• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    熟女少妇亚洲综合色aaa.| 亚洲成av人片免费观看| 制服诱惑二区| 免费在线观看成人毛片| 国产精品 国内视频| 亚洲成av人片在线播放无| 一级毛片精品| 成人18禁高潮啪啪吃奶动态图| 欧美极品一区二区三区四区| 黄色丝袜av网址大全| 首页视频小说图片口味搜索| 天堂√8在线中文| 又粗又爽又猛毛片免费看| 亚洲午夜精品一区,二区,三区| 亚洲一区中文字幕在线| 欧美精品亚洲一区二区| 亚洲电影在线观看av| 亚洲熟女毛片儿| av免费在线观看网站| av免费在线观看网站| 国产一级毛片七仙女欲春2| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| 亚洲真实伦在线观看| 美女午夜性视频免费| 亚洲熟妇熟女久久| 免费搜索国产男女视频| 欧美日韩福利视频一区二区| 在线观看免费午夜福利视频| 国产精品久久电影中文字幕| 午夜久久久久精精品| 精品第一国产精品| 99久久国产精品久久久| 久久精品91蜜桃| 一本大道久久a久久精品| 免费观看精品视频网站| 九色成人免费人妻av| or卡值多少钱| 精品免费久久久久久久清纯| 欧美在线一区亚洲| 最近最新免费中文字幕在线| 91国产中文字幕| 午夜影院日韩av| 桃色一区二区三区在线观看| 成年人黄色毛片网站| 久久精品91无色码中文字幕| 两个人的视频大全免费| av中文乱码字幕在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美 国产精品| 午夜a级毛片| 久久久久久久午夜电影| 88av欧美| 丝袜美腿诱惑在线| 久久久久九九精品影院| 亚洲精品久久国产高清桃花| 久久性视频一级片| 中出人妻视频一区二区| 精品国内亚洲2022精品成人| 手机成人av网站| 欧美+亚洲+日韩+国产| 五月伊人婷婷丁香| 国产精品一区二区三区四区久久| 日韩av在线大香蕉| 亚洲成人久久爱视频| 国产片内射在线| 国产午夜精品论理片| 亚洲国产精品合色在线| 亚洲精品中文字幕在线视频| 亚洲精品一区av在线观看| 国产一级毛片七仙女欲春2| 亚洲电影在线观看av| 人人妻人人澡欧美一区二区| 国产亚洲精品第一综合不卡| 中文字幕人成人乱码亚洲影| www日本黄色视频网| 岛国视频午夜一区免费看| 琪琪午夜伦伦电影理论片6080| 黄频高清免费视频| 国产亚洲av嫩草精品影院| av福利片在线| 午夜福利成人在线免费观看| 日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 老汉色∧v一级毛片| 成人三级黄色视频| 波多野结衣高清作品| 亚洲九九香蕉| 欧美色视频一区免费| 久99久视频精品免费| 国产精品自产拍在线观看55亚洲| 十八禁网站免费在线| 人成视频在线观看免费观看| 欧美乱妇无乱码| 97超级碰碰碰精品色视频在线观看| 色综合欧美亚洲国产小说| 欧美另类亚洲清纯唯美| 窝窝影院91人妻| 亚洲一区二区三区不卡视频| 三级男女做爰猛烈吃奶摸视频| 一进一出抽搐gif免费好疼| 国产亚洲精品第一综合不卡| 伦理电影免费视频| 一级毛片高清免费大全| 日韩精品中文字幕看吧| 老司机靠b影院| 精品国产美女av久久久久小说| 亚洲中文av在线| 久久久久国内视频| 国产精品野战在线观看| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 国产成人精品无人区| 欧美中文综合在线视频| 一级黄色大片毛片| 午夜影院日韩av| 九九热线精品视视频播放| 亚洲欧美日韩高清专用| 日本在线视频免费播放| 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 一进一出抽搐动态| 99国产精品一区二区三区| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 日韩欧美在线二视频| 精品日产1卡2卡| 精品久久久久久久久久免费视频| 黄色毛片三级朝国网站| 精品福利观看| 日韩免费av在线播放| 18禁黄网站禁片免费观看直播| 一级a爱片免费观看的视频| 亚洲激情在线av| 久久中文字幕一级| 中国美女看黄片| av片东京热男人的天堂| 日韩欧美国产在线观看| 亚洲av片天天在线观看| 国产精品免费视频内射| 亚洲美女黄片视频| 国产成年人精品一区二区| 俄罗斯特黄特色一大片| 亚洲成av人片免费观看| 国产成人av激情在线播放| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 国产97色在线日韩免费| 亚洲人成网站高清观看| 欧美午夜高清在线| 波多野结衣高清作品| 日本免费a在线| 1024手机看黄色片| 日本一区二区免费在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品电影一区二区三区| 亚洲欧美精品综合一区二区三区| 