• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    99热这里只有精品一区| 观看免费一级毛片| 欧美变态另类bdsm刘玥| 寂寞人妻少妇视频99o| 久久99蜜桃精品久久| 日韩三级伦理在线观看| 中国美女看黄片| 日韩一区二区三区影片| 中文在线观看免费www的网站| 国产午夜精品论理片| av在线蜜桃| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久com| 青春草国产在线视频 | 久久亚洲精品不卡| 亚洲欧美日韩卡通动漫| 精品日产1卡2卡| 国产精品久久久久久av不卡| 一本一本综合久久| 国产精品嫩草影院av在线观看| 亚洲av不卡在线观看| 国产精品伦人一区二区| 黄色配什么色好看| 91午夜精品亚洲一区二区三区| 99视频精品全部免费 在线| 亚洲av熟女| 变态另类丝袜制服| 天堂√8在线中文| 久久人人爽人人爽人人片va| 国产一区亚洲一区在线观看| 免费观看在线日韩| 亚洲欧美日韩东京热| av在线亚洲专区| 一级毛片aaaaaa免费看小| 一级毛片aaaaaa免费看小| 免费黄网站久久成人精品| 国产在视频线在精品| 99热这里只有是精品在线观看| 午夜久久久久精精品| 国产成人午夜福利电影在线观看| 国产精品99久久久久久久久| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在 | 亚洲最大成人中文| 1000部很黄的大片| 欧美日本亚洲视频在线播放| 亚洲一级一片aⅴ在线观看| 嫩草影院精品99| 高清毛片免费观看视频网站| 久久午夜亚洲精品久久| 99久国产av精品| 亚洲美女搞黄在线观看| 可以在线观看毛片的网站| 亚洲在久久综合| 女同久久另类99精品国产91| 男的添女的下面高潮视频| 色噜噜av男人的天堂激情| www.色视频.com| 成年女人永久免费观看视频| 成人漫画全彩无遮挡| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线| av女优亚洲男人天堂| 好男人在线观看高清免费视频| 国产黄色视频一区二区在线观看 | 久久久久九九精品影院| 国产单亲对白刺激| 国产 一区 欧美 日韩| 黄色欧美视频在线观看| 赤兔流量卡办理| 日韩,欧美,国产一区二区三区 | 日韩精品青青久久久久久| 91aial.com中文字幕在线观看| 18禁黄网站禁片免费观看直播| 国产真实伦视频高清在线观看| 精品国产三级普通话版| 国产成年人精品一区二区| 校园人妻丝袜中文字幕| 一级毛片我不卡| 性插视频无遮挡在线免费观看| 一边摸一边抽搐一进一小说| 亚洲四区av| 99热6这里只有精品| 内地一区二区视频在线| 国产亚洲精品av在线| 成人亚洲欧美一区二区av| 日韩精品青青久久久久久| 日日撸夜夜添| 综合色丁香网| 亚洲欧美日韩高清专用| 免费看日本二区| 啦啦啦观看免费观看视频高清| 少妇高潮的动态图| 91午夜精品亚洲一区二区三区| 我的女老师完整版在线观看| 嫩草影院新地址| 成人性生交大片免费视频hd| 赤兔流量卡办理| 久久99精品国语久久久| 综合色丁香网| 男女那种视频在线观看| av在线观看视频网站免费| av在线天堂中文字幕| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 哪里可以看免费的av片| 久久久国产成人精品二区| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 欧美成人一区二区免费高清观看| 国产日韩欧美在线精品| 久久人人精品亚洲av| 日本av手机在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区在线观看99 | 白带黄色成豆腐渣| 欧美精品国产亚洲| 干丝袜人妻中文字幕| 黄色一级大片看看| 欧美精品国产亚洲| 亚洲欧美精品综合久久99| 看免费成人av毛片| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说 | 韩国av在线不卡| 午夜视频国产福利| 精品久久久久久久久亚洲| 男女视频在线观看网站免费| 成人综合一区亚洲| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 色尼玛亚洲综合影院| 成年女人看的毛片在线观看| 听说在线观看完整版免费高清| 欧美丝袜亚洲另类| www.av在线官网国产| 草草在线视频免费看| 性色avwww在线观看| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 免费黄网站久久成人精品| 在线天堂最新版资源| 国产精品三级大全| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 