• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    国产一区亚洲一区在线观看| 桃色一区二区三区在线观看| 天堂网av新在线| 国产精品1区2区在线观看.| 村上凉子中文字幕在线| 国产成人福利小说| 在现免费观看毛片| 又爽又黄a免费视频| 亚洲欧美成人精品一区二区| 亚洲色图av天堂| 啦啦啦观看免费观看视频高清| 日产精品乱码卡一卡2卡三| 亚洲人成网站在线播| 99热6这里只有精品| 国产91av在线免费观看| 国产淫语在线视频| 国内精品一区二区在线观看| av.在线天堂| 免费看a级黄色片| 黄片wwwwww| 国产成人91sexporn| 97在线视频观看| 综合色丁香网| 亚洲最大成人手机在线| 国产淫片久久久久久久久| 麻豆av噜噜一区二区三区| 亚洲国产精品国产精品| 欧美变态另类bdsm刘玥| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院入口| 99久久无色码亚洲精品果冻| 变态另类丝袜制服| 春色校园在线视频观看| 69人妻影院| 国产高清有码在线观看视频| 国产亚洲精品久久久com| 韩国av在线不卡| 久久精品夜色国产| 日韩av在线大香蕉| 校园人妻丝袜中文字幕| av视频在线观看入口| 美女内射精品一级片tv| 久久精品久久精品一区二区三区| 99国产精品一区二区蜜桃av| av卡一久久| 丝袜美腿在线中文| 一区二区三区免费毛片| 毛片一级片免费看久久久久| 禁无遮挡网站| 最近的中文字幕免费完整| 欧美3d第一页| 热99re8久久精品国产| 成人鲁丝片一二三区免费| 亚洲国产精品久久男人天堂| 亚洲av成人精品一区久久| 99热这里只有精品一区| 如何舔出高潮| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 99久久精品国产国产毛片| 国产麻豆成人av免费视频| 精品久久久久久成人av| 99久国产av精品| 国产精品永久免费网站| 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 欧美极品一区二区三区四区| 特大巨黑吊av在线直播| 国产黄色视频一区二区在线观看 | 成人亚洲欧美一区二区av| 国产av码专区亚洲av| 欧美日本视频| 亚洲av电影不卡..在线观看| 国产精品久久久久久av不卡| av在线播放精品| 午夜老司机福利剧场| 乱系列少妇在线播放| 国产视频内射| 国产精品国产三级国产专区5o | 成人毛片a级毛片在线播放| 日本黄色视频三级网站网址| 亚洲第一区二区三区不卡| 欧美日韩在线观看h| 国产成人精品婷婷| 国语对白做爰xxxⅹ性视频网站| 欧美激情在线99| 亚洲精品国产成人久久av| 午夜福利在线观看吧| 免费搜索国产男女视频| 一夜夜www| 听说在线观看完整版免费高清| 我要看日韩黄色一级片| 精品免费久久久久久久清纯| 能在线免费看毛片的网站| 成人鲁丝片一二三区免费| 亚洲性久久影院| 国产成人一区二区在线| 日韩欧美在线乱码| 亚洲人成网站在线播| 亚洲无线观看免费| 国产成人午夜福利电影在线观看| 观看免费一级毛片| 日韩国内少妇激情av| 日韩人妻高清精品专区| 国产黄色视频一区二区在线观看 | 国产一区有黄有色的免费视频 | videossex国产| 精品久久久久久久末码| 能在线免费观看的黄片| 国产精品久久久久久久久免| 人妻系列 视频| 夜夜爽夜夜爽视频| 久久久久久久久久久免费av| 汤姆久久久久久久影院中文字幕 | 久久精品夜夜夜夜夜久久蜜豆| 长腿黑丝高跟| 毛片一级片免费看久久久久| 特大巨黑吊av在线直播| 久久人妻av系列| 国产成人午夜福利电影在线观看| 久久久久国产网址| 永久网站在线| 免费av毛片视频| 成人无遮挡网站| 成人二区视频| 久久精品国产亚洲av天美| 亚洲性久久影院| 亚洲自拍偷在线| 国产成人福利小说| 亚洲国产最新在线播放| 免费看av在线观看网站| 久久久a久久爽久久v久久| 成人午夜精彩视频在线观看| 看免费成人av毛片| 久久99精品国语久久久| 国产一区二区在线观看日韩| 久久人人爽人人爽人人片va| 久久99热这里只频精品6学生 | 99久国产av精品| 欧美日本视频| 日本黄色视频三级网站网址| 只有这里有精品99| 精品午夜福利在线看| 美女内射精品一级片tv| 人妻系列 视频| 大又大粗又爽又黄少妇毛片口| 一级黄色大片毛片| 1000部很黄的大片| 亚洲av.av天堂| 91精品伊人久久大香线蕉| 国产中年淑女户外野战色| 国产又黄又爽又无遮挡在线| 午夜免费男女啪啪视频观看| 国产精品一区二区性色av| 国产真实伦视频高清在线观看| 国产精品日韩av在线免费观看| 91在线精品国自产拍蜜月| 国产真实乱freesex| 十八禁国产超污无遮挡网站| 