• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    欧美日本中文国产一区发布| 亚洲国产欧美网| 91精品三级在线观看| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 亚洲avbb在线观看| 一区福利在线观看| 正在播放国产对白刺激| 91麻豆av在线| 久久亚洲真实| 两个人免费观看高清视频| 国产精品99久久99久久久不卡| 成人亚洲精品av一区二区| √禁漫天堂资源中文www| 后天国语完整版免费观看| 一夜夜www| 日韩视频一区二区在线观看| 熟妇人妻久久中文字幕3abv| 叶爱在线成人免费视频播放| 欧美激情久久久久久爽电影 | 最新美女视频免费是黄的| 亚洲成av片中文字幕在线观看| 高潮久久久久久久久久久不卡| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 亚洲欧美一区二区三区黑人| 国语自产精品视频在线第100页| 最近最新中文字幕大全免费视频| 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 精品久久久精品久久久| 精品国产乱码久久久久久男人| 在线观看舔阴道视频| 久久人妻福利社区极品人妻图片| 久久久久久久久中文| 大陆偷拍与自拍| 欧美大码av| www.999成人在线观看| 欧美最黄视频在线播放免费| 精品久久久久久久毛片微露脸| 一级毛片精品| or卡值多少钱| 在线国产一区二区在线| 叶爱在线成人免费视频播放| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看| 老司机在亚洲福利影院| 久久精品91无色码中文字幕| 成人特级黄色片久久久久久久| 日本一区二区免费在线视频| 涩涩av久久男人的天堂| 一卡2卡三卡四卡精品乱码亚洲| 一进一出好大好爽视频| 国产三级黄色录像| a级毛片在线看网站| 久久香蕉激情| 久久精品aⅴ一区二区三区四区| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av在线| 亚洲av电影不卡..在线观看| 国产私拍福利视频在线观看| 在线国产一区二区在线| 国产精品久久久久久人妻精品电影| 女同久久另类99精品国产91| 国产欧美日韩一区二区精品| 91成人精品电影| 午夜日韩欧美国产| 变态另类成人亚洲欧美熟女 | 久久久久久久精品吃奶| 午夜两性在线视频| 日韩一卡2卡3卡4卡2021年| 欧美黑人精品巨大| 一级毛片高清免费大全| 高清黄色对白视频在线免费看| 一区二区三区激情视频| 操美女的视频在线观看| 免费av毛片视频| 女人爽到高潮嗷嗷叫在线视频| 日日摸夜夜添夜夜添小说| 久久中文字幕一级| 亚洲欧洲精品一区二区精品久久久| 亚洲伊人色综图| 亚洲精品国产色婷婷电影| 久久久久久久午夜电影| 成年版毛片免费区| 非洲黑人性xxxx精品又粗又长| 亚洲视频免费观看视频| 亚洲一区二区三区不卡视频| 十八禁人妻一区二区| 亚洲少妇的诱惑av| 久久国产精品人妻蜜桃| 制服丝袜大香蕉在线| 在线观看www视频免费| 欧美中文日本在线观看视频| 亚洲,欧美精品.| 欧美国产精品va在线观看不卡| 亚洲人成电影免费在线| av视频免费观看在线观看| 午夜日韩欧美国产| 久久九九热精品免费| 国产真人三级小视频在线观看| 免费观看精品视频网站| 亚洲五月天丁香| 国产亚洲精品第一综合不卡| 人人澡人人妻人| 亚洲国产欧美一区二区综合| 久久人人精品亚洲av| 久久热在线av| 久久精品国产亚洲av高清一级| 大型黄色视频在线免费观看| 亚洲天堂国产精品一区在线| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 制服人妻中文乱码| 亚洲第一青青草原| 欧美乱色亚洲激情| 久久久国产成人免费| 久久婷婷人人爽人人干人人爱 | 亚洲少妇的诱惑av| 午夜免费鲁丝| 国产精品久久久久久人妻精品电影| 乱人伦中国视频| 国产激情欧美一区二区| 夜夜爽天天搞| 日韩成人在线观看一区二区三区| 怎么达到女性高潮| 日韩大码丰满熟妇| av在线播放免费不卡| netflix在线观看网站| 一级作爱视频免费观看| 日韩欧美三级三区| 侵犯人妻中文字幕一二三四区| 成人亚洲精品av一区二区| 欧美日韩亚洲综合一区二区三区_| 精品电影一区二区在线| 淫妇啪啪啪对白视频| 国产成人影院久久av| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产国语对白av| 日本一区二区免费在线视频| 亚洲av成人av| 日本黄色视频三级网站网址| 欧美中文综合在线视频| 欧美激情高清一区二区三区| 欧美+亚洲+日韩+国产| 