丁香欧美五月| АⅤ资源中文在线天堂| 午夜福利欧美成人| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区三| 久久久久久大精品| 国产精品久久视频播放| 久久久国产成人精品二区| 50天的宝宝边吃奶边哭怎么回事| 亚洲自偷自拍图片 自拍| 成人av一区二区三区在线看| 精品乱码久久久久久99久播| 亚洲一码二码三码区别大吗| 黄色片一级片一级黄色片| 两个人看的免费小视频| 亚洲国产日韩欧美精品在线观看 | 嫩草影院精品99| 午夜精品在线福利| 亚洲第一电影网av| 久久精品人妻少妇| 18美女黄网站色大片免费观看| 高潮久久久久久久久久久不卡| 在线观看午夜福利视频| 最近最新中文字幕大全电影3| 少妇粗大呻吟视频| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| 别揉我奶头~嗯~啊~动态视频| 91九色精品人成在线观看| 亚洲精品久久成人aⅴ小说| 久久久久九九精品影院| 日本熟妇午夜| 久久香蕉国产精品| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 黄片大片在线免费观看| 欧美日韩瑟瑟在线播放| 国产精品爽爽va在线观看网站| 精品久久蜜臀av无| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 亚洲国产日韩欧美精品在线观看 | 人人妻,人人澡人人爽秒播| 人成视频在线观看免费观看| 精品国内亚洲2022精品成人| 美女午夜性视频免费| 一本一本综合久久| 又黄又粗又硬又大视频| 国产高清视频在线观看网站| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| or卡值多少钱| 脱女人内裤的视频| 精品国产美女av久久久久小说| 久久久精品国产亚洲av高清涩受| 欧美成人午夜精品| 香蕉丝袜av| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 黄色视频不卡| 日韩av在线大香蕉| 国产精品久久久久久精品电影| 成人国语在线视频| 久久久久九九精品影院| 最新美女视频免费是黄的| 国产亚洲精品久久久久久毛片| 色噜噜av男人的天堂激情| 最近最新中文字幕大全免费视频| 久久久国产成人精品二区| 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 极品教师在线免费播放| 两人在一起打扑克的视频| 成人永久免费在线观看视频| 久久久国产欧美日韩av| 激情在线观看视频在线高清| 在线观看66精品国产| 美女午夜性视频免费| 一夜夜www| 在线观看免费午夜福利视频| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 亚洲一区高清亚洲精品| 在线播放国产精品三级| 无限看片的www在线观看| 三级男女做爰猛烈吃奶摸视频| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 日韩欧美三级三区| 亚洲欧美日韩无卡精品| 波多野结衣高清作品| 午夜福利视频1000在线观看| 精品久久久久久久久久久久久| 亚洲人成网站在线播放欧美日韩| 久久亚洲精品不卡| 国产精品 国内视频| 亚洲天堂国产精品一区在线| 久久久久免费精品人妻一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲色图av天堂| 丰满的人妻完整版| 午夜精品久久久久久毛片777| 成人欧美大片| 美女免费视频网站| 十八禁人妻一区二区| 久久久精品大字幕| 身体一侧抽搐| 日韩欧美免费精品| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 丰满人妻一区二区三区视频av | 又爽又黄无遮挡网站| 久久久久久久久中文| 精品电影一区二区在线| 国产精品精品国产色婷婷| 美女 人体艺术 gogo| 久久精品亚洲精品国产色婷小说| av欧美777| www.www免费av| 国产人伦9x9x在线观看| 欧美三级亚洲精品| 久久香蕉国产精品| 成人国语在线视频| 三级男女做爰猛烈吃奶摸视频| 国产免费av片在线观看野外av| 午夜福利在线观看吧| 窝窝影院91人妻| 好男人电影高清在线观看| 亚洲精品色激情综合| 好男人在线观看高清免费视频| 91老司机精品| 国产黄片美女视频| 亚洲片人在线观看| 18美女黄网站色大片免费观看| svipshipincom国产片| 亚洲欧美精品综合一区二区三区| 国产精品一及| 久久久国产成人免费| 国产探花在线观看一区二区| 男人舔女人的私密视频| 国产一区二区激情短视频| 国内精品久久久久久久电影| 天堂av国产一区二区熟女人妻 | 亚洲激情在线av| 丝袜人妻中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲人成网站在线播放欧美日韩| 久久中文看片网| 青草久久国产| 