• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Deposition Temperature and Pressure on Microstructure and Tribological Properties of Arc Ion Plated Ag Films

    2012-01-20 04:46:06HUMingGAOXiaomingSUNJiayiWENGLijunZHOUFengandLIUWeimin

    HU Ming,GAO Xiaoming SUN JiayiWENG LijunZHOU Fengand LIU Weimin *

    1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate School of Chinese Academy of Sciences,Beijing 100039,China

    1 Introduction

    Due to the property of low shear strength,Ag films have been widely used as solid lubricant to reduce friction and wear on contact surfaces of moving mechanical components in space environment[1].The friction and wear performances of physical vapor deposited (PVD) Ag films are strongly dependent on its structure such as morphology[2],preferred orientation[3]and grain size[4],which is influenced significantly by deposition parameters such as substrate temperature[5]and gas pressure[6]etc.Therefore,to optimize deposition parameters of Ag films is of vital importance for obtaining desirable tribological properties.

    In recent years,the films deposited at low temperature(LT) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature (RT)[7-14].Sputtered Ni films at liquid nitrogen temperature and low Ar pressure showed excellent(111) orientation and good crystallinity[7].Ti70-Al30 films deposited at liquid nitrogen temperature exhibited dense nanocrystalline structure,whereas RT-films showed voids and discontinuities in their columnar grain morphology[8].Fe films deposited at liquid nitrogen temperature had better crystallinity and much smaller coercive force than RT-Fe films[9].The resistivity value of Au films deposited at liquid nitrogen temperature was more than four orders lower than that of RT-Au film[10].The nucleation and growth mode of Ag films deposited at LT during the initial stage of film deposition were studied[15-19].The thickness of soft metal films used as lubricant normally has to be much thicker than 100 nm[20].The structure and tribological properties of Ag films were influenced by film thickness[20-21].Our previous study[22]reported the effects of substrate temperature (130-217 K) and bias voltage on the preferred orientation and tribological properties of Ag films with a thickness of 646-838 nm,but the morphology of such LT-Ag films and its relationship with tribological properties were still uncovered.Further,the gas pressure effects on the structure and properties of LT-Ag films have been little reported.

    In this paper,Ag films are deposited on AISI 440C steel substrates at LT (166 K) under various Ar pressures by an AIP system.The effects of Ar pressure on the structure and tribological properties of LT-Ag films are investigated and compared with RT-Ag films.

    2 Film Deposition and Characterization Experiment

    2.1 Film deposition

    Ag films are deposited on AISI 440C steel substrates(HRC 60,25 mm×25 mm×5 mm) at 166 K (LT) and 300 K (RT) under Ar pressures of 0.2 Pa,0.4 Pa,0.6 Pa and 0.8 Pa by an AIP system with a sample holder cooled by liquid nitrogen,as illustrated in Fig.1.A cylindrical Ag target with a purity of 99.95 wt.% and a diameter of 80 mm is used as arc cathode,and its surface is parallel to substrate surfaces.The distances between the target and substrates are 300 mm-318 mm.The substrates are surface-polished with abrasive paper,followed ultrasonically cleaned with acetone for 20 min,and then fixed on the sample holder surface.The surface roughness (Ra) of polished substrates is 0.06 μm±0.02 μm,measured by a NanoMap 500LS three-dimensional (3D) profilometer with a stylus tip in tapping mode.Substrate temperatures are measured by platinum resistors attached to the back of the substrates.

    Before deposition,the vacuum chamber is evacuated to a background vacuum below 6.0×10-3Pa.The substrates are Ar ion etched at a bias of 800 V for 10 min,and then cooled by piping liquid nitrogen into the sample holder to desired temperatures.Detailed deposition parameters are listed in Table 1.

    Fig.1.Schematic illustration of the AIP system

    Table 1.Film deposition parameters

    2.2 Structure and properties characterization

    The structure of the films is analyzed by an X-ray diffraction (XRD,Philips X'Pert Pro) withθ/2θscanning pattern using Cu Kα radiation (λ=1.540 6 ?).The surface morphology is observed by an atomic force microscope(AFM,Nanoscope III).The friction and wear tests are performed by a vacuum ball-on-disk tribometer.The disks are the Ag films coated steel substrates.AISI 440C steel balls (HRC 60,Ra0.10 μm) with a diameter of 8 mm are used as counterparts and cleaned with alcohol before each test.Test conditions:normal load of 2 N,rotational speed of 400 r/min,RT,and ambient vacuum <5×10-3Pa.The wear tracks are analyzed by a scanning electron microscope(SEM,JSM-5600LV) coupled with an energy dispersive X-ray spectrometer (EDS,KEVEX).The wear volume loss is evaluated by a NanoMap 500LS three-dimensional (3D)profilometer with a stylus tip in tapping mode.The wear rates (K) are calculated using the equation ofK=V·(F·S)-1,whereVis the wear volume loss in mm3,Fthe normal load applied in N,andSthe sliding distance in m.