免费观看精品视频网站| 给我免费播放毛片高清在线观看| 欧美黑人精品巨大| 欧美性长视频在线观看| 国产国语露脸激情在线看| 亚洲片人在线观看| www日本在线高清视频| 欧美不卡视频在线免费观看 | cao死你这个sao货| 日韩欧美免费精品| 久久中文字幕人妻熟女| 免费人成视频x8x8入口观看| 久久国产精品男人的天堂亚洲| 亚洲va日本ⅴa欧美va伊人久久| 欧美中文日本在线观看视频| 国产亚洲精品久久久久5区| 91成人精品电影| 757午夜福利合集在线观看| 人妻久久中文字幕网| 人成视频在线观看免费观看| 在线观看一区二区三区| 亚洲色图av天堂| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 国产伦一二天堂av在线观看| 丝袜美足系列| 精品国产国语对白av| 亚洲av成人一区二区三| 国产亚洲精品综合一区在线观看 | 亚洲av片天天在线观看| 日本vs欧美在线观看视频| 日本a在线网址| 黄色女人牲交| 一二三四在线观看免费中文在| 精品日产1卡2卡| 久久亚洲真实| 在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 成年女人毛片免费观看观看9| 中文字幕另类日韩欧美亚洲嫩草| 亚洲自拍偷在线| 九色亚洲精品在线播放| 国产精品 欧美亚洲| 丝袜人妻中文字幕| 亚洲自拍偷在线| 高潮久久久久久久久久久不卡| 午夜激情av网站| 在线播放国产精品三级| 麻豆av在线久日| 日韩欧美三级三区| 国产亚洲欧美在线一区二区| 涩涩av久久男人的天堂| 搞女人的毛片| 国产亚洲欧美98| 国产伦人伦偷精品视频| 亚洲片人在线观看| 成人特级黄色片久久久久久久| 国产在线精品亚洲第一网站| 真人一进一出gif抽搐免费| 国产精品一区二区三区四区久久 | aaaaa片日本免费| 一夜夜www| 国产精品免费一区二区三区在线| 日韩中文字幕欧美一区二区| 精品第一国产精品| 麻豆国产av国片精品| 91av网站免费观看| 两个人免费观看高清视频| 老司机靠b影院| 熟妇人妻久久中文字幕3abv| 亚洲国产精品久久男人天堂| 成年人黄色毛片网站| 精品国产乱码久久久久久男人| 国产蜜桃级精品一区二区三区| 老熟妇仑乱视频hdxx| 久久精品亚洲精品国产色婷小说| 欧洲精品卡2卡3卡4卡5卡区| 后天国语完整版免费观看| 免费观看人在逋| 99热只有精品国产| 精品久久久久久,| 一区二区三区激情视频| 国产成人精品久久二区二区免费| 亚洲av电影不卡..在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 男女之事视频高清在线观看| 欧美黄色片欧美黄色片| 亚洲美女黄片视频| 黄网站色视频无遮挡免费观看| 女人爽到高潮嗷嗷叫在线视频| av天堂久久9| 欧美黄色淫秽网站| 男人的好看免费观看在线视频 | 自拍欧美九色日韩亚洲蝌蚪91| 91国产中文字幕| 久久人妻熟女aⅴ| 天堂√8在线中文| av欧美777| 99国产极品粉嫩在线观看| 久久香蕉精品热| 中文字幕精品免费在线观看视频| 国产aⅴ精品一区二区三区波| 两人在一起打扑克的视频| 这个男人来自地球电影免费观看| 久久久久久国产a免费观看| 国产精品久久久人人做人人爽| 午夜免费成人在线视频| 激情视频va一区二区三区| 欧美国产精品va在线观看不卡| 国产激情欧美一区二区| 高清在线国产一区| 在线av久久热| 操出白浆在线播放| 一边摸一边抽搐一进一小说| av在线天堂中文字幕| 国产成年人精品一区二区| 在线观看一区二区三区| 亚洲伊人色综图| 不卡一级毛片| 国语自产精品视频在线第100页| av视频免费观看在线观看| 欧美成狂野欧美在线观看| 老司机午夜福利在线观看视频| 两个人看的免费小视频| 中文字幕精品免费在线观看视频| 日本黄色视频三级网站网址| 国产精品影院久久| 成人国产一区最新在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女毛片儿| 亚洲欧美精品综合一区二区三区| 午夜福利影视在线免费观看| 一级毛片高清免费大全| 亚洲欧美日韩高清在线视频| 一区二区日韩欧美中文字幕| 亚洲专区中文字幕在线| 亚洲精品国产区一区二| 女同久久另类99精品国产91| 激情在线观看视频在线高清| 好看av亚洲va欧美ⅴa在| 欧美黑人精品巨大| 可以在线观看的亚洲视频| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| www国产在线视频色| 日韩中文字幕欧美一区二区| 亚洲狠狠婷婷综合久久图片| 精品日产1卡2卡| 亚洲三区欧美一区| 亚洲性夜色夜夜综合| 国产精品 欧美亚洲| 日韩免费av在线播放| 制服丝袜大香蕉在线| 