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| 国产精品一及| 精品欧美国产一区二区三| 在线播放国产精品三级| 三级国产精品欧美在线观看 | 亚洲中文av在线| 99热这里只有精品一区 | 亚洲国产日韩欧美精品在线观看 | 国产人伦9x9x在线观看| 欧美成人午夜精品| 19禁男女啪啪无遮挡网站| 久久草成人影院| 国产亚洲av高清不卡| 午夜福利免费观看在线| 精品久久蜜臀av无| 在线观看www视频免费| 淫秽高清视频在线观看| 成人三级做爰电影| 国产亚洲精品久久久久久毛片| 亚洲国产欧美人成| 91麻豆av在线| 欧美日韩黄片免| 香蕉丝袜av| 午夜久久久久精精品| 亚洲一区二区三区色噜噜| 久久人妻福利社区极品人妻图片| 正在播放国产对白刺激| 久久欧美精品欧美久久欧美| 一级片免费观看大全| 中文字幕高清在线视频| 黄色 视频免费看| 少妇裸体淫交视频免费看高清 | 动漫黄色视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 黄色 视频免费看| 琪琪午夜伦伦电影理论片6080| 亚洲激情在线av| 99riav亚洲国产免费| 黄色a级毛片大全视频| 日本免费一区二区三区高清不卡| 国产精品爽爽va在线观看网站| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| www日本黄色视频网| 麻豆国产97在线/欧美 | 老司机午夜福利在线观看视频| 少妇熟女aⅴ在线视频| 久久天堂一区二区三区四区| 成人午夜高清在线视频| 亚洲精品国产一区二区精华液| 国产精品亚洲一级av第二区| 亚洲av日韩精品久久久久久密| 免费在线观看成人毛片| 欧美性长视频在线观看| 在线观看一区二区三区| 欧美黑人巨大hd| xxx96com| 国产精品久久久久久久电影 | 韩国av一区二区三区四区| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 久久国产精品人妻蜜桃| 欧美一区二区精品小视频在线| 亚洲狠狠婷婷综合久久图片| 精品久久久久久成人av| 久久久久久九九精品二区国产 | 国产99久久九九免费精品| 日韩欧美 国产精品| 日韩三级视频一区二区三区| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 天天躁夜夜躁狠狠躁躁| 最近视频中文字幕2019在线8| 99久久精品国产亚洲精品| 亚洲色图av天堂| 美女黄网站色视频| 日韩高清综合在线| 国产精品av久久久久免费| 首页视频小说图片口味搜索| 亚洲国产精品合色在线| 亚洲熟妇中文字幕五十中出| 国产区一区二久久| 一区二区三区激情视频| 一进一出好大好爽视频| 日韩欧美一区二区三区在线观看| 中国美女看黄片| 欧美久久黑人一区二区| 老熟妇仑乱视频hdxx| 最近最新中文字幕大全免费视频| 国产高清videossex| ponron亚洲| 国模一区二区三区四区视频 | 级片在线观看| 亚洲国产精品sss在线观看| 欧美色视频一区免费| 变态另类成人亚洲欧美熟女| 午夜福利视频1000在线观看| 日本免费一区二区三区高清不卡| av片东京热男人的天堂| 国产一区二区三区视频了| 亚洲精品中文字幕一二三四区| 国产成人av激情在线播放| 99国产极品粉嫩在线观看| a级毛片在线看网站| 日日爽夜夜爽网站| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 亚洲国产欧美网| 国产精品久久久av美女十八| 青草久久国产| 国产精品亚洲美女久久久| 丰满的人妻完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 亚洲美女黄片视频| 又大又爽又粗| 成人欧美大片| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 日韩欧美在线乱码| 美女黄网站色视频| 欧美一级毛片孕妇| 欧美一区二区精品小视频在线| 亚洲黑人精品在线| 久久久精品大字幕| 搡老岳熟女国产| 国产真实乱freesex| 欧美不卡视频在线免费观看 | 黄色丝袜av网址大全| 97人妻精品一区二区三区麻豆| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 手机成人av网站| 国模一区二区三区四区视频 | 亚洲av美国av| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 亚洲欧美日韩东京热| 色精品久久人妻99蜜桃| 老司机靠b影院| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 精品久久久久久久久久久久久| 中文字幕人妻丝袜一区二区| 午夜日韩欧美国产| 日韩av在线大香蕉| 久久久久久免费高清国产稀缺| 国产成人aa在线观看| 日韩欧美精品v在线| 久99久视频精品免费| 午夜影院日韩av| www.