综合色av麻豆| 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 日韩成人av中文字幕在线观看| 国产av一区在线观看免费| 国产一级毛片七仙女欲春2| 综合色av麻豆| 亚洲天堂国产精品一区在线| 久久久午夜欧美精品| а√天堂www在线а√下载| 欧美高清性xxxxhd video| 欧美三级亚洲精品| а√天堂www在线а√下载| 国产综合懂色| 久久久午夜欧美精品| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美精品自产自拍| 国产黄色小视频在线观看| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看| 波多野结衣高清作品| 秋霞在线观看毛片| 日本黄色视频三级网站网址| 我要搜黄色片| 国内精品久久久久精免费| 人人妻人人澡欧美一区二区| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 色吧在线观看| 国产v大片淫在线免费观看| h日本视频在线播放| av又黄又爽大尺度在线免费看 | 亚洲不卡免费看| 国产女主播在线喷水免费视频网站 | 亚洲精品亚洲一区二区| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 少妇的逼水好多| 一区福利在线观看| 热99re8久久精品国产| 日本熟妇午夜| 99热网站在线观看| 中出人妻视频一区二区| 天堂中文最新版在线下载 | 免费人成在线观看视频色| 国产真实伦视频高清在线观看| 日韩欧美精品免费久久| 亚洲精华国产精华液的使用体验 | 国产高清三级在线| 男人舔女人下体高潮全视频| 国产成人a∨麻豆精品| 91精品国产九色| 成人特级黄色片久久久久久久| 一级二级三级毛片免费看| 亚洲国产精品国产精品| 国产精品福利在线免费观看| 午夜精品在线福利| 欧美+日韩+精品| 久久中文看片网| 青春草国产在线视频 | 91久久精品国产一区二区成人| 联通29元200g的流量卡| 国产私拍福利视频在线观看| 青春草国产在线视频 | 日韩av在线大香蕉| 亚洲精华国产精华液的使用体验 | 波多野结衣巨乳人妻| 久久精品久久久久久噜噜老黄 | 免费av观看视频| 草草在线视频免费看| 在线免费观看不下载黄p国产| 黄色日韩在线| 少妇裸体淫交视频免费看高清| 丝袜喷水一区| 日韩精品青青久久久久久| 午夜福利在线观看吧| 看黄色毛片网站| 99久久精品热视频| 女的被弄到高潮叫床怎么办| 亚洲精品日韩在线中文字幕 | 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 少妇人妻一区二区三区视频| 禁无遮挡网站| 国产黄片美女视频| 青青草视频在线视频观看| 国产高清三级在线| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说 | 人妻夜夜爽99麻豆av| 69av精品久久久久久| 级片在线观看| 日韩一区二区视频免费看| 99热全是精品| 美女被艹到高潮喷水动态| 久久精品国产亚洲av涩爱 | 中国国产av一级| 国产v大片淫在线免费观看| 一级黄色大片毛片| 国产精品久久久久久精品电影| 两个人视频免费观看高清| 亚洲aⅴ乱码一区二区在线播放| 国产在线精品亚洲第一网站| 久久久成人免费电影| 日本撒尿小便嘘嘘汇集6| 国产熟女欧美一区二区| 嫩草影院入口| 成人综合一区亚洲| 高清午夜精品一区二区三区 | 天天躁夜夜躁狠狠久久av| 床上黄色一级片| 国产亚洲精品久久久com| 联通29元200g的流量卡| av在线蜜桃| 我的女老师完整版在线观看| 性色avwww在线观看| 国产色爽女视频免费观看| 日本黄色视频三级网站网址| 久久精品影院6| 在线免费十八禁| 国产伦理片在线播放av一区 | 久久韩国三级中文字幕| 一本精品99久久精品77| 寂寞人妻少妇视频99o| 日韩强制内射视频| 国产精品蜜桃在线观看 | 深夜精品福利| 亚洲国产色片| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 插阴视频在线观看视频| 国产色婷婷99| 村上凉子中文字幕在线| 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在 | 国内精品久久久久精免费| 99久久精品热视频| 别揉我奶头 嗯啊视频| 国产精品无大码| 亚洲欧美日韩高清专用| 成人永久免费在线观看视频| 乱码一卡2卡4卡精品| 天天一区二区日本电影三级| 精品人妻视频免费看| 免费观看人在逋| 精品久久久久久成人av| 三级经典国产精品| 国产成人精品婷婷| 丝袜喷水一区| 99热只有精品国产| 午夜久久久久精精品| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 