張 正,劉國彬,2※,李 強(qiáng)
四端子電極提高根系生物量電容法估測的有效性
張 正1,劉國彬1,2※,李 強(qiáng)3
(1. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100;2. 中國科學(xué)院水利部水土保持研究所,楊凌 712100;3. 榆林學(xué)院生命科學(xué)學(xué)院,榆林 719000)
二端子結(jié)構(gòu)在測定根系電容時伴生的電極接觸效應(yīng)會影響根系電容的有效測量。分別采用二端子和四端子2種結(jié)構(gòu)在土壤相對含水率為25%~30%、55%~60%和85%~90%下測定玉米根系電容,研究土壤含水率對電極接觸效應(yīng)的影響,并建立不同土壤水分條件和結(jié)構(gòu)下根系電容與根系生物量的關(guān)系,探討四端子結(jié)構(gòu)在電容法估測根系生物量中的有效性。結(jié)果表明,二端子結(jié)構(gòu)測定的根系電容較四端子結(jié)構(gòu)小,隨著土壤含水率減小,電極接觸效應(yīng)增大,在土壤相對含水率為25%~30%下最為明顯。在土壤相對含水率為85%~90%時,2種結(jié)構(gòu)下玉米根系電容表征根系生物量的有效性相近(二端子結(jié)構(gòu):R2=0.63,P<0.05;四端子結(jié)構(gòu):R2=0.66,P<0.05),但隨土壤含水率減小,與四端子結(jié)構(gòu)相比,二端子結(jié)構(gòu)下玉米根系電容表征根系生物量的有效性急劇下降,在土壤相對含水率為25%~30%時最為明顯,二端子結(jié)構(gòu)R2=0.37(P<0.05)而四端子結(jié)構(gòu)R2=0.59(P<0.05)。研究認(rèn)為,土壤含水率越低,與二端子結(jié)構(gòu)相比,四端子結(jié)構(gòu)下根系電容表征根系生物量的有效性越好。
土壤含水率;生物量;根系;電容;二端子結(jié)構(gòu);四端子結(jié)構(gòu);電極接觸效應(yīng)
由于土壤不透明屬性的限制,埋藏于地下的植物根系難以直接觀察與測量,土鉆法、挖掘法和網(wǎng)袋法等[1-4]傳統(tǒng)的根系研究方法大多需要離土取樣,不僅耗時費(fèi)力,而且容易出現(xiàn)移位、斷根和水分逸失等問題[5]。電容法作為一種更加便捷、無損的根系原位觀測方法,對滿足不斷增長的根系研究需要具有重要意義[6-8]。Kendal等[9]較早地采用電容儀和2個電導(dǎo)電極,以紅三葉草(Trifolium Pratense L)和紫花苜蓿(Medicago sativa L)為材料,將陽極電極插入土壤中,陰極電極插入莖底部靠近地表方向,在1 kHz測試信號頻率下估測了根系的質(zhì)量,并指出根系表層與土壤間的濕度會對試驗(yàn)結(jié)果帶來影響。這種由2個電導(dǎo)電極(陽極電極和陰極電極)分別將土壤和根系連接起來構(gòu)成“陽極電極-土壤-根系-陰極電極”的測量回路稱為二端子結(jié)構(gòu)[10-11]。Dalton[12]在根系電容的建模研究中指出采用二端子結(jié)構(gòu)測定根系電容時,電極接觸效應(yīng)的存在會影響根系電容的有效測量,進(jìn)而影響根系電容表征根系生物量的有效性。為了消除電極接觸效應(yīng),Tim等[13]在二端子結(jié)構(gòu)中的測量回路外圍引入2個電導(dǎo)電極形成1條激勵回路從而構(gòu)成四端子結(jié)構(gòu),在土壤飽和含水率條件下測定了沙土栽培的蠶豆(Vicia faba L)根系電容,但結(jié)果表明采用四端子和二端子2種結(jié)構(gòu)測定的根系電容呈極顯著的相關(guān)關(guān)系(R2=0.99,P<0.01)。這說明土壤飽和含水率條件下電極接觸效應(yīng)可忽略不計(jì),四端子結(jié)構(gòu)并不能提高根系電容測量的有效性。然而電極接觸效應(yīng)主要是由于引線間(陽極電極和土壤)的“接觸”并不完全而引起的[14],引線間(陽極電極和土壤)的接觸狀況決定了電極接觸效應(yīng)的大小。Dalton[12]在對根系電容的建模研究中指出引線間(陽極電極和土壤)的接觸狀況與土壤水分密切相關(guān)。