    3 Results and Discussion

    3.1 Structure

    Fig.2 (a) and Fig.2 (b) exhibit the XRD patterns of LTand RT-Ag films deposited under various Ar pressures.LT-Ag films show both (111) and (200) peaks,and the relative intensity of (200) peak is increased with decreasing Ar pressure.As the Ar pressure is decreased to 0.2 Pa,almost only (200) peak is observed,indicating an excellent(200) preferred orientation.The relative intensity of (200)peaks of RT-Ag films is lower than that of LT-Ag films and also shows a tendency to increase with decreasing Ar pressure.These results indicate that the films mainly show two types of grain orientation:(111) or (200) plane parallel to the substrate surface,and the latter is advanced at LT and lower Ar pressure.

    Preferred orientation degree of the films (P(hkl)) can be calculated by Eq.(1)[22]and the calculated (200) preferred orientation degree (P(200))of both LT-and RT-Ag films is shown in Fig.3.It can be seen that as the Ar pressure decreases from 0.8 Pa to 0.2 Pa,theP(200) of LT-and RT-Ag films increases from 1.21 to 1.99 and 0.97 to 1.34,respectively.This indicates that RT-Ag film deposited at 0.8 Pa shows a much poor (111) preferred orientation(P(200)=0.97 <1),other films exhibit (200) preferred orientation (P(200)>1) and theP(200)ispromoted at LT and low Ar pressure.Especially for LT-Ag film deposited at 0.2 Pa,theP(200)is close to 2.0,indicating an excellent(200) preferred orientation.

    The average crystallite size can be estimated from the width at half maximum(FWHM) in the XRD pattern using Scherrer equation[22]:

    whereDis the crystallite size (nm),KScherrer constant(0.89),λthe X-ray wavelength (1.540 6 ?),βthe FWHM,andθthe diffraction angle.According to Eq.(2) and the FWHM of the (111) peaks in the XRD patterns,the crystallite sizes of the films are calculated.As shown in Fig.4,the crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa.The crystallite sizes of LT-Ag films deposited at 0.4 Pa and 0.6 Pa exceed the calculation limit of Scherrer formula (<100 nm),indicating that they are larger than 100 nm.Compared to LT-Ag films,RT-Ag films show small crystallite sizes about 58 nm at 0.2 Pa-0.6 Pa and 37 nm at 0.8 Pa.

    Fig.2.XRD patterns of the LT-and RT-Ag films

    Fig.3.(200) preferred orientation P(200)of the LT-and RT-Ag films

    Fig.4.Crystallite sizes of the RT-and LT-Ag films

    Fig.5(a-d) shows the AFM images of LT-Ag films deposited at various Ar pressures.Typical section analysis of the AFM image is shown in Fig.5(e).It is evident that the surfaces of LT-Ag films are obviously influenced by the Ar pressure.The surfaces of LT-Ag films deposited at 0.6 Pa and 0.8 Pa are composed of fibre-like grains.The section analysis reveals that the fibre-like grains are oblique to the substrate surface.As the Ar pressure is decreased to 0.4 Pa,the film exhibits a terrace-like morphology.As the Ar pressure is further decreased to 0.2 Pa,the film surface shows a few sphere-like grains.AFM images of RT-Ag films are shown in Fig.6.It can be seen that the surfaces of RT-Ag films are consisted of sphere-like grains separated by voids.

    Fig.5.AFM images of LT-Ag films and typical cross section profile(Image sizes are 2.0×2.0 μm2 in lateral and 20 nm full scale in height)

    Fig.6.AFM images of RT-Ag films(Image sizes are 2.0 μm×2.0 μm in lateral and 30 nm full scale in height)

    The structure of PVD polycrystalline metal films is strongly dependent on deposition parameters and described using a well-known structure zone model proposed by MOVCHAN and DEMCHISHIN[23]and developed by THORNTON[24],BARNA,et al[25],and ANDERS[26].In this model,the film is characterized by different zones based onTs/Tm(Tsis substrate temperature;Tmis melting point of metal).In zone I (0<Ts/Tm<0.2),the film is composed of fibres which are growing uninterruptedly side by side.In zone T (0.2<Ts/Tm<0.4),the film is composed of V-shaped grains with domed tops separated by voids.In Zone II (Ts/Tm>0.4) the film represents a homogeneous structure composed of columns penetrating from the bottom to the top of the film.In zone III,the film is characterized by equiaxed three dimensional grains.In present study,the surface features of LT-Ag films(Ts/Tm=0.13) deposited at 0.6 and 0.8 Pa suggests a zone I structure composed of uninterrupted fibres,mainly attributed to the lack of both surface and bulk diffusions[25].The fibres have been growing in a direction oblique to substrate surface and hence the upper of the fibres is exposed on film surface and resulted in such surface feature.As the Ar pressure decreases to 0.4 Pa,the fibres are connected to form a piece because of the improved mobility of deposition atoms,and so the film shows a terrace-like surface.Further decreasing Ar pressure to 0.2 Pa,the mobility of deposition atoms could be more remarkable,and so the film partially shows the surface features of zone T where the competitive grain growth results in V-shaped grains with domed tops separated by voids.The surface features of RT-Ag films (Ts/Tm=0.24)are typical for metal films in zone T due to the higher substrate temperature.The difference,that the growth of the fibre-like grains of LT-Ag films is uninterrupted while the growth of V-shaped grains of the RT-Ag films is interrupted,results in LT-Ag films with larger grain sizes than RT-Ag film.

