• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    菩萨蛮人人尽说江南好唐韦庄| 99精国产麻豆久久婷婷| 久久久久精品性色| 大片电影免费在线观看免费| 久久99一区二区三区| 在线观看人妻少妇| 国产成人免费无遮挡视频| 久久免费观看电影| 在线观看免费视频网站a站| a 毛片基地| av又黄又爽大尺度在线免费看| 久久女婷五月综合色啪小说| 九九爱精品视频在线观看| 亚洲成人手机| 日韩三级伦理在线观看| 在线观看免费视频网站a站| 91精品伊人久久大香线蕉| 搡女人真爽免费视频火全软件| 国产成人精品福利久久| 18禁观看日本| 天天躁日日躁夜夜躁夜夜| 日韩制服骚丝袜av| 亚洲成色77777| 日韩制服丝袜自拍偷拍| 久久国产亚洲av麻豆专区| 成人毛片60女人毛片免费| av在线app专区| 精品少妇内射三级| 少妇人妻 视频| 免费大片黄手机在线观看| 亚洲精品在线美女| 久久影院123| 大香蕉久久成人网| 少妇的逼水好多| 少妇 在线观看| 欧美少妇被猛烈插入视频| 久久99精品国语久久久| 久久狼人影院| 下体分泌物呈黄色| 熟女少妇亚洲综合色aaa.| 亚洲精品视频女| 久久久久精品人妻al黑| 韩国精品一区二区三区| 欧美国产精品va在线观看不卡| 在线观看国产h片| 亚洲av成人精品一二三区| videosex国产| 我要看黄色一级片免费的| 国产成人精品久久二区二区91 | 一级黄片播放器| 五月天丁香电影| 一边摸一边做爽爽视频免费| 美女脱内裤让男人舔精品视频| 少妇的丰满在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲中文av在线| 国产深夜福利视频在线观看| 男人爽女人下面视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美日韩一级在线毛片| 精品酒店卫生间| 熟妇人妻不卡中文字幕| 激情视频va一区二区三区| 久久国内精品自在自线图片| 在线观看免费日韩欧美大片| 久久久久网色| 国产精品人妻久久久影院| 18在线观看网站| 亚洲第一青青草原| 国产亚洲精品第一综合不卡| 欧美日韩精品网址| 国产人伦9x9x在线观看 | 亚洲精品国产av成人精品| 亚洲av.av天堂| 五月开心婷婷网| 涩涩av久久男人的天堂| 99久久精品国产国产毛片| 十分钟在线观看高清视频www| 老鸭窝网址在线观看| 亚洲久久久国产精品| 看十八女毛片水多多多| av国产精品久久久久影院| 亚洲国产av影院在线观看| 超碰97精品在线观看| 色播在线永久视频| av又黄又爽大尺度在线免费看| 精品福利永久在线观看| 人妻一区二区av| 乱人伦中国视频| 五月天丁香电影| 久久影院123| 看非洲黑人一级黄片| 欧美最新免费一区二区三区| 亚洲欧美色中文字幕在线| 国产 精品1| 久久精品久久精品一区二区三区| 精品国产一区二区久久| 男女免费视频国产| 成年动漫av网址| 成年人午夜在线观看视频| 国产视频首页在线观看| 26uuu在线亚洲综合色| 黄片小视频在线播放| 飞空精品影院首页| 人妻一区二区av| 亚洲国产欧美日韩在线播放| 国产精品久久久久成人av| 午夜免费鲁丝| 久久久久久久久免费视频了| 成人国产av品久久久| 欧美国产精品一级二级三级| 国产精品一国产av| 久久久久久久久久久久大奶| 亚洲国产精品一区二区三区在线| videosex国产| 成人亚洲欧美一区二区av| 天堂中文最新版在线下载| 欧美97在线视频| 美国免费a级毛片| 男的添女的下面高潮视频| 考比视频在线观看| 久热久热在线精品观看| 高清黄色对白视频在线免费看| 老熟女久久久| 中文乱码字字幕精品一区二区三区| 精品国产国语对白av| 搡老乐熟女国产| 日韩三级伦理在线观看| 日本wwww免费看| av网站免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 精品人妻在线不人妻| 涩涩av久久男人的天堂| 香蕉精品网在线| 免费日韩欧美在线观看| 久久综合国产亚洲精品| 七月丁香在线播放| 日韩伦理黄色片| 国产女主播在线喷水免费视频网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | xxxhd国产人妻xxx| 丰满饥渴人妻一区二区三| 一本色道久久久久久精品综合| 日产精品乱码卡一卡2卡三| 久久免费观看电影| 最近最新中文字幕大全免费视频 | 久久久欧美国产精品| 精品亚洲乱码少妇综合久久| 最近2019中文字幕mv第一页| 校园人妻丝袜中文字幕| 一边亲一边摸免费视频| 99香蕉大伊视频| 2022亚洲国产成人精品| 肉色欧美久久久久久久蜜桃| 一级毛片黄色毛片免费观看视频| 午夜免费男女啪啪视频观看| 精品人妻一区二区三区麻豆| 国产深夜福利视频在线观看| 