筆者在總結(jié)已有相關(guān)文獻(xiàn)的基礎(chǔ)上,發(fā)現(xiàn)采用四端子結(jié)構(gòu)測定植物根系電容的相關(guān)研究多是在土壤水分為田間持水量下進(jìn)行的[15],而有關(guān)不同土壤含水率下應(yīng)用四端子結(jié)構(gòu)測定根系電容的研究較少。因此,本文采用四端子結(jié)合二端子結(jié)構(gòu)的方法,研究電極接觸效應(yīng)對根系電容測量的影響及土壤含水率對電極接觸效應(yīng)的影響,并建立不同土壤水分條件和測量結(jié)構(gòu)下根系電容與根系生物量的關(guān)系,探討四端子結(jié)構(gòu)在電容法原位估測根系生物量中的有效性,以期為進(jìn)一步完善植物根系快速無損檢測技術(shù)提供參考。
1.1 供試材料和裝置
本研究采用盆栽控制試驗(yàn),以典型須根系形態(tài)的陜單609春玉米(Zea mays)為試驗(yàn)材料,盆栽土壤為陜北安塞縣的壤土(棄耕地耕層土壤),土壤基本理化性質(zhì)包含容重1.2 g/cm3,水穩(wěn)性團(tuán)聚體133.9 g/kg,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)3.73 g/kg,全氮質(zhì)量分?jǐn)?shù)0.24 g/kg,速效磷質(zhì)量分?jǐn)?shù)3.99 mg/kg,田間持水量質(zhì)量分?jǐn)?shù)22.00%。
土壤填裝采用常規(guī)化方法,按照設(shè)計(jì)容重(1.2 g/cm3)分層(每層5 cm)裝入塑料桶(上徑×下徑×高為28 cm×22 cm×34 cm),填裝結(jié)束后,用量筒取1.5 L的水從插入土壤底部的聚氯乙烯(polyvinyl chloride,PVC)管中加入,于室溫下養(yǎng)護(hù)5 d后播種。采用穴播法播種,每盆固定3穴,每穴1粒,為了保證盆栽植物的成活率,苗期管理期間及時補(bǔ)苗和間苗,待出苗整齊后,每盆固定1株。
根系電容的測定采用手持式MT4080A型數(shù)字電容橋(深圳市恩慈電子有限公司,精度為±0.3%)[15],該電容橋帶有智能微處理器,通過操作【參數(shù)】鍵可選擇并聯(lián)或串聯(lián)模式來測量電容、阻抗、電感等多項(xiàng)電參數(shù),測試頻率通過電橋面板上【頻率】鍵切換,可選擇0.1、1、10和100 kHz共4種頻率。該試驗(yàn)中由于電容橋所配帶的夾具加持面為鋸齒形且夾力較小,不能滿足試驗(yàn)要求,故采用自制不銹鋼低阻電導(dǎo)電極(長5 cm,直徑2 mm)連接根系和土壤。
盆栽土壤含水率采用TDR-300水分測量儀(西化儀(北京)科技有限公司)結(jié)合稱質(zhì)量法進(jìn)行測定與控制。本文通過自制5個土壤含水率水平(3.39%、4.97%、9.80%、14.83%和19.68%),對時域反射儀(time domain reflectometry,TDR)測量結(jié)果進(jìn)行校正,采用如下公式:
式中X為土壤含水率,%;x為TDR測量值,%。
1.2 試驗(yàn)設(shè)計(jì)和過程