女人被狂操c到高潮| 99国产精品一区二区三区| 久热这里只有精品99| 国产熟女午夜一区二区三区| 国产亚洲精品av在线| 亚洲国产毛片av蜜桃av| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 欧美黑人精品巨大| 黄色片一级片一级黄色片| 成年版毛片免费区| 国产又爽黄色视频| 如日韩欧美国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 黄片大片在线免费观看| av电影中文网址| 亚洲成人精品中文字幕电影| 这个男人来自地球电影免费观看| 国产1区2区3区精品| 97人妻精品一区二区三区麻豆 | 97人妻精品一区二区三区麻豆 | 久久精品成人免费网站| 波多野结衣巨乳人妻| 亚洲,欧美精品.| 制服诱惑二区| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 亚洲天堂国产精品一区在线| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 别揉我奶头~嗯~啊~动态视频| 97人妻天天添夜夜摸| 精品久久久久久久毛片微露脸| 久久午夜综合久久蜜桃| 亚洲少妇的诱惑av| 午夜精品在线福利| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 亚洲精品国产色婷婷电影| 欧美一区二区精品小视频在线| 亚洲黑人精品在线| 欧美最黄视频在线播放免费| 男人舔女人下体高潮全视频| 99香蕉大伊视频| 久热爱精品视频在线9| 露出奶头的视频| 国产片内射在线| 亚洲精品在线观看二区| 午夜福利视频1000在线观看 | 亚洲成av片中文字幕在线观看| 性少妇av在线| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| 免费在线观看亚洲国产| 色在线成人网| 色av中文字幕| 色综合亚洲欧美另类图片| 高清在线国产一区| 日韩欧美三级三区| 啦啦啦观看免费观看视频高清 | 亚洲专区字幕在线| 亚洲一码二码三码区别大吗| 亚洲午夜精品一区,二区,三区| 满18在线观看网站| 美女国产高潮福利片在线看| 两个人视频免费观看高清| 中文字幕精品免费在线观看视频| 国产成人精品久久二区二区91| 亚洲国产精品合色在线| 亚洲五月天丁香| 亚洲专区国产一区二区| 一边摸一边抽搐一进一小说| 国产午夜福利久久久久久| 亚洲成av人片免费观看| 一区二区三区激情视频| 国产av精品麻豆| 久久伊人香网站| www.自偷自拍.com| 一级,二级,三级黄色视频| 亚洲国产日韩欧美精品在线观看 | 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 亚洲在线自拍视频| 日韩 欧美 亚洲 中文字幕| 可以在线观看的亚洲视频| 少妇 在线观看| 亚洲性夜色夜夜综合| 黄片播放在线免费| 一区福利在线观看| 国产麻豆69| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 欧美黑人精品巨大| 精品久久久久久久久久免费视频| av有码第一页| 一本大道久久a久久精品| 国产高清有码在线观看视频 | 在线播放国产精品三级| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 精品久久久久久久毛片微露脸| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 曰老女人黄片| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 国产极品粉嫩免费观看在线| 久久国产乱子伦精品免费另类| 成人三级做爰电影| 欧美老熟妇乱子伦牲交| 99精品在免费线老司机午夜| 大陆偷拍与自拍| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 女同久久另类99精品国产91| 一级作爱视频免费观看| 国产野战对白在线观看| 国产亚洲欧美精品永久| 91麻豆精品激情在线观看国产| 欧美一级a爱片免费观看看 | 久久久水蜜桃国产精品网| 看黄色毛片网站| 欧美激情高清一区二区三区| 欧美精品亚洲一区二区| 欧美色欧美亚洲另类二区 | www.