亚洲成人一二三区av| 国产精品一二三区在线看| 最近2019中文字幕mv第一页| 欧美日韩国产mv在线观看视频| 午夜免费鲁丝| 中国国产av一级| 最近中文字幕高清免费大全6| 国产人伦9x9x在线观看 | 丝袜在线中文字幕| 欧美成人精品欧美一级黄| 飞空精品影院首页| 欧美av亚洲av综合av国产av | 国产成人欧美| 久久久精品区二区三区| 在线免费观看不下载黄p国产| 国产亚洲一区二区精品| 国产无遮挡羞羞视频在线观看| 热re99久久精品国产66热6| 18禁动态无遮挡网站| 欧美日韩亚洲高清精品| av线在线观看网站| 99久久人妻综合| 国产亚洲精品第一综合不卡| 波多野结衣av一区二区av| 日韩电影二区| 欧美老熟妇乱子伦牲交| 考比视频在线观看| 亚洲男人天堂网一区| www.av在线官网国产| 90打野战视频偷拍视频| 肉色欧美久久久久久久蜜桃| 国产福利在线免费观看视频| 人妻一区二区av| 97在线人人人人妻| 欧美精品高潮呻吟av久久| 在线观看人妻少妇| 两个人免费观看高清视频| 日本黄色日本黄色录像| 不卡视频在线观看欧美| 亚洲成人av在线免费| 中文字幕人妻丝袜制服| 婷婷色麻豆天堂久久| 在线观看三级黄色| 丰满乱子伦码专区| 啦啦啦中文免费视频观看日本| 啦啦啦在线免费观看视频4| 精品卡一卡二卡四卡免费| 亚洲综合精品二区| 国产成人aa在线观看| 热re99久久精品国产66热6| 在现免费观看毛片| a级毛片黄视频| 成年人午夜在线观看视频| 亚洲欧美一区二区三区久久| 亚洲视频免费观看视频| 精品人妻一区二区三区麻豆| 久久久久久人人人人人| 久久精品国产a三级三级三级| 亚洲综合精品二区| 好男人视频免费观看在线| 久久人人爽av亚洲精品天堂| 色视频在线一区二区三区| 一边亲一边摸免费视频| 69精品国产乱码久久久| 一级毛片 在线播放| 视频区图区小说| 久久精品aⅴ一区二区三区四区 | 精品少妇内射三级| 欧美中文综合在线视频| 亚洲精品乱久久久久久| 国产精品三级大全| 日韩一卡2卡3卡4卡2021年| 国产成人91sexporn| 麻豆av在线久日| 国产免费现黄频在线看| 叶爱在线成人免费视频播放| 日本黄色日本黄色录像| 80岁老熟妇乱子伦牲交| 亚洲欧美色中文字幕在线| 久久精品国产a三级三级三级| 亚洲少妇的诱惑av| 三上悠亚av全集在线观看| 久久久精品区二区三区| 少妇熟女欧美另类| 久久久久久人人人人人| 国产精品久久久久久久久免| 久久久久久人人人人人| 男女午夜视频在线观看| 综合色丁香网| 啦啦啦在线观看免费高清www| 国产又色又爽无遮挡免| 一个人免费看片子| 亚洲少妇的诱惑av| 男人添女人高潮全过程视频| 国产探花极品一区二区| 成人毛片60女人毛片免费| 亚洲精品国产一区二区精华液| 久久午夜福利片| 涩涩av久久男人的天堂| 久久精品国产亚洲av涩爱| 中文欧美无线码| 少妇的丰满在线观看| 99久久精品国产国产毛片| 人妻系列 视频| 精品一区二区三卡| 久久精品国产亚洲av涩爱| 高清黄色对白视频在线免费看| 大话2 男鬼变身卡| 色视频在线一区二区三区| 天天躁夜夜躁狠狠躁躁| av在线观看视频网站免费| 日韩成人av中文字幕在线观看| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 国产av国产精品国产| 欧美成人午夜免费资源| kizo精华| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 在线亚洲精品国产二区图片欧美| 国产免费福利视频在线观看| 婷婷色综合www| 亚洲中文av在线| 国产男人的电影天堂91| 一级爰片在线观看| 日韩精品有码人妻一区| a 毛片基地| 精品国产乱码久久久久久男人| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 狠狠婷婷综合久久久久久88av| 久久 成人 亚洲| 丝袜喷水一区| av.在线天堂| 成人18禁高潮啪啪吃奶动态图| 国产精品香港三级国产av潘金莲 | 成人二区视频| 亚洲av中文av极速乱| 中文字幕最新亚洲高清| 18+在线观看网站| 色吧在线观看| 亚洲精品在线美女| 中文欧美无线码| 午夜久久久在线观看| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 婷婷色综合www| 国产淫语在线视频| xxx大片免费视频| 久久久久国产精品人妻一区二区| 最近最新中文字幕大全免费视频 | 美女午夜性视频免费| 99热国产这里只有精品6| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 国产人伦9x9x在线观看 | 亚洲美女视频黄频| 国产日韩一区二区三区精品不卡| 三上悠亚av全集在线观看| 欧美激情高清一区二区三区 | 