    The preferential orientation of the films is a result of competition between the surface and strain energies,and the growing film develops into a crystallographic structure with minimum total system energy.For the fcc Ag crystal,(111) plane has the lowest surface energy,while (200)plane has the lowest strain energy[27-28].Due to the minimization of surface energy,the Ag films normally shows (111) preferred orientation[29].However,in this study,the LT-Ag films show excellent (200) preferred orientation,especially at low Ar pressure.At LT,the surface diffusion of deposition atoms is much insufficient and so the orientation of nuclei becomes random[25],resulting in accumulation of stress in the films.As the internal stress is accumulated enough,it would be released by strain,which induces reorientation of the crystallites.(200) plane of fcc Ag crystal have the lowest strain energy,so (200) orientation is preferred.The decrease in theP(200)with increasing Ar pressure is mainly attributed to the minimization of surface energy.The collision between the Ag and Ar ions is advanced by the increase in Ar pressure and simultaneously results in the energy loss of Ag ions[6].As a result,the mobility of deposited Ag atoms at substrate surface is lowered.This is favored for growing of crystallites with (111) plane parallel to substrate surface due to (111) plane of fcc Ag crystal with the minimum surface energy,and hence theP(200) decreases with increasing Ar pressure.

    3.2 Tribological properties

    A vacuum ball-on-disk tribometer is used to evaluate the friction and wear of the Ag films.A typical sliding friction curve of the Ag film coated disk against steel ball is shown in Fig.7.The friction curve of all the Ag films firstly shows a low and stable friction stage where the friction coefficient is at a range of 0.14-0.18.Afterwards,it exhibits a high and unstable friction stage with the mean friction coefficients of about 0.3,after which it shows a sudden increase in friction coefficient higher than 0.4,indicating the end of the film service life.

    Fig.7.Friction curve of Ag films deposited at LT and 0.6 Pa

    After friction tests,the wear tracks on the Ag films coated substrate surfaces and corresponding wear scars on counterpart surfaces are observed by SEM.The element components of wear scars are also analyzed by EDS.Typical SEM and EDS results are shown in Fig.8.It can be seen that after the low friction stage,the wear track is narrow and smooth,but the Ag film in the wear track region is almost exhausted and a great deal of wear debris can be observed on the wear scar surface.EDS result reveals that Ag content about 16.9 at.% is high at the wear scar area.It indicates that Ag transfer film is formed on the counterpart surface.After the total wear life,the wear track surface becomes relatively wide and the Ag transfer film is almost exhausted.These results indicate that at the low friction stage,the lubrication is provided by the Ag film and so the friction coefficient is low and stable.Meantime,the worn Ag gradually adheres to the counterpart surface to form a transfer film.As the Ag film is exhausted,the transfer film acts as a lubricating effect between the counterpart and bare substrate surfaces,but it will be insufficient at late stage,and hence the friction coefficient turns to high and unstable.As the lubricating effect of the transfer film fails,strong adhesive wear will occur between the bare substrate and counterpart surfaces,resulting in much high friction coefficient.

    Fig.8.Wear tracks of Ag film deposited at LT and 0.6 Pa,and the corresponding wear scars and EDS spectra from counterpart surfaces

    Two sets of wear rates are calculated from the low friction stage and total wear life,respectively,shown in Fig.9.The wear rates of LT-Ag films are lower than those of RT-Ag films and the wear rates of the total wear life are lower than those at low friction stage.At LT,the lowest wear rate is obtained from the film deposited at 0.4 Pa,while the highest wear rate is obtained from the film deposited at 0.2 Pa.At RT,the lowest and highest wear rates are obtained from the films deposited at 0.6 Pa and 0.2 Pa,respectively.

    Fig.9.Wear rates of the RT-and LT-Ag films

    The changes in the wear rates with the substrate temperature and Ar pressure are correlated with the structure of the films.AFM results reveal that RT-Ag films shows a zone T structure,composed of V-shaped grains separated by voids,suggesting a loose film structure.At lower pressure,volume of the voids should become large because the surface diffusion is improved while the bulk diffusion is strongly limited[26].Therefore,the wear rates are relatively high and the highest wear rate was obtained from the RT-Ag film deposited at 0.2 Pa.However,the LT-Ag films deposited at 0.4 Pa -0.8 Pa shows zone Ι structure,composed of uninterruptedly grown fibres side by side,and hence the voids in the films are suppressed.Correspondingly,the films are densified and show better wear resistances.LT-Ag film deposited at 0.2 Pa partially shows a zone T structure and so is accompanied with a relatively high wear.Furthermore,the wear rates of the total wear life being lower than those of the low friction stage indicates that the transfer films play an important role in reducing wear of the films.The wear rates of the low friction stage and total wear life show a similarly changed tendency with the Ar pressure,suggesting that better structure is also helpful for formation of the transfer film on the counterpart surface for further reduction of wear.

    4 Conclusions

    (1) The preferred orientation of Ag films deposited by AIP can be significantly influenced by substrate temperature and Ar pressure,and the (200) preferred orientation is promoted at LT and low Ar pressure so an Ag film with excellent (200) preferred orientation is obtained at LT and 0.2 Pa.