性色avwww在线观看| 禁无遮挡网站| 国产亚洲av片在线观看秒播厂 | 精品久久国产蜜桃| 国产一级毛片在线| 在线观看免费视频日本深夜| 少妇的逼好多水| 麻豆av噜噜一区二区三区| av福利片在线观看| 长腿黑丝高跟| 人妻系列 视频| 99久久九九国产精品国产免费| 国产男人的电影天堂91| 麻豆av噜噜一区二区三区| 在线观看66精品国产| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 永久网站在线| 免费看美女性在线毛片视频| 一级av片app| av天堂中文字幕网| 变态另类丝袜制服| 婷婷色av中文字幕| 国产精品久久久久久久电影| 亚洲熟妇中文字幕五十中出| 少妇熟女欧美另类| 可以在线观看毛片的网站| 久久99蜜桃精品久久| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 久久久午夜欧美精品| 一个人观看的视频www高清免费观看| 国产成人午夜福利电影在线观看| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 九色成人免费人妻av| 成人综合一区亚洲| 国产精品三级大全| 成人亚洲精品av一区二区| 成人特级黄色片久久久久久久| 狂野欧美激情性xxxx在线观看| 国产精品蜜桃在线观看 | www日本黄色视频网| 美女cb高潮喷水在线观看| kizo精华| 97在线视频观看| av专区在线播放| 国产成人精品婷婷| 大又大粗又爽又黄少妇毛片口| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 精品久久久久久久久av| 成人午夜精彩视频在线观看| 中国国产av一级| 欧美日本视频| 18禁在线播放成人免费| 不卡视频在线观看欧美| 亚洲av熟女| 少妇高潮的动态图| 成人无遮挡网站| 国产精品一区二区在线观看99 | av免费在线看不卡| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 成人特级av手机在线观看| 亚洲人成网站在线观看播放| 听说在线观看完整版免费高清| 亚洲成av人片在线播放无| 乱人视频在线观看| 国产成人freesex在线| 狠狠狠狠99中文字幕| 国产成人freesex在线| av视频在线观看入口| 国产精品一区二区三区四区免费观看| 两个人视频免费观看高清| 黄色一级大片看看| 欧美成人一区二区免费高清观看| 色综合色国产| 狂野欧美激情性xxxx在线观看| 国产精品久久电影中文字幕| 久久精品久久久久久久性| 内射极品少妇av片p| 久久久成人免费电影| 国产精品久久久久久精品电影小说 | 欧美精品一区二区大全| 久99久视频精品免费| 成人毛片a级毛片在线播放| 在线免费十八禁| 日韩av不卡免费在线播放| 一级黄片播放器| 2022亚洲国产成人精品| 如何舔出高潮| 日日撸夜夜添| 国产精品电影一区二区三区| 亚洲精品国产成人久久av| 国产精品人妻久久久久久| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 欧美激情在线99| 人人妻人人澡人人爽人人夜夜 | 亚洲av免费在线观看| 国产日韩欧美在线精品| 男人和女人高潮做爰伦理| 色哟哟哟哟哟哟| 精品人妻熟女av久视频| 村上凉子中文字幕在线| 蜜桃久久精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 国产乱人偷精品视频| 九九久久精品国产亚洲av麻豆| 亚洲第一电影网av| 天堂√8在线中文| 小蜜桃在线观看免费完整版高清| 国产黄色小视频在线观看| 色综合色国产| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 日韩制服骚丝袜av| 国产精品一二三区在线看| 国产高潮美女av| 国模一区二区三区四区视频| 国产免费男女视频| 激情 狠狠 欧美| 老师上课跳d突然被开到最大视频| 亚洲精品久久久久久婷婷小说 | 97超视频在线观看视频| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区| 男插女下体视频免费在线播放| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 成年av动漫网址| 国产精品福利在线免费观看| 可以在线观看的亚洲视频| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 亚洲欧美成人精品一区二区| 长腿黑丝高跟| 99久久成人亚洲精品观看| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 亚洲欧美成人精品一区二区| 免费观看人在逋| h日本视频在线播放| 国产亚洲av嫩草精品影院| 又粗又爽又猛毛片免费看| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 国产又黄又爽又无遮挡在线| 一级毛片电影观看 | 亚洲电影在线观看av| 亚洲国产精品成人久久小说 | 天堂影院成人在线观看| 少妇的逼好多水| 国产伦一二天堂av在线观看| 午夜福利在线观看吧| 悠悠久久av| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件| 99热这里只有是精品50| 国产精品精品国产色婷婷| 看免费成人av毛片| 给我免费播放毛片高清在线观看| 亚洲精品乱码久久久久久按摩| 干丝袜人妻中文字幕| www.