精华液| 国产精品一及| 男男h啪啪无遮挡| 一夜夜www| 一级黄色大片毛片| 女警被强在线播放| 国产真人三级小视频在线观看| 午夜久久久久精精品| 国产午夜精品久久久久久| 黑人操中国人逼视频| 国产成人精品无人区| 一区二区三区激情视频| 亚洲人成伊人成综合网2020| 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 国产精品自产拍在线观看55亚洲| 国语自产精品视频在线第100页| 久久性视频一级片| av中文乱码字幕在线| 蜜桃久久精品国产亚洲av| 亚洲精品色激情综合| 99久久99久久久精品蜜桃| 日韩av在线大香蕉| 少妇被粗大的猛进出69影院| 看免费av毛片| 男女之事视频高清在线观看| 精品少妇一区二区三区视频日本电影| 亚洲一卡2卡3卡4卡5卡精品中文| 成人三级黄色视频| 两个人看的免费小视频| 国产精品精品国产色婷婷| 国产精品99久久99久久久不卡| 最近在线观看免费完整版| 久久久国产欧美日韩av| 国产aⅴ精品一区二区三区波| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩东京热| 91国产中文字幕| av天堂在线播放| 欧美中文综合在线视频| 国产午夜精品久久久久久| 日韩国内少妇激情av| 桃红色精品国产亚洲av| 此物有八面人人有两片| 精品久久久久久成人av| 麻豆国产97在线/欧美 | 最近视频中文字幕2019在线8| 亚洲色图av天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 一级a爱片免费观看的视频| 欧美久久黑人一区二区| 国内毛片毛片毛片毛片毛片| 在线a可以看的网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美在线黄色| 亚洲 欧美一区二区三区| 18禁美女被吸乳视频| 动漫黄色视频在线观看| 性欧美人与动物交配| 宅男免费午夜| 国产午夜精品论理片| 99riav亚洲国产免费| 午夜福利在线在线| 亚洲欧洲精品一区二区精品久久久| 亚洲无线在线观看| 亚洲精品一卡2卡三卡4卡5卡| 嫁个100分男人电影在线观看| 欧美三级亚洲精品| 麻豆国产av国片精品| 国产97色在线日韩免费| 我的老师免费观看完整版| 午夜精品在线福利| 亚洲精品中文字幕在线视频| 男人的好看免费观看在线视频 | 琪琪午夜伦伦电影理论片6080| 99国产精品99久久久久| 欧美乱码精品一区二区三区| 十八禁网站免费在线| 最近最新中文字幕大全电影3| 欧美午夜高清在线| 伦理电影免费视频| 一进一出好大好爽视频| 九色国产91popny在线| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 哪里可以看免费的av片| 真人做人爱边吃奶动态| 舔av片在线| 久久久久国产精品人妻aⅴ院| 国产精品 国内视频| 国产亚洲精品久久久久久毛片| 毛片女人毛片| 老熟妇仑乱视频hdxx| 99热6这里只有精品| 国产三级在线视频| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 国产精品 欧美亚洲| 国产欧美日韩一区二区三| 淫妇啪啪啪对白视频| 亚洲国产欧洲综合997久久,| 天堂av国产一区二区熟女人妻 | 在线观看日韩欧美| 欧美黑人精品巨大| 级片在线观看| 久久这里只有精品中国| 中文字幕最新亚洲高清| www.999成人在线观看| 精品国内亚洲2022精品成人| 欧美性猛交黑人性爽| 又黄又粗又硬又大视频| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲欧美在线一区二区| 91九色精品人成在线观看| 亚洲av熟女| 亚洲 欧美 日韩 在线 免费| 女警被强在线播放| 国产成人系列免费观看| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 亚洲 欧美一区二区三区| 成在线人永久免费视频| 激情在线观看视频在线高清| 黄片大片在线免费观看| 久久久久久九九精品二区国产 | 精品人妻1区二区| 欧美大码av| 亚洲av第一区精品v没综合| 精品电影一区二区在线| 午夜久久久久精精品| 搡老妇女老女人老熟妇| 男人舔女人的私密视频| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 亚洲专区中文字幕在线| 日韩欧美国产在线观看| 一夜夜www| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全电影3| 日日干狠狠操夜夜爽| 日韩精品青青久久久久久| 黑人欧美特级aaaaaa片| 日韩av在线大香蕉| 免费看a级黄色片| 免费在线观看日本一区| 中亚洲国语对白在线视频| 亚洲成人精品中文字幕电影| 成人欧美大片| 俺也久久电影网| av在线播放免费不卡| 99久久99久久久精品蜜桃| 精品欧美国产一区二区三| 国产蜜桃级精品一区二区三区| 国产免费男女视频|