    (2) LT-Ag films mainly show a fibre-like grain structure,but it can be changed to V-shaped grain structure due to the decrease in Ar pressure or increase in substrate temperature.

    (3) The wear resistance of Ag films is mainly dependent on the compactness of their structure.LT-Ag films show compacter structure and so better wear resistance than RT-Ag films.

    [1]ROBERTS E W,TODD M J.Space and vacuum tribology[J].Wear,1990,136(1):157-167.

    [2]LEE K H,TAKAI O,LEE M H.Tribological and corrosive properties of silver thin films prepared by e-beam ion plating method[J].Surf.Coat.Technol.,2003,169-170:695-698.

    [3]GOTO M,AKIMOTO K,HONDA F.The effect of the crystallographic orientation of Ag thin films on their tribological performance[C]//Proceedings of the 31st Leeds-Lyon Symposium on Tribology Held,Trinity and All Saints College,Horsforth,Leeds,UK September 7-10,2004:667-672.

    [4]FLORES M,MUHL S,HUERTA L,et al.The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J].Surf.Coat.Technol.,2005,200(5-6):1 315-1 319.

    [5]YANG F L,SOMEKH R E,GREER A L.UHV magnetron sputtering of silver films on rocksalt:quantitative X-ray texture analysis of substrate-temperature-dependent microstructure[J].Thin Solid Films,1998,322(1-2):46-55.

    [6]JUNG Y S.Study on texture evolution and properties of silver thin films prepared by sputtering deposition[J].App.Sur.Sci.,2004,221(1-4):281-287.

    [7]SHIMIZUA H,SUZUKIB E,HOSHI Y.Crystal orientation and microstructure of nickel film deposited at liquid nitrogen temperature by sputtering[J].Electrochim.Acta,1999,44(21-22):3 933-3 944.

    [8]KALE A,SEAL S,SOBCZAK N,et al.Effect of deposition temperature on the morphology,structure,surface chemistry and mechanical properties of magnetron sputtered Ti70-Al30 thin films on steel substrate[J].Surf.Coat.Technol.,2001,141(2-3):252-261.

    [9]WATARU S,YOICHI H,HIDEHIKO S.Fe and Fe-N films sputter deposited at liquid nitrogen Temperature[J].J.Magn.Magn.Mater.,2001,235(1-3):196-200.

    [10]HE L,SHI Z Q.Effect of deposition temperature on electric conduction and microstructure of Au films[J].Solid-Spate Electron.,1996,39(12):1 811-1 815.

    [11]GRILL L,CYETKO D,PETACCIA L,et al.Layer-by-layer growth of lead on Ge(1 1 1) at low temperatures[J].Surf.Sci.,2004,562(1-3):7-14.

    [12]YU R C,WANG W K.Formation of Ti amorphous films deposited on liquid nitrogen-cooled substrates by ion-beam sputtering[J].Thin Solid Films,1997,302(1-2):108-110.

    [13]BOAKEY F.Temperature dependence of the resistivity of amorphous Mn thin films [J].J.Non-Cryst.Solids,1999,249(2-3):189-193.

    [14]HE L,Siewenie J E.Cryogenic processing of thin metal films[J].Surf.Coat.Technol.,2002,150(1):76-79.

    [15]BRUNE H, R?DER H, BORAGNO C,et al.Microscopic view of nucleation on surfaces[J].Phys.Rev.Lett.,1994,73(14):1 955-1 958.

    [16]BRUNE H, ROMAINCZYK C,R?DER H,et al.Mechanism of the transition from fractal to dendritic growth of surface aggregates[J].Nature,1994,369(6 480):469-471.

    [17]SONG K J,CHEN W R,YEH V,et al.Morphology of ultrathin Ag films grown on Mo(111)[J].Surf.Sci.,2001,478(1-2):145-168.

    [18]OTOP H.Growth of silver films on Cu (111) at low temperatures[J].Vacuum,2002,67(2):285-291.

    [19]SU C,YEH J C,LIN J L,et al.The growth of Ag films on a TiO2(110)-(1×1) surface[J].App.Sur.Sci.,2001,169-170(1-2):366-370.

    [20]SPALVINS T,BUZEK B.Frictional and morphological characteristics of ion-plated soft metallic films[J].Thin Solid Films,1981,84(3):267-272.

    [21]KAPAKLIS V,POULOPOULOS P,KAROUTSOS V,et al.Growth of thin Ag films produced by radio frequency magnetron sputtering[J].Thin Solid Films,2006,510(1-2):138-142.

    [22]WENG Lijun,SUN Jiayi,HU Ming,et al.Structure and tribological properties of Ag films deposited at low temperature [J].Vacuum,2007,81(8):997-1 002.

    [23]MOVCHAN B A,DEMCHISHIN A V.Study of the structure and properties of thick vacuum condensates of nickel,titanium,tungsten,aluminium oxide and zirconium dioxide[J].Phys.Met.Metallogr.,1969,28(4):83-90.

    [24]THORNTON J A.Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.

    [25]BARNA P B,ADAMIK M.Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J].Thin Solid Films,1998,317(1-2):27-33.

    [26]ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4 087-4 090.