国产色婷婷99| 最近中文字幕2019免费版| 久久精品国产自在天天线| 青春草亚洲视频在线观看| 久久久久网色| 尤物成人国产欧美一区二区三区| 国产免费男女视频| 熟女电影av网| 国产精品无大码| 变态另类丝袜制服| 性色avwww在线观看| 一级av片app| a级一级毛片免费在线观看| 久久久亚洲精品成人影院| 欧美bdsm另类| 国产男人的电影天堂91| 国语对白做爰xxxⅹ性视频网站| 精品99又大又爽又粗少妇毛片| 大又大粗又爽又黄少妇毛片口| 美女脱内裤让男人舔精品视频| 3wmmmm亚洲av在线观看| 久久精品综合一区二区三区| 亚洲欧美清纯卡通| 99久国产av精品| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区三区人妻视频| 免费播放大片免费观看视频在线观看 | 亚洲欧美日韩无卡精品| 亚洲av福利一区| 99国产精品一区二区蜜桃av| 亚洲欧美一区二区三区国产| 美女被艹到高潮喷水动态| 欧美人与善性xxx| 夜夜看夜夜爽夜夜摸| 黄片无遮挡物在线观看| 国产免费视频播放在线视频 | 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 级片在线观看| 国产精品无大码| 日本一二三区视频观看| 97超碰精品成人国产| 亚洲av成人精品一二三区| 精品人妻熟女av久视频| 亚洲成人av在线免费| 一级毛片电影观看 | 日本与韩国留学比较| 午夜福利在线观看吧| 波多野结衣巨乳人妻| 亚洲欧美中文字幕日韩二区| 精品酒店卫生间| 国产国拍精品亚洲av在线观看| 亚洲人与动物交配视频| 欧美日韩综合久久久久久| 激情 狠狠 欧美| 国产精品永久免费网站| 国产精品国产三级专区第一集| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 亚洲国产欧洲综合997久久,| 欧美成人免费av一区二区三区| 国产成人精品久久久久久| 超碰av人人做人人爽久久| 一级爰片在线观看| 精品国产三级普通话版| 成人二区视频| 在线观看av片永久免费下载| 一本久久精品| 成年版毛片免费区| 视频中文字幕在线观看| 国产精品人妻久久久久久| 亚洲综合色惰| 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| 久久久久九九精品影院| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 欧美日韩精品成人综合77777| 成人性生交大片免费视频hd| 成年女人看的毛片在线观看| 日日干狠狠操夜夜爽| av专区在线播放| 日本wwww免费看| 热99re8久久精品国产| 精品国产一区二区三区久久久樱花 | 午夜爱爱视频在线播放| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 大又大粗又爽又黄少妇毛片口| 看非洲黑人一级黄片| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 天美传媒精品一区二区| 免费av观看视频| 国产成年人精品一区二区| 晚上一个人看的免费电影| 久久热精品热| 午夜福利视频1000在线观看| 看十八女毛片水多多多| 岛国在线免费视频观看| av在线亚洲专区| 亚洲av成人av| 亚洲av成人精品一区久久| 在线观看一区二区三区| 超碰97精品在线观看| ponron亚洲| 国模一区二区三区四区视频| 亚洲av二区三区四区| 激情 狠狠 欧美| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 欧美成人精品欧美一级黄| 在线观看av片永久免费下载| 亚洲国产色片| 人妻夜夜爽99麻豆av| 久久午夜福利片| 久久久久久久久久成人| 深爱激情五月婷婷| 国产亚洲精品av在线| 国产成人精品婷婷| 99久久成人亚洲精品观看| 日本色播在线视频| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 亚洲欧美日韩高清专用| 国产成人精品久久久久久| 嫩草影院入口| 国语自产精品视频在线第100页| 青青草视频在线视频观看| 啦啦啦观看免费观看视频高清| 久久久成人免费电影| 美女高潮的动态| 日韩人妻高清精品专区| 能在线免费观看的黄片| 中文天堂在线官网| 在线免费十八禁| 国产高清不卡午夜福利| 男女视频在线观看网站免费| 国内精品一区二区在线观看| 久久精品久久精品一区二区三区| 欧美激情国产日韩精品一区| 我要搜黄色片| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 欧美人与善性xxx| 国产亚洲最大av| 大又大粗又爽又黄少妇毛片口| 七月丁香在线播放| 