008@qq.com

    DU Qiang,born in 1968,is currently a PhD candidate atCollege of Mechanical and Electronic Engineering,University of Electronic Science and Technology of China.

    E-mail:duqiang2007@hotmail.com

    一区二区三区精品91| 国产v大片淫在线免费观看| 亚洲精品日本国产第一区| 色视频在线一区二区三区| 六月丁香七月| 亚洲av不卡在线观看| 男人添女人高潮全过程视频| 国产av码专区亚洲av| 国产永久视频网站| 精品久久久久久久久av| 亚洲精品日本国产第一区| 中文在线观看免费www的网站| 伊人久久精品亚洲午夜| 日日啪夜夜撸| 18禁在线播放成人免费| 热re99久久精品国产66热6| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 日韩av在线免费看完整版不卡| 亚州av有码| 嫩草影院新地址| 日韩一区二区三区影片| 在线精品无人区一区二区三 | 国产成人免费观看mmmm| 男女边吃奶边做爰视频| 国产高清国产精品国产三级 | av在线天堂中文字幕| 嫩草影院精品99| 综合色av麻豆| 午夜亚洲福利在线播放| 少妇猛男粗大的猛烈进出视频 | 色综合色国产| 久久久久久久久久人人人人人人| 你懂的网址亚洲精品在线观看| 在线天堂最新版资源| 熟女电影av网| 国内少妇人妻偷人精品xxx网站| 日韩人妻高清精品专区| 看非洲黑人一级黄片| 一区二区av电影网| 午夜激情久久久久久久| 亚洲精品久久午夜乱码| 免费在线观看成人毛片| 久久久久久久久久成人| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 99久久人妻综合| 大香蕉久久网| 99热网站在线观看| 免费观看的影片在线观看| 伊人久久国产一区二区| 国产午夜福利久久久久久| 我的女老师完整版在线观看| 国产精品熟女久久久久浪| 丝袜喷水一区| 日韩一本色道免费dvd| 高清av免费在线| 一本一本综合久久| 联通29元200g的流量卡| 久久热精品热| 超碰av人人做人人爽久久| 人妻系列 视频| 人人妻人人看人人澡| freevideosex欧美| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| 97超碰精品成人国产| 国产黄色免费在线视频| 免费观看性生交大片5| 男人狂女人下面高潮的视频| 国产高清不卡午夜福利| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品影视一区二区三区av| 成人亚洲精品av一区二区| 岛国毛片在线播放| 亚洲av成人精品一二三区| 色播亚洲综合网| 99热这里只有精品一区| .国产精品久久| 少妇人妻 视频| 少妇猛男粗大的猛烈进出视频 | 国产黄a三级三级三级人| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av天美| 亚洲aⅴ乱码一区二区在线播放| 久久精品久久精品一区二区三区| 久久国内精品自在自线图片| 一级av片app| 久久精品国产亚洲av天美| 青春草视频在线免费观看| 99re6热这里在线精品视频| 亚洲欧美日韩东京热| 欧美xxⅹ黑人| 2022亚洲国产成人精品| 最近最新中文字幕免费大全7| 嘟嘟电影网在线观看| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费| 成年女人看的毛片在线观看| 少妇人妻一区二区三区视频| 在线观看三级黄色| 久久精品综合一区二区三区| 欧美成人a在线观看| 国产v大片淫在线免费观看| 国产毛片a区久久久久| 看非洲黑人一级黄片| 黄片无遮挡物在线观看| 免费黄色在线免费观看| videossex国产| 午夜福利视频精品| 久久人人爽av亚洲精品天堂 | 久久99蜜桃精品久久| 国产精品av视频在线免费观看| 丰满乱子伦码专区| 亚洲国产最新在线播放| 干丝袜人妻中文字幕| 男人添女人高潮全过程视频| h日本视频在线播放| 久久99精品国语久久久| 成人国产av品久久久| 夫妻性生交免费视频一级片| 男人舔奶头视频| 久久久精品欧美日韩精品| 又爽又黄无遮挡网站| 中国美白少妇内射xxxbb| 亚洲电影在线观看av| 身体一侧抽搐| 亚洲成人av在线免费| 亚洲精品成人久久久久久| 亚州av有码| 插阴视频在线观看视频| 狠狠精品人妻久久久久久综合| 十八禁网站网址无遮挡 | 联通29元200g的流量卡| 免费观看av网站的网址| 亚洲av男天堂| 午夜免费鲁丝| 在现免费观看毛片| 内地一区二区视频在线| 国产精品99久久久久久久久| 日产精品乱码卡一卡2卡三| 最近最新中文字幕免费大全7| 色播亚洲综合网| 