    [27]ZHANG Jianmin,ZHANG Yan,XU Kewei.Dependence of stresses and strain energies on grain orientations in FCC metal films[J].J.Cryst.Growth,2005,285(3):427-435.

    [28]MA Fei,ZHANG Jianmin,XU Kewei.Surface-energy-driven abnormal grain growth in Cu and Ag films[J].App.Sur.Sci.,2005,242(1-2):55-61.

    [29]FENG Tao,JIANG Bingyao,ZHUO Sun,et al.Study on the orientation of silver films by ion-beam assisted deposition[J].App.Sur.Sci.,2008,254(6):1 565-1 568.

    Biographical notes

    HU Ming,born in 1975,is currently an associate professor and PhD candidate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his bachelor degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2007.His research interests include phsical vapour depositing film materials and tribology.

    Tel:+86-931-4 968071;E-mail:hum413@licp.cas.cn

    GAO Xiaoming,born in 1978,is currently a research associate atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,China,in 2011.His study focuses on phsical vapour depositing film materials.

    Tel:+86-931-4 968091;E-mail:gaoxm@licp.cas.cn

    SUN Jiayi,born in 1971,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He got his PhD degree fromGraduate School of Chinese Academy of Sciences,China,in 2001.His research interests include solid lubrication materials and tribology.

    Tel:+86-931-4 968092;E-mail:sunjy@licp.cas.cn

    WENG Lijun,born in 1966,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Chinain 2007.His research interests mainly focus on physical vapor depositing coatings and their tribology.

    Tel:+86-931-4 968003;E-mail:wenglj@licp.cas.cn

    ZHOU Feng,born in 1976,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 2004.His research interests include surfaces/interfaces of soft matters,functional coatings with extreme wetting and tunable adhesion,engineering coatings for oil seal,drag-reduction and antibiofouling,biolubrication etc.

    Tel:+86-931-4 968466;E-mail:zhouf@licp.cas.cn

    LIU Weimin,born in 1962,is currently a professor atState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China.He received his PhD degree fromLanzhou Institute of Chemical Physics,Chinese Academy of Sciences,China,in 1990.His research interests include space lubrication and high performance lubricants.