天堂影院成人在线观看| 亚洲怡红院男人天堂| 欧美成人精品欧美一级黄| 国产av在哪里看| 亚洲欧美一区二区三区国产| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看| 精品国产一区二区三区久久久樱花 | 中文字幕亚洲精品专区| 黄片wwwwww| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区| 国产精品熟女久久久久浪| 免费av不卡在线播放| 久久6这里有精品| 亚洲性久久影院| 91久久精品国产一区二区三区| 久久久精品大字幕| АⅤ资源中文在线天堂| 成人欧美大片| 欧美性猛交黑人性爽| 可以在线观看毛片的网站| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 少妇被粗大猛烈的视频| 亚洲久久久久久中文字幕| www日本黄色视频网| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 中文欧美无线码| a级毛色黄片| 久久久亚洲精品成人影院| 在线免费十八禁| 日本黄大片高清| 美女cb高潮喷水在线观看| 小说图片视频综合网站| 美女cb高潮喷水在线观看| 中文亚洲av片在线观看爽| 97热精品久久久久久| 波野结衣二区三区在线| 一区二区三区乱码不卡18| 老司机影院毛片| 美女内射精品一级片tv| 国产熟女欧美一区二区| 99久国产av精品国产电影| 成人亚洲欧美一区二区av| 亚洲高清免费不卡视频| 精品国产露脸久久av麻豆 | 51国产日韩欧美| 三级国产精品欧美在线观看| 99在线视频只有这里精品首页| 亚洲第一区二区三区不卡| 男人的好看免费观看在线视频| 欧美区成人在线视频| 性插视频无遮挡在线免费观看| 大香蕉久久网| 美女内射精品一级片tv| 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 国产精品国产三级专区第一集| 免费在线观看成人毛片| 国产精品国产三级专区第一集| 久久人人爽人人片av| 婷婷色麻豆天堂久久 | 国产精品av视频在线免费观看| 极品教师在线视频| 久久久久精品久久久久真实原创| 九九爱精品视频在线观看| 久久亚洲精品不卡| 老女人水多毛片| 国产欧美另类精品又又久久亚洲欧美| 一级毛片aaaaaa免费看小| 日本猛色少妇xxxxx猛交久久| 夜夜爽夜夜爽视频| 亚洲精品乱久久久久久| 亚洲三级黄色毛片| 男女国产视频网站| 欧美+日韩+精品| 免费大片18禁| 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 欧美日韩一区二区视频在线观看视频在线 | 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 国产精品福利在线免费观看| 亚洲精品456在线播放app| 亚洲精品成人久久久久久| 国产精品蜜桃在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 日本wwww免费看| av线在线观看网站| 日韩大片免费观看网站 | 婷婷色综合大香蕉| 在线播放国产精品三级| 亚洲国产欧美在线一区| 国产伦精品一区二区三区四那| 综合色av麻豆| 久久精品国产亚洲av涩爱| 日本爱情动作片www.在线观看| 国内精品一区二区在线观看| 丰满少妇做爰视频| 大话2 男鬼变身卡| 少妇熟女欧美另类| 2021天堂中文幕一二区在线观| 国产一级毛片在线| 最新中文字幕久久久久| 天堂影院成人在线观看| 变态另类丝袜制服| 国产成人一区二区在线| 国产精品久久久久久av不卡| 国产老妇女一区| 一本一本综合久久| 久久久午夜欧美精品| 久久精品久久久久久久性| 亚洲精品成人久久久久久| 欧美另类亚洲清纯唯美| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 免费看美女性在线毛片视频| 国语自产精品视频在线第100页| 一区二区三区乱码不卡18| 大话2 男鬼变身卡| a级毛色黄片| 日本午夜av视频| 九九爱精品视频在线观看| 色吧在线观看| 亚洲人成网站在线观看播放| 欧美性猛交╳xxx乱大交人| 黄色配什么色好看| 禁无遮挡网站| 婷婷色麻豆天堂久久 | 黑人高潮一二区| 啦啦啦韩国在线观看视频| 国产高清国产精品国产三级 | 一级毛片aaaaaa免费看小| 国国产精品蜜臀av免费| 国产免费男女视频| av国产久精品久网站免费入址| 国产午夜福利久久久久久| 狂野欧美白嫩少妇大欣赏| 国产精品无大码| 亚洲图色成人| 亚洲熟妇中文字幕五十中出| 日韩成人伦理影院| 六月丁香七月| 成人毛片a级毛片在线播放| 成年免费大片在线观看| 亚洲美女视频黄频| 久久精品熟女亚洲av麻豆精品 | 