久久久久久久国产电影| 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 欧美少妇被猛烈插入视频| 国产精品一区www在线观看| 国产又色又爽无遮挡免| 日产精品乱码卡一卡2卡三| av在线天堂中文字幕| 国产v大片淫在线免费观看| 看十八女毛片水多多多| 亚洲av成人精品一二三区| 91精品伊人久久大香线蕉| 男人狂女人下面高潮的视频| 大香蕉久久网| 少妇被粗大猛烈的视频| 好男人视频免费观看在线| 亚洲精品乱码久久久v下载方式| 国产黄片美女视频| 人妻夜夜爽99麻豆av| av一本久久久久| 建设人人有责人人尽责人人享有的 | 搡老乐熟女国产| 国产美女午夜福利| 国产色婷婷99| 日韩欧美 国产精品| 美女国产视频在线观看| 午夜福利视频精品| 免费黄网站久久成人精品| 欧美激情久久久久久爽电影| 自拍偷自拍亚洲精品老妇| 国产成人精品婷婷| 王馨瑶露胸无遮挡在线观看| 美女视频免费永久观看网站| 联通29元200g的流量卡| 黄色一级大片看看| 亚洲精品亚洲一区二区| 精品国产乱码久久久久久小说| 高清av免费在线| 亚洲精品影视一区二区三区av| 好男人视频免费观看在线| 亚洲国产精品成人久久小说| 亚洲精品第二区| 又爽又黄a免费视频| 午夜精品一区二区三区免费看| 五月天丁香电影| 国产一级毛片在线| 高清视频免费观看一区二区| 午夜福利高清视频| 中国三级夫妇交换| 欧美成人a在线观看| 欧美成人午夜免费资源| 国产探花极品一区二区| 汤姆久久久久久久影院中文字幕| 成人特级av手机在线观看| 简卡轻食公司| 国产在线男女| 亚洲精品日韩在线中文字幕| 精品一区在线观看国产| 精品人妻熟女av久视频| 国产日韩欧美亚洲二区| av福利片在线观看| 国产亚洲5aaaaa淫片| 国产午夜精品久久久久久一区二区三区| 午夜激情久久久久久久| 六月丁香七月| 免费黄网站久久成人精品| 十八禁网站网址无遮挡 | 直男gayav资源| 免费av不卡在线播放| 成人国产麻豆网| av卡一久久| 亚洲图色成人| 亚洲成色77777| 久久99热这里只有精品18| 男男h啪啪无遮挡| 午夜精品国产一区二区电影 | 日韩伦理黄色片| 91久久精品国产一区二区成人| 亚洲国产成人一精品久久久| 国产黄色免费在线视频| 免费观看的影片在线观看| 国产伦理片在线播放av一区| 国产精品一及| 在线亚洲精品国产二区图片欧美 | 美女视频免费永久观看网站| 我的老师免费观看完整版| 美女xxoo啪啪120秒动态图| 新久久久久国产一级毛片| 国产黄频视频在线观看| 在线免费十八禁| 黄色一级大片看看| 久久人人爽av亚洲精品天堂 | 国产高潮美女av| 一区二区三区四区激情视频| 中文资源天堂在线| 麻豆国产97在线/欧美| 亚洲精品国产av蜜桃| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 色5月婷婷丁香| 国产成年人精品一区二区| 如何舔出高潮| av播播在线观看一区| 久久久色成人| 全区人妻精品视频| 美女内射精品一级片tv| 十八禁网站网址无遮挡 | 国产免费福利视频在线观看| av免费观看日本| 中国国产av一级| 五月天丁香电影| 特大巨黑吊av在线直播| 成人综合一区亚洲| 五月开心婷婷网| 亚洲欧美精品自产自拍| 亚洲自偷自拍三级| 精品久久久精品久久久| 又爽又黄a免费视频| 男人添女人高潮全过程视频| 男女啪啪激烈高潮av片| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 一级毛片aaaaaa免费看小| 亚洲精品乱码久久久久久按摩| 久久久精品欧美日韩精品| 91精品国产九色| 亚洲经典国产精华液单| 免费电影在线观看免费观看| 2021少妇久久久久久久久久久| 国产欧美日韩精品一区二区| 亚洲精品日韩在线中文字幕| 久久99热这里只频精品6学生| 国产乱人偷精品视频| 两个人的视频大全免费| av一本久久久久| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 国产亚洲午夜精品一区二区久久 | 精品久久久久久久久亚洲| 秋霞在线观看毛片| 中文字幕av成人在线电影| 亚洲欧美清纯卡通| 老司机影院毛片| 天美传媒精品一区二区| 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频 | 十八禁网站网址无遮挡 | 欧美日本视频| 又大又黄又爽视频免费| 亚洲综合精品二区| 国产成人a区在线观看| 精品国产露脸久久av麻豆| 一级片'在线观看视频| 99热6这里只有精品| 日日摸夜夜添夜夜添av毛片| eeuss影院久久| 99久久精品国产国产毛片| 国产在线男女| 日韩中字成人| 一级毛片我不卡| 日韩欧美一区视频在线观看 | 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 激情 狠狠 欧美| 99热这里只有精品一区| 麻豆久久精品国产亚洲av| 美女内射精品一级片tv| 国产欧美亚洲国产| 国产高清有码在线观看视频| 国产成人freesex在线| 日韩强制内射视频| 国产高清三级在线| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 欧美成人午夜免费资源| 日本wwww免费看| 免费看日本二区| av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 亚洲精品aⅴ在线观看| 大香蕉97超碰在线| 国产精品.