精华液| 国产一卡二卡三卡精品| 两个人看的免费小视频| 国产精品九九99| 亚洲av片天天在线观看| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三 | 人妻久久中文字幕网| 日韩欧美一区二区三区在线观看| 50天的宝宝边吃奶边哭怎么回事| videosex国产| 不卡av一区二区三区| 日本 欧美在线| 欧美日韩黄片免| 久久这里只有精品19| 97人妻精品一区二区三区麻豆 | 50天的宝宝边吃奶边哭怎么回事| 免费高清在线观看日韩| 9热在线视频观看99| 成人手机av| 日韩免费av在线播放| 最新在线观看一区二区三区| 欧美黑人精品巨大| 欧美最黄视频在线播放免费| 制服丝袜大香蕉在线| 九色亚洲精品在线播放| 中文字幕人妻熟女乱码| 国产在线观看jvid| 久久人妻av系列| 琪琪午夜伦伦电影理论片6080| 午夜福利影视在线免费观看| 久久精品成人免费网站| 好男人电影高清在线观看| 十分钟在线观看高清视频www| av在线播放免费不卡| 黄片播放在线免费| 国产av精品麻豆| 午夜激情av网站| 真人一进一出gif抽搐免费| 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区久久 | 一级黄色大片毛片| 一进一出抽搐动态| 日本欧美视频一区| 最新美女视频免费是黄的| 国产亚洲欧美在线一区二区| 又黄又爽又免费观看的视频| 大香蕉久久成人网| www.自偷自拍.com| 午夜成年电影在线免费观看| 国产午夜精品久久久久久| 精品久久久精品久久久| 久久久久国内视频| 97碰自拍视频| 日本在线视频免费播放| 女性生殖器流出的白浆| 亚洲午夜精品一区,二区,三区| 久久九九热精品免费| 亚洲精品一区av在线观看| 久久伊人香网站| 变态另类丝袜制服| 亚洲国产精品合色在线| 欧美色视频一区免费| 人人妻人人澡欧美一区二区 | 久久久久久久午夜电影| 手机成人av网站| 一区在线观看完整版| 精品久久久久久,| 制服人妻中文乱码| 国产精品精品国产色婷婷| 一二三四在线观看免费中文在| 在线观看日韩欧美| 男女下面进入的视频免费午夜 | 99国产精品一区二区三区| 黄片大片在线免费观看| 国产三级在线视频| 久久国产精品人妻蜜桃| 免费看美女性在线毛片视频| 黑人巨大精品欧美一区二区mp4| 18禁黄网站禁片午夜丰满| 男女下面进入的视频免费午夜 | 天天一区二区日本电影三级 | 亚洲自拍偷在线| 最新美女视频免费是黄的| 国产精品自产拍在线观看55亚洲| 国产精品98久久久久久宅男小说| 99久久国产精品久久久| 在线观看免费视频网站a站| 怎么达到女性高潮| 高清黄色对白视频在线免费看| 久久婷婷成人综合色麻豆| 少妇的丰满在线观看| 国产成年人精品一区二区| 欧美乱色亚洲激情| 国产av又大| 日韩成人在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 成年女人毛片免费观看观看9| 人人妻人人爽人人添夜夜欢视频| 免费在线观看视频国产中文字幕亚洲| 黄片大片在线免费观看| 在线视频色国产色| 91老司机精品| av视频在线观看入口| 女人被躁到高潮嗷嗷叫费观| 国产激情久久老熟女| 在线天堂中文资源库| 激情在线观看视频在线高清| 国产欧美日韩综合在线一区二区| 久热这里只有精品99| 在线国产一区二区在线| 日韩大码丰满熟妇| 色在线成人网| 一级毛片女人18水好多| 啪啪无遮挡十八禁网站| 神马国产精品三级电影在线观看 | 精品久久久久久成人av| 亚洲精品国产精品久久久不卡| 成年版毛片免费区| 亚洲人成伊人成综合网2020| 亚洲成人国产一区在线观看| 亚洲一区二区三区不卡视频| 久久九九热精品免费| 巨乳人妻的诱惑在线观看| 窝窝影院91人妻| 日本 欧美在线| 午夜免费成人在线视频| 久久久久久久久免费视频了| 最近最新中文字幕大全免费视频| 999久久久国产精品视频| 亚洲第一电影网av| 精品国产乱码久久久久久男人| 亚洲中文字幕一区二区三区有码在线看 | 人人澡人人妻人| 日日干狠狠操夜夜爽| 18禁观看日本| svipshipincom国产片| 国产av精品麻豆| 亚洲精品中文字幕在线视频| 国产激情久久老熟女| 黑丝袜美女国产一区| 精品国产超薄肉色丝袜足j| 色av中文字幕| 精品久久久久久久毛片微露脸| 成人特级黄色片久久久久久久| 精品久久蜜臀av无| 亚洲熟妇熟女久久| 久热爱精品视频在线9| 欧美黄色淫秽网站| 变态另类丝袜制服| 又紧又爽又黄一区二区| 国产区一区二久久| 免费高清视频大片| 黄色成人免费大全| 亚洲成国产人片在线观看| 国产黄a三级三级三级人| 久热爱精品视频在线9| 性欧美人与动物交配| 国产一区二区在线av高清观看| 国产乱人伦免费视频| 女人精品久久久久毛片| 在线天堂中文资源库| 精品不卡国产一区二区三区| 成年女人毛片免费观看观看9| 国产一区二区激情短视频| 欧美成人午夜精品| 中文字幕色久视频| 视频区欧美日本亚洲| 精品国产亚洲在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区色噜噜| 日本三级黄在线观看| 90打野战视频偷拍视频| 国产99白浆流出| 日本三级黄在线观看|