99国产精品一区二区蜜桃av| 日本免费在线观看一区| 精品无人区乱码1区二区| 深夜a级毛片| 国产精品永久免费网站| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产亚洲二区| 天天躁日日操中文字幕| 一区二区三区高清视频在线| 国产精品伦人一区二区| 美女黄网站色视频| kizo精华| av卡一久久| 我的老师免费观看完整版| 精品无人区乱码1区二区| 日韩中字成人| 男女那种视频在线观看| av在线天堂中文字幕| 三级经典国产精品| 国产淫片久久久久久久久| 村上凉子中文字幕在线| 国产在视频线在精品| 高清av免费在线| 欧美+日韩+精品| 一边摸一边抽搐一进一小说| 国内少妇人妻偷人精品xxx网站| 国产精品伦人一区二区| 97超视频在线观看视频| 国产探花极品一区二区| 久久99热这里只频精品6学生 | 国产精品女同一区二区软件| 一个人看的www免费观看视频| 中文乱码字字幕精品一区二区三区 | 少妇丰满av| 99热这里只有是精品50| 偷拍熟女少妇极品色| h日本视频在线播放| av女优亚洲男人天堂| 日韩欧美精品v在线| 国产在线一区二区三区精 | 亚洲天堂国产精品一区在线| 日韩强制内射视频| av福利片在线观看| 热99re8久久精品国产| 在线观看一区二区三区| 欧美潮喷喷水| 欧美zozozo另类| 日本-黄色视频高清免费观看| 国产中年淑女户外野战色| 亚洲欧美成人综合另类久久久 | 美女xxoo啪啪120秒动态图| 三级男女做爰猛烈吃奶摸视频| 在线免费十八禁| 少妇人妻一区二区三区视频| 国产大屁股一区二区在线视频| 男女国产视频网站| 老司机影院毛片| 成人av在线播放网站| 成人三级黄色视频| 又黄又爽又刺激的免费视频.| 国产一区二区在线av高清观看| 免费看光身美女| 国产精品熟女久久久久浪| 免费看a级黄色片| 乱码一卡2卡4卡精品| 九九热线精品视视频播放| 亚洲经典国产精华液单| 国产精品一区www在线观看| 婷婷色综合大香蕉| 99热精品在线国产| 亚洲国产精品成人综合色| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 亚洲av.av天堂| 久久亚洲国产成人精品v| 一级毛片我不卡| 午夜福利在线在线| 级片在线观看| 免费大片18禁| 大话2 男鬼变身卡| 中文字幕亚洲精品专区| 精品久久国产蜜桃| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| 久久婷婷人人爽人人干人人爱| 中文字幕av在线有码专区| 一区二区三区免费毛片| 国产极品天堂在线| 国产大屁股一区二区在线视频| 爱豆传媒免费全集在线观看| av专区在线播放| 青春草亚洲视频在线观看| 午夜福利视频1000在线观看| 久久人妻av系列| 国产精品一及| 成人美女网站在线观看视频| 国产亚洲午夜精品一区二区久久 | 久久久久久大精品| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 精品久久国产蜜桃| kizo精华| 女人十人毛片免费观看3o分钟| 亚洲成人av在线免费| 日本欧美国产在线视频| 大话2 男鬼变身卡| 国产中年淑女户外野战色| 欧美bdsm另类| 国产探花在线观看一区二区| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 嫩草影院新地址| 在线天堂最新版资源| 精品人妻熟女av久视频| 午夜福利在线在线| 亚洲综合精品二区| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 日本色播在线视频| 精品久久久久久久久久久久久| 免费观看精品视频网站| 日本猛色少妇xxxxx猛交久久| 亚洲精华国产精华液的使用体验| 综合色丁香网| av福利片在线观看| 欧美色视频一区免费| 亚洲精品亚洲一区二区| 婷婷色av中文字幕| 亚洲怡红院男人天堂| 真实男女啪啪啪动态图| 国产精品日韩av在线免费观看| 午夜免费男女啪啪视频观看| 久久99热这里只频精品6学生 | 丰满人妻一区二区三区视频av| 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 三级男女做爰猛烈吃奶摸视频| av女优亚洲男人天堂| 中文欧美无线码| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 一个人看视频在线观看www免费| 欧美xxxx黑人xx丫x性爽| 91久久精品电影网| 国产精品久久久久久久久免| 我的女老师完整版在线观看| 看片在线看免费视频| 女人十人毛片免费观看3o分钟| 日本-黄色视频高清免费观看| 日韩一区二区三区影片| 久久这里只有精品中国| 日韩视频在线欧美| 午夜亚洲福利在线播放|