    Tel:+86-931-4 968166;E-mail:wmliu@licp.cas.cn

    亚洲五月天丁香| 真实男女啪啪啪动态图| 久久婷婷人人爽人人干人人爱| 一个人看的www免费观看视频| 中文在线观看免费www的网站| 十八禁人妻一区二区| 国产欧美日韩一区二区三| 日韩中文字幕欧美一区二区| 亚洲在线观看片| 母亲3免费完整高清在线观看| 亚洲成人中文字幕在线播放| 日本黄大片高清| 国产伦精品一区二区三区四那| 99久国产av精品| 国产亚洲精品久久久com| 国产成年人精品一区二区| 久久久久亚洲av毛片大全| 岛国在线观看网站| 男女那种视频在线观看| 国产精品久久视频播放| 性色av乱码一区二区三区2| 成人国产一区最新在线观看| 国产久久久一区二区三区| 免费搜索国产男女视频| 久久99热这里只有精品18| 757午夜福利合集在线观看| 精品久久久久久成人av| 一边摸一边抽搐一进一小说| 99久久精品热视频| 曰老女人黄片| 夜夜躁狠狠躁天天躁| e午夜精品久久久久久久| 欧美xxxx黑人xx丫x性爽| 叶爱在线成人免费视频播放| 国产精品久久久av美女十八| 欧美不卡视频在线免费观看| 欧美另类亚洲清纯唯美| 亚洲中文av在线| 亚洲激情在线av| 久久精品夜夜夜夜夜久久蜜豆| xxx96com| 夜夜夜夜夜久久久久| 性色avwww在线观看| 国产欧美日韩精品亚洲av| 亚洲成人精品中文字幕电影| 国产午夜福利久久久久久| 曰老女人黄片| 少妇的逼水好多| 国产伦精品一区二区三区四那| 在线十欧美十亚洲十日本专区| 中文字幕最新亚洲高清| 欧美中文日本在线观看视频| 后天国语完整版免费观看| 久久久久久国产a免费观看| av欧美777| 日本五十路高清| 悠悠久久av| 国产亚洲精品久久久久久毛片| 在线观看舔阴道视频| 亚洲天堂国产精品一区在线| 婷婷丁香在线五月| 久久这里只有精品19| 男插女下体视频免费在线播放| 午夜亚洲福利在线播放| 长腿黑丝高跟| 97人妻精品一区二区三区麻豆| 国产视频一区二区在线看| 久久精品亚洲精品国产色婷小说| 精品国产乱子伦一区二区三区| 欧美一级毛片孕妇| 丝袜人妻中文字幕| 成人国产一区最新在线观看| 午夜激情福利司机影院| 亚洲乱码一区二区免费版| 网址你懂的国产日韩在线| 九九热线精品视视频播放| 黑人欧美特级aaaaaa片| 午夜福利免费观看在线| 国产精品一区二区三区四区免费观看 | 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 变态另类成人亚洲欧美熟女| 熟女人妻精品中文字幕| 又粗又爽又猛毛片免费看| 亚洲avbb在线观看| 十八禁网站免费在线| 岛国在线观看网站| 精品国内亚洲2022精品成人| 美女高潮的动态| 十八禁人妻一区二区| 男女之事视频高清在线观看| 亚洲熟妇中文字幕五十中出| 久久久国产欧美日韩av| 1000部很黄的大片| 人妻夜夜爽99麻豆av| 女同久久另类99精品国产91| 亚洲午夜精品一区,二区,三区| 两性午夜刺激爽爽歪歪视频在线观看| 成人亚洲精品av一区二区| 夜夜爽天天搞| 俄罗斯特黄特色一大片| 变态另类丝袜制服| 床上黄色一级片| 国产三级在线视频| 18禁观看日本| 国产视频一区二区在线看| 曰老女人黄片| 99国产精品一区二区三区| 国产1区2区3区精品| 观看免费一级毛片| 伦理电影免费视频| www.精华液| 少妇的丰满在线观看| aaaaa片日本免费| 久久久久性生活片| 国产真实乱freesex| 又黄又粗又硬又大视频| 久久久国产成人精品二区| 亚洲成av人片免费观看| 免费人成视频x8x8入口观看| 久久久久久国产a免费观看| 亚洲av美国av| 国产精品香港三级国产av潘金莲| 成人av一区二区三区在线看| 亚洲国产高清在线一区二区三| 一二三四在线观看免费中文在| av在线蜜桃| 亚洲最大成人中文| 看黄色毛片网站| 99精品在免费线老司机午夜| 啦啦啦观看免费观看视频高清| 美女扒开内裤让男人捅视频| 99久久综合精品五月天人人| 女人被狂操c到高潮| 国产69精品久久久久777片 | 亚洲 欧美一区二区三区| 天堂影院成人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 麻豆成人午夜福利视频| 在线免费观看的www视频| 韩国av一区二区三区四区| 欧美成狂野欧美在线观看| avwww免费| 亚洲成人免费电影在线观看| 老司机福利观看| 成在线人永久免费视频| ponron亚洲| 天堂网av新在线| 最近最新免费中文字幕在线| 久久精品aⅴ一区二区三区四区| 国产精品国产高清国产av| 美女被艹到高潮喷水动态| 久久久久精品国产欧美久久久| 中文字幕精品亚洲无线码一区| 最近在线观看免费完整版| 嫩草影院入口| 91久久精品国产一区二区成人 | 特级一级黄色大片| 国产伦在线观看视频一区| 欧美乱色亚洲激情| 搡老熟女国产l中国老女人| 久久久久久久久中文| 国产精品永久免费网站| 成年免费大片在线观看| x7x7x7水蜜桃| 国产日本99.免费观看| 夜夜夜夜夜久久久久| 久久久久性生活片| 亚洲成a人片在线一区二区| 97超级碰碰碰精品色视频在线观看| 午夜激情欧美在线| 国产精品美女特级片免费视频播放器 | 色精品久久人妻99蜜桃| 两个人视频免费观看高清| 久久久久久久精品吃奶| 中国美女看黄片| 免费人成视频x8x8入口观看| 天天躁日日操中文字幕| 最近最新免费中文字幕在线| 国模一区二区三区四区视频 | 国产亚洲精品av在线| 黑人操中国人逼视频| 亚洲av成人一区二区三| 黑人操中国人逼视频| 搞女人的毛片| 精品福利观看| 白带黄色成豆腐渣| 成人特级黄色片久久久久久久| 免费在线观看影片大全网站| 日韩免费av在线播放| 女人高潮潮喷娇喘18禁视频| 午夜福利18| 国产精品久久久av美女十八| 欧美在线黄色| 国产精品av视频在线免费观看| 国内揄拍国产精品人妻在线| 色综合亚洲欧美另类图片| 美女高潮喷水抽搐中文字幕| 久久精品综合一区二区三区| 久久精品综合一区二区三区| 国产精品精品国产色婷婷| 99久久无色码亚洲精品果冻| 夜夜爽天天搞| 亚洲欧美日韩高清专用| 午夜精品久久久久久毛片777| 99热6这里只有精品| 99久久综合精品五月天人人| 国产精品久久视频播放| 国产精品爽爽va在线观看网站| 免费观看人在逋| 久久久久国内视频| 麻豆成人午夜福利视频| 亚洲欧美激情综合另类| av片东京热男人的天堂| 亚洲av电影不卡..