久久久| 69人妻影院| 麻豆成人av视频| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 丝瓜视频免费看黄片| 日本色播在线视频| 亚洲精品456在线播放app| 国产精品国产三级专区第一集| 国产美女午夜福利| 交换朋友夫妻互换小说| 国产美女午夜福利| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 男人舔奶头视频| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| 婷婷色综合www| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 国产精品.久久久| 丝袜美腿在线中文| .国产精品久久| av卡一久久| 国产黄片美女视频| 最后的刺客免费高清国语| 国产黄片美女视频| 日韩欧美精品免费久久| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 亚洲成色77777| 天天躁日日操中文字幕| 波野结衣二区三区在线| 欧美日韩国产mv在线观看视频 | 一级毛片 在线播放| av黄色大香蕉| 亚洲精品色激情综合| 亚洲人成网站高清观看| 国产精品一及| 成人美女网站在线观看视频| 国产男女内射视频| 亚洲av中文字字幕乱码综合| 青春草亚洲视频在线观看| 波多野结衣巨乳人妻| a级毛片免费高清观看在线播放| 久久这里有精品视频免费| 夫妻午夜视频| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 97超碰精品成人国产| 综合色av麻豆| 国产成人一区二区在线| 91在线精品国自产拍蜜月| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 国产一区亚洲一区在线观看| 欧美少妇被猛烈插入视频| 美女高潮的动态| av天堂中文字幕网| 久久久久久久午夜电影| 中文字幕免费在线视频6| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| tube8黄色片| 91aial.com中文字幕在线观看| 亚洲最大成人手机在线| 久久精品国产亚洲av涩爱| 国产男人的电影天堂91| 超碰97精品在线观看| av天堂中文字幕网| 中国国产av一级| 免费黄频网站在线观看国产| 中文欧美无线码| 国产老妇伦熟女老妇高清| 不卡视频在线观看欧美| 一级a做视频免费观看| 尤物成人国产欧美一区二区三区| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 久久久久久久久久久免费av| 中国国产av一级| 男女无遮挡免费网站观看| 精品一区二区免费观看| 一级黄片播放器| 日本黄大片高清| 91精品伊人久久大香线蕉| 久久久欧美国产精品| xxx大片免费视频| 内地一区二区视频在线| 亚洲激情五月婷婷啪啪| 国产69精品久久久久777片| 国产精品无大码| 狠狠精品人妻久久久久久综合| 日韩不卡一区二区三区视频在线| 中文在线观看免费www的网站| xxx大片免费视频| 久久久精品免费免费高清| 久久影院123| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 日韩 亚洲 欧美在线| 2021天堂中文幕一二区在线观| 国产精品久久久久久精品古装| 少妇被粗大猛烈的视频| 丝袜喷水一区| 亚洲精品国产成人久久av| 久热这里只有精品99| 丰满人妻一区二区三区视频av| 亚洲精品国产av蜜桃| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 99热全是精品| 国产黄片美女视频| 丝袜美腿在线中文| 人妻 亚洲 视频| 欧美国产精品一级二级三级 | 一级二级三级毛片免费看| a级一级毛片免费在线观看| 亚州av有码| av黄色大香蕉| 欧美精品一区二区大全| 国产精品女同一区二区软件| 午夜精品国产一区二区电影 | 一级a做视频免费观看| 亚洲人成网站在线播| 国产成人精品久久久久久| 欧美日韩视频高清一区二区三区二| av在线app专区| 亚洲av国产av综合av卡| 中文乱码字字幕精品一区二区三区| 