日韩中文字幕视频在线看片| 精品亚洲成国产av| 免费播放大片免费观看视频在线观看| 少妇 在线观看| 成人毛片a级毛片在线播放| 两个人看的免费小视频| 80岁老熟妇乱子伦牲交| 日韩制服骚丝袜av| 97在线人人人人妻| 两性夫妻黄色片| 麻豆乱淫一区二区| 国产免费现黄频在线看| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 亚洲精品国产av成人精品| 国产免费现黄频在线看| 9色porny在线观看| 十八禁网站网址无遮挡| 777米奇影视久久| 新久久久久国产一级毛片| 又大又黄又爽视频免费| 黄色视频在线播放观看不卡| 亚洲精品自拍成人| 国产在视频线精品| 制服丝袜香蕉在线| 国产片内射在线| 久久久久久人人人人人| 婷婷色综合大香蕉| 美女福利国产在线| 精品一区二区三卡| 中文字幕精品免费在线观看视频| √禁漫天堂资源中文www| 国产1区2区3区精品| 亚洲av电影在线观看一区二区三区| 不卡av一区二区三区| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 一区二区日韩欧美中文字幕| 免费久久久久久久精品成人欧美视频| 男女午夜视频在线观看| 日韩三级伦理在线观看| 男人舔女人的私密视频| av片东京热男人的天堂| 啦啦啦啦在线视频资源| av福利片在线| 久久精品国产鲁丝片午夜精品| 黄频高清免费视频| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 久久久久久人妻| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 国产熟女欧美一区二区| 又黄又粗又硬又大视频| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 亚洲国产精品999| 国产成人精品婷婷| 久久久欧美国产精品| 极品人妻少妇av视频| av在线app专区| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 9热在线视频观看99| 欧美精品一区二区大全| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 在线观看美女被高潮喷水网站| 欧美黄色片欧美黄色片| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 亚洲精品久久成人aⅴ小说| 丰满少妇做爰视频| 亚洲国产精品999| 免费不卡的大黄色大毛片视频在线观看| 麻豆精品久久久久久蜜桃| 90打野战视频偷拍视频| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| 成人漫画全彩无遮挡| 国产av一区二区精品久久| 18禁裸乳无遮挡动漫免费视频| 国产色婷婷99| 女人精品久久久久毛片| 国产精品香港三级国产av潘金莲 | 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 欧美+日韩+精品| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 韩国高清视频一区二区三区| 国产精品偷伦视频观看了| 9191精品国产免费久久| 最近最新中文字幕大全免费视频 | 精品少妇一区二区三区视频日本电影 | 亚洲欧美一区二区三区国产| 亚洲精品久久久久久婷婷小说| 亚洲精品在线美女| 欧美精品一区二区大全| 在线观看www视频免费| 最黄视频免费看| 韩国av在线不卡| 男人操女人黄网站| 国产精品熟女久久久久浪| 电影成人av| 国产精品一二三区在线看| 亚洲精品aⅴ在线观看| 少妇熟女欧美另类| 99国产综合亚洲精品| 一区二区三区四区激情视频| 国产高清不卡午夜福利| 国产1区2区3区精品| 熟女电影av网| 欧美日韩精品网址| 热re99久久精品国产66热6| 老司机影院毛片| 久久99热这里只频精品6学生| 国产免费现黄频在线看| 亚洲色图综合在线观看| 99国产综合亚洲精品| 亚洲四区av| 国产av码专区亚洲av| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区 | 少妇 在线观看| 成人手机av| 欧美日韩av久久| 久久99蜜桃精品久久| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 丰满乱子伦码专区| 尾随美女入室| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| 午夜av观看不卡| 中文字幕制服av| 日韩大片免费观看网站| 97在线人人人人妻| 免费av中文字幕在线| 老汉色av国产亚洲站长工具| 国产综合精华液| 