在线观看| 国产aⅴ精品一区二区三区波| 亚洲在线自拍视频| 黑人操中国人逼视频| www.自偷自拍.com| 在线免费观看的www视频| 深夜精品福利| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 俺也久久电影网| 精品日产1卡2卡| xxx96com| netflix在线观看网站| 女同久久另类99精品国产91| 国产三级中文精品| 久久精品aⅴ一区二区三区四区| 久久香蕉国产精品| 中亚洲国语对白在线视频| 成人性生交大片免费视频hd| 成年免费大片在线观看| 亚洲在线观看片| 日韩精品中文字幕看吧| 成人国产一区最新在线观看| 国产精品一及| 男女之事视频高清在线观看| 亚洲色图 男人天堂 中文字幕| 久久久久性生活片| 黑人欧美特级aaaaaa片| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 国产高清激情床上av| 久久久久久大精品| 国产亚洲av嫩草精品影院| 国产日本99.免费观看| 亚洲在线自拍视频| 色老头精品视频在线观看| 久久久久久九九精品二区国产| av欧美777| 亚洲av成人av| 男女之事视频高清在线观看| 欧美色欧美亚洲另类二区| 色尼玛亚洲综合影院| 人人妻人人看人人澡| 国产毛片a区久久久久| 91字幕亚洲| 久久天堂一区二区三区四区| 综合色av麻豆| a在线观看视频网站| 欧美3d第一页| 看免费av毛片| 天天一区二区日本电影三级| av在线蜜桃| 最新中文字幕久久久久 | 国产精品av久久久久免费| 禁无遮挡网站| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩高清在线视频| 欧美精品啪啪一区二区三区| 日韩免费av在线播放| 亚洲美女视频黄频| av在线天堂中文字幕| 俺也久久电影网| 亚洲av电影不卡..在线观看| 小蜜桃在线观看免费完整版高清| 亚洲人成网站在线播放欧美日韩| 天天躁狠狠躁夜夜躁狠狠躁| 99热只有精品国产| 日本a在线网址| 国产麻豆成人av免费视频| 国内久久婷婷六月综合欲色啪| 欧美日本视频| 亚洲中文字幕一区二区三区有码在线看 | 国产私拍福利视频在线观看| 淫秽高清视频在线观看| 一夜夜www| 国产精品香港三级国产av潘金莲| 亚洲在线自拍视频| 曰老女人黄片| 日韩欧美国产一区二区入口| cao死你这个sao货| 国内久久婷婷六月综合欲色啪| 国产 一区 欧美 日韩| 国产精品 欧美亚洲| 亚洲欧美激情综合另类| 亚洲精华国产精华精| 高清毛片免费观看视频网站| 国产成人欧美在线观看| 日韩欧美在线乱码| 99久久久亚洲精品蜜臀av| 久久精品国产清高在天天线| 国产成人精品久久二区二区91| 亚洲成a人片在线一区二区| 免费观看精品视频网站| 国产亚洲av高清不卡| 国产精品久久久av美女十八| 午夜福利免费观看在线| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 欧美绝顶高潮抽搐喷水| 91字幕亚洲| 国产精品一区二区三区四区久久| 国产精品久久久久久人妻精品电影| 很黄的视频免费| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 国产伦在线观看视频一区| 久久香蕉精品热| 日本 av在线| av视频在线观看入口| 色视频www国产| 日日夜夜操网爽| 小说图片视频综合网站| 亚洲色图 男人天堂 中文字幕| 成年人黄色毛片网站| 级片在线观看| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| 色综合站精品国产| 久久久色成人| 久久久精品大字幕| 久久精品91蜜桃| 国产精品一及| 天天躁日日操中文字幕| 欧美日韩亚洲国产一区二区在线观看| 老司机深夜福利视频在线观看| 女人高潮潮喷娇喘18禁视频| or卡值多少钱| aaaaa片日本免费| 99久久99久久久精品蜜桃| 国产精品综合久久久久久久免费| 亚洲精品美女久久久久99蜜臀| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面| 搞女人的毛片| 亚洲欧美日韩无卡精品| 黄色视频,在线免费观看| 很黄的视频免费| 一级毛片高清免费大全| 999久久久精品免费观看国产| 99精品欧美一区二区三区四区| 性色avwww在线观看| www.熟女人妻精品国产| 黄色日韩在线| 日本 av在线| 夜夜爽天天搞| 亚洲国产精品久久男人天堂| 国产精品国产高清国产av| www日本黄色视频网| 亚洲av第一区精品v没综合| 婷婷丁香在线五月| 欧美日韩瑟瑟在线播放| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| www日本黄色视频网| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 久久这里只有精品中国| 天天躁日日操中文字幕| 日本在线视频免费播放| 白带黄色成豆腐渣| 久久99热这里只有精品18| 国产精品久久视频播放| 精品久久久久久久久久免费视频| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 好男人电影高清在线观看| 亚洲九九香蕉| 午夜福利成人在线免费观看| h日本视频在线播放| 一级a爱片免费观看的视频| 国产精品 国内视频| 久久国产精品人妻蜜桃| 国内精品美女久久久久久| 90打野战视频偷拍视频| 在线免费观看不下载黄p国产 | 精品久久蜜臀av无| 老司机在亚洲福利影院| 中文字幕av在线有码专区| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 国内精品久久久久久久电影| 淫秽高清视频在线观看| 亚洲片人在线观看| 日本黄色视频三级网站网址| 亚洲成人免费电影在线观看| 成人欧美大片| 国产人伦9x9x在线观看| 国产精品 国内视频| 日韩av在线大香蕉| 久久九九热精品免费| 免费看十八禁软件| 色精品久久人妻99蜜桃| 岛国在线免费视频观看| 亚洲av日韩精品久久久久久密| a级毛片a级免费在线| 19禁男女啪啪无遮挡网站| 在线观看一区二区三区| 免费高清视频大片| 亚洲,欧美精品.