国产91av在线免费观看| 在线天堂最新版资源| 精品一区在线观看国产| 欧美高清性xxxxhd video| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 亚洲天堂av无毛| 好男人在线观看高清免费视频| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 午夜日本视频在线| 好男人视频免费观看在线| 国产在线男女| 久久久久久久久大av| 国产亚洲一区二区精品| 国产av码专区亚洲av| 欧美性感艳星| 国产综合懂色| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| www.av在线官网国产| 男女边吃奶边做爰视频| 国产v大片淫在线免费观看| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 中文欧美无线码| 国产亚洲精品久久久com| 欧美+日韩+精品| 五月玫瑰六月丁香| 国产欧美日韩一区二区三区在线 | 久久久久久九九精品二区国产| 六月丁香七月| 久久久久久久久久成人| 精品久久国产蜜桃| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o| 欧美三级亚洲精品| 一级二级三级毛片免费看| 国产淫语在线视频| www.色视频.com| 久热久热在线精品观看| 在线观看av片永久免费下载| 嫩草影院入口| 国产伦在线观看视频一区| 国产精品三级大全| 国产大屁股一区二区在线视频| 美女主播在线视频| 国产成人aa在线观看| 成人亚洲欧美一区二区av| 少妇裸体淫交视频免费看高清| 青春草视频在线免费观看| 精品久久久久久电影网| 国产69精品久久久久777片| 1000部很黄的大片| 国产免费一区二区三区四区乱码| 91狼人影院| 九色成人免费人妻av| 国产久久久一区二区三区| 日产精品乱码卡一卡2卡三| 亚洲四区av| 国产精品一区二区在线观看99| 欧美zozozo另类| 十八禁网站网址无遮挡 | 欧美区成人在线视频| 成人无遮挡网站| 欧美区成人在线视频| 午夜老司机福利剧场| 欧美日韩综合久久久久久| av国产久精品久网站免费入址| 久久女婷五月综合色啪小说 | 香蕉精品网在线| 黄片无遮挡物在线观看| 人妻系列 视频| 亚洲精品视频女| 狂野欧美白嫩少妇大欣赏| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 亚洲国产日韩一区二区| 色视频在线一区二区三区| 国产成人a区在线观看| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久亚洲| 国产一级毛片在线| 国产黄频视频在线观看| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 亚洲国产精品国产精品| 欧美精品国产亚洲| 亚洲人成网站在线观看播放| 国产综合精华液| av天堂中文字幕网| 一本一本综合久久| 国产极品天堂在线| 嘟嘟电影网在线观看| 少妇人妻久久综合中文| 联通29元200g的流量卡| 超碰av人人做人人爽久久| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 99久久九九国产精品国产免费| 黄色怎么调成土黄色| 色综合色国产| 亚洲欧美清纯卡通| av网站免费在线观看视频| 国产视频内射| 精华霜和精华液先用哪个| 国产爽快片一区二区三区| 美女国产视频在线观看| 精品人妻一区二区三区麻豆| 爱豆传媒免费全集在线观看| 真实男女啪啪啪动态图| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色视频www国产| 国产av码专区亚洲av| av卡一久久| 99精国产麻豆久久婷婷| 国产亚洲精品久久久com| 国产老妇女一区| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 国产亚洲精品久久久com| 国产免费福利视频在线观看| 麻豆成人午夜福利视频| 中文天堂在线官网| 免费在线观看成人毛片| av播播在线观看一区| 亚洲国产成人一精品久久久| 亚洲av成人精品一二三区| 日日啪夜夜爽| 各种免费的搞黄视频| 99久久精品一区二区三区| 亚洲精品国产成人久久av| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 全区人妻精品视频| 精品一区二区三区视频在线| 男人舔奶头视频| 青春草国产在线视频| 日本午夜av视频| 亚洲美女搞黄在线观看| 中国三级夫妇交换| 日韩电影二区| 青春草亚洲视频在线观看| 看免费成人av毛片| 午夜福利视频1000在线观看| 黄片无遮挡物在线观看| 中文字幕久久专区| av国产精品久久久久影院| 国产爱豆传媒在线观看| 精品亚洲乱码少妇综合久久|