老司机影院毛片| av女优亚洲男人天堂| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 免费播放大片免费观看视频在线观看| 一二三四在线观看免费中文在| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品古装| 日韩一卡2卡3卡4卡2021年| 久久精品国产亚洲av天美| 中文字幕色久视频| 久热久热在线精品观看| 亚洲色图 男人天堂 中文字幕| 日日啪夜夜爽| 少妇人妻久久综合中文| h视频一区二区三区| 一本色道久久久久久精品综合| 男人爽女人下面视频在线观看| 免费女性裸体啪啪无遮挡网站| 久久久久久久精品精品| 久久久国产精品麻豆| 欧美人与性动交α欧美软件| 日韩av在线免费看完整版不卡| 欧美 日韩 精品 国产| 国产熟女午夜一区二区三区| 18禁动态无遮挡网站| 日韩中文字幕视频在线看片| 人人妻人人爽人人添夜夜欢视频| 午夜老司机福利剧场| 久久久国产欧美日韩av| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 亚洲成人一二三区av| freevideosex欧美| 亚洲国产精品国产精品| 国产精品欧美亚洲77777| 成年动漫av网址| 人人妻人人添人人爽欧美一区卜| 成人亚洲欧美一区二区av| 精品久久久精品久久久| 国产极品天堂在线| 一区二区三区乱码不卡18| 午夜福利在线免费观看网站| 9热在线视频观看99| 国产成人精品久久久久久| 免费看av在线观看网站| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 亚洲天堂av无毛| 韩国av在线不卡| 日韩一卡2卡3卡4卡2021年| 国产精品国产av在线观看| 伦理电影免费视频| 欧美日韩综合久久久久久| 亚洲五月色婷婷综合| freevideosex欧美| 国产日韩欧美亚洲二区| 9色porny在线观看| 亚洲在久久综合| 热99国产精品久久久久久7| 制服诱惑二区| 黄色 视频免费看| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 制服丝袜香蕉在线| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩综合在线一区二区| 一区二区日韩欧美中文字幕| 99久久综合免费| 欧美激情极品国产一区二区三区| a 毛片基地| 久久久精品国产亚洲av高清涩受| 女人高潮潮喷娇喘18禁视频| 9色porny在线观看| 国产成人精品久久久久久| 美女国产高潮福利片在线看| 国产国语露脸激情在线看| 考比视频在线观看| 精品一区在线观看国产| 叶爱在线成人免费视频播放| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区免费开放| 天天躁狠狠躁夜夜躁狠狠躁| 青青草视频在线视频观看| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三区在线| 国产精品 欧美亚洲| 久久国产精品大桥未久av| 国产在视频线精品| 一区在线观看完整版| 一区福利在线观看| 国产视频首页在线观看| 香蕉丝袜av| 香蕉精品网在线| 日韩伦理黄色片| 蜜桃在线观看..| 一本大道久久a久久精品| 欧美精品一区二区免费开放| 精品一区二区三卡| 精品少妇内射三级| 99国产综合亚洲精品| 国产精品久久久久久精品古装| 2018国产大陆天天弄谢| 日韩电影二区| 精品国产国语对白av| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美| 亚洲国产av新网站| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 久久这里有精品视频免费| 午夜91福利影院| 青草久久国产| 巨乳人妻的诱惑在线观看| 91久久精品国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 如何舔出高潮| 婷婷色综合大香蕉| 国产又色又爽无遮挡免| av不卡在线播放| 精品国产一区二区三区久久久樱花| 国产精品熟女久久久久浪| 日韩不卡一区二区三区视频在线| 久久精品熟女亚洲av麻豆精品| 精品第一国产精品| 欧美精品一区二区大全| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 美女中出高潮动态图| 国产免费一区二区三区四区乱码| 丝袜美腿诱惑在线| 一区二区三区激情视频| 2018国产大陆天天弄谢| 深夜精品福利| 最近2019中文字幕mv第一页| 一本—道久久a久久精品蜜桃钙片| 精品国产一区二区三区四区第35| 天美传媒精品一区二区| av网站免费在线观看视频| 91成人精品电影| 亚洲av福利一区|