| 长腿黑丝高跟| 他把我摸到了高潮在线观看| 国产一区二区三区视频了| 国产精品99久久99久久久不卡| 欧美日韩国产亚洲二区| 成人一区二区视频在线观看| 婷婷丁香在线五月| 久久久国产成人免费| 亚洲欧美一区二区三区黑人| 九九久久精品国产亚洲av麻豆 | 99久久99久久久精品蜜桃| 中文字幕最新亚洲高清| 亚洲欧美日韩高清在线视频| 中文在线观看免费www的网站| 国产成人一区二区三区免费视频网站| 亚洲成av人片免费观看| 俺也久久电影网| 亚洲五月天丁香| 日本精品一区二区三区蜜桃| 老汉色∧v一级毛片| 国产精品99久久久久久久久| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| 老司机午夜福利在线观看视频| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 久99久视频精品免费| 国产精品亚洲av一区麻豆| 又爽又黄无遮挡网站| 国产高清videossex| 日本免费一区二区三区高清不卡| 亚洲狠狠婷婷综合久久图片| 一区福利在线观看| 十八禁网站免费在线| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 免费大片18禁| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人精品中文字幕电影| 俺也久久电影网| 黑人欧美特级aaaaaa片| 久久欧美精品欧美久久欧美| 日韩高清综合在线| 香蕉久久夜色| 久久中文看片网| 欧美色欧美亚洲另类二区| 999精品在线视频| 最近最新中文字幕大全免费视频| 啦啦啦韩国在线观看视频| 美女午夜性视频免费| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 99久国产av精品| 国产精品综合久久久久久久免费| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 99精品欧美一区二区三区四区| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 欧美性猛交黑人性爽| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 国产高清视频在线观看网站| 欧美成狂野欧美在线观看| 国产精品一区二区精品视频观看| 欧美日韩中文字幕国产精品一区二区三区| 色av中文字幕| 我的老师免费观看完整版| 一个人免费在线观看电影 | 国产一区二区在线观看日韩 | www.999成人在线观看| 性欧美人与动物交配| 一区二区三区高清视频在线| 香蕉国产在线看| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频 | av福利片在线观看| 久久中文字幕一级| 久久人妻av系列| 亚洲国产精品999在线| 亚洲欧美日韩高清专用| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| www.自偷自拍.com| 黄片大片在线免费观看| 人人妻人人看人人澡| 国产高清视频在线观看网站| 女警被强在线播放| 国产视频一区二区在线看| 国产成人福利小说| 色尼玛亚洲综合影院| 国产精品影院久久| 亚洲精品久久国产高清桃花| 天堂av国产一区二区熟女人妻| av国产免费在线观看| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久 | 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 九色国产91popny在线| 男女下面进入的视频免费午夜| 老司机午夜十八禁免费视频| 曰老女人黄片| 婷婷六月久久综合丁香| a在线观看视频网站| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久av美女十八| 热99re8久久精品国产| 悠悠久久av| 俺也久久电影网| 成人高潮视频无遮挡免费网站| 91麻豆精品激情在线观看国产| 狂野欧美激情性xxxx| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 亚洲自偷自拍图片 自拍| 久久精品影院6| 又爽又黄无遮挡网站| 精品人妻1区二区| 99精品久久久久人妻精品| 网址你懂的国产日韩在线| 嫩草影院精品99| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 亚洲成人久久爱视频| 国产极品精品免费视频能看的| 日本a在线网址| 亚洲中文日韩欧美视频| 色吧在线观看| e午夜精品久久久久久久| 99久久久亚洲精品蜜臀av| 精品久久久久久久末码| 香蕉久久夜色| av在线天堂中文字幕| 99久久精品一区二区三区| 88av欧美| 黄色丝袜av网址大全| 1024香蕉在线观看| 特大巨黑吊av在线直播| 波多野结衣高清无吗| 久久久色成人| 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 国产欧美日韩精品一区二区| 久久中文看片网| www.精华液| 亚洲欧美日韩无卡精品| 久久久国产成人免费| 不卡av一区二区三区| 黄频高清免费视频| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 亚洲一区高清亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲色图 男人天堂 中文字幕| 亚洲 欧美 日韩 在线 免费| 色精品久久人妻99蜜桃| 亚洲午夜理论影院| 丰满的人妻完整版| 最新在线观看一区二区三区| 小说图片视频综合网站| 亚洲精品美女久久久久99蜜臀| 99热这里只有精品一区 | 岛国视频午夜一区免费看| 成人亚洲精品av一区二区| 男人舔奶头视频| 精品一区二区三区视频在线 | 9191精品国产免费久久| 午夜亚洲福利在线播放| 亚洲午夜精品一区,二区,三区| 又大又爽又粗| 日韩免费av在线播放| 日本撒尿小便嘘嘘汇集6| www.自偷自拍.com| 岛国在线观看网站| 又大又爽又粗| 午夜福利高清视频| 99久久精品国产亚洲精品| 人人妻人人澡欧美一区二区| 最新在线观看一区二区三区| 村上凉子中文字幕在线| 精品日产1卡2卡| 一区福利在线观看| 国产又黄又爽又无遮挡在线| 亚洲精品国产精品久久久不卡| 国产av麻豆久久久久久久| 国产精品九九99| 免费在线观看视频国产中文字幕亚洲| 91在线精品国自产拍蜜月 |