色视频.com| av专区在线播放| 国产黄色小视频在线观看| 欧美区成人在线视频| 可以在线观看的亚洲视频| 亚洲精品日韩av片在线观看| 国产在视频线在精品| 国国产精品蜜臀av免费| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 国产免费一级a男人的天堂| 秋霞在线观看毛片| 国产伦精品一区二区三区视频9| 99热这里只有是精品50| 国产精品女同一区二区软件| 女同久久另类99精品国产91| 精品无人区乱码1区二区| avwww免费| 亚洲在线自拍视频| 欧美日韩乱码在线| av.在线天堂| 在线免费观看不下载黄p国产| 26uuu在线亚洲综合色| 真实男女啪啪啪动态图| 一级二级三级毛片免费看| 变态另类成人亚洲欧美熟女| 狂野欧美白嫩少妇大欣赏| 久久精品国产自在天天线| 黄色欧美视频在线观看| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 永久网站在线| 99久国产av精品国产电影| 天堂中文最新版在线下载 | 国产黄片视频在线免费观看| 日韩欧美在线乱码| 久久久精品94久久精品| 看片在线看免费视频| 又粗又硬又长又爽又黄的视频 | 久久亚洲精品不卡| a级一级毛片免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆久久精品国产亚洲av| 亚洲精品456在线播放app| 高清日韩中文字幕在线| 中文资源天堂在线| 插阴视频在线观看视频| 久久人人精品亚洲av| 精品99又大又爽又粗少妇毛片| 婷婷六月久久综合丁香| 国产乱人偷精品视频| 久久久久久久久大av| 国产色爽女视频免费观看| 久久人人爽人人爽人人片va| a级一级毛片免费在线观看| 九九热线精品视视频播放| a级一级毛片免费在线观看| 欧美性猛交黑人性爽| 午夜视频国产福利| 欧美性猛交黑人性爽| 97超碰精品成人国产| 少妇裸体淫交视频免费看高清| 99久久九九国产精品国产免费| 成人性生交大片免费视频hd| 亚洲欧洲国产日韩| a级一级毛片免费在线观看| 毛片一级片免费看久久久久| 国产三级中文精品| 一本精品99久久精品77| 免费观看人在逋| 不卡一级毛片| 校园春色视频在线观看| 一级毛片电影观看 | 国产乱人视频| 久久精品国产鲁丝片午夜精品| 噜噜噜噜噜久久久久久91| 美女脱内裤让男人舔精品视频 | 中文字幕av成人在线电影| 日本三级黄在线观看| 日韩强制内射视频| 夜夜看夜夜爽夜夜摸| 国产单亲对白刺激| 少妇的逼好多水| h日本视频在线播放| 久久人人爽人人片av| 亚洲一级一片aⅴ在线观看| 一个人看视频在线观看www免费| 国产精华一区二区三区| 97人妻精品一区二区三区麻豆| 精品国内亚洲2022精品成人| 国产成人a∨麻豆精品| 欧美又色又爽又黄视频| 中出人妻视频一区二区| 免费av毛片视频| 99精品在免费线老司机午夜| 性插视频无遮挡在线免费观看| 亚洲精品日韩在线中文字幕 | 欧美日韩精品成人综合77777| 真实男女啪啪啪动态图| 国产高清有码在线观看视频| 日韩av不卡免费在线播放| 中文在线观看免费www的网站| 观看美女的网站| 麻豆久久精品国产亚洲av| 成年av动漫网址| 中文字幕熟女人妻在线| 午夜福利在线观看免费完整高清在 | ponron亚洲| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| 精品一区二区三区人妻视频| 蜜桃久久精品国产亚洲av| 乱人视频在线观看| 精品一区二区三区人妻视频| 九九爱精品视频在线观看| 一级二级三级毛片免费看| 1000部很黄的大片| 亚洲国产精品国产精品| 天美传媒精品一区二区| 天天躁夜夜躁狠狠久久av| 国产又黄又爽又无遮挡在线| 一区二区三区四区激情视频 | 亚洲美女搞黄在线观看| 欧美性猛交╳xxx乱大交人| 永久网站在线| 亚洲不卡免费看| 青青草视频在线视频观看| ponron亚洲| 观看免费一级毛片| 日日摸夜夜添夜夜爱| 亚洲av中文av极速乱| 久久久久久久久久成人| 国产亚洲精品久久久com| 久久精品夜夜夜夜夜久久蜜豆| 久久久久免费精品人妻一区二区| 国内精品宾馆在线| avwww免费| 麻豆成人av视频|