該研究選擇在玉米拔節(jié),抽雄和成熟3個生育期分別進(jìn)行根系電容測定,樣本量均為5株,每株玉米分別在二端子和四端子2種結(jié)構(gòu)下進(jìn)行測定,其中,每種結(jié)構(gòu)分別選定3個土壤相對含水率梯度(相對含水率為土壤含水率與田間水量的比值),即25%~30%、55%~60%和85%~90%。首先用量筒取適量的水從插入土壤底部的PVC管中緩緩加入,補(bǔ)充待測植株土壤相對含水率至85%~90%,以玉米莖部為原點(diǎn),在各方向等間距各選擇1個點(diǎn),每間隔10 min用TDR-300水分測量儀測定各點(diǎn)土壤含水率,待各點(diǎn)土壤含水率相近,即土壤水分分布均勻后[16-18],采用二端子結(jié)構(gòu)進(jìn)行根系電容測定(圖1a),測試信號頻率為1 kHz[19-22]。具體測量方法如圖1a所示,陰極電極B插入植物莖底部距地表1 cm處,陽極電極B1插入距莖部5 cm處的土壤中,電路連接好后,打開電容橋電源開關(guān),待讀數(shù)穩(wěn)定后(5 s),讀取根系電容值;二端子結(jié)構(gòu)下根系電容值記錄完畢后,隨即關(guān)閉電容橋電源,然后將測量結(jié)構(gòu)切換至四端子(圖1c),即保持陰極電極B和陽極電極B1的接觸位置不變,于陰極電極B上方3 cm處插入激勵電極A,陽極電極B1外側(cè)3 cm處插入激勵電極A1,電路連接好后,打開電容橋電源開關(guān),待讀數(shù)穩(wěn)定后(5 s),讀取根系電容值。相對含水率85%~90%條件下根系電容測定完畢后,將待測植株轉(zhuǎn)移至炎熱干燥環(huán)境中自然干旱并每間隔1 h測定土壤含水率,待土壤含水率穩(wěn)定在下一水分梯度時(相對含水率55%~60%和25%~30%)分別采用二端子和四端子結(jié)構(gòu)進(jìn)行根系電容測定,測量方法同上。
圖1 二端子和四端子結(jié)構(gòu)示意圖及測量根系電容現(xiàn)場照片F(xiàn)ig.1 Schematic and photo of root electrical capacitance measurement under two and four-terminal configurations
2種結(jié)構(gòu)3個水分梯度下根系電容測定完畢后,將玉米地上部分沿陰極電極B插入點(diǎn)剪去[23-25],然后分離根系和土壤。分離出的根系置于0.05 mm的網(wǎng)篩內(nèi)進(jìn)行沖洗;沖洗結(jié)束后,置于裝有蒸餾水的器皿中,用鑷子將所有雜質(zhì)從根系中分離出來,再用濾紙輕輕地擦拭根系表面,盡量將根系表面的水分拭去;最后,將根系樣品對應(yīng)編號后放入密封袋內(nèi),在80°烘箱中烘干至恒質(zhì)量,并稱其干質(zhì)量。
1.3 數(shù)據(jù)處理
采用Excel 2013進(jìn)行數(shù)據(jù)整理;采用SPSS13進(jìn)行試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)分析;采用SigmaPlot 12.5作圖。
2.1 電極接觸效應(yīng)與土壤含水率的關(guān)系
圖2為3個土壤相對含水率梯度下(25%~30%,55%~60%和85%~90%),二端子和四端子2種結(jié)構(gòu)測定的玉米根系電容間關(guān)系。由圖2可知,當(dāng)四端子結(jié)構(gòu)消除了二端子結(jié)構(gòu)中的電極接觸效應(yīng)后,玉米根系電容觀測值普遍增大,土壤相對含水率為25%~30%下玉米根系電容觀測值比二端子結(jié)構(gòu)測定電容平均增大1.04倍,2種結(jié)構(gòu)下根系電容間擬合度R2為0.66,土壤相對含水率為55%~60%和85%~90%下根系電容比二端子分別平均增大0.21和0.04倍,根系電容間擬合度R2分別為0.93和0.99,這說明二端子結(jié)構(gòu)中的電極接觸效應(yīng)對根系電容測量影響的宏觀表現(xiàn)是根系電容觀測值較四端子結(jié)構(gòu)小,且電極接觸效應(yīng)的宏觀表現(xiàn)水平隨土壤含水率減小而增大,土壤相對含水率為25%~30%下增大明顯。
圖2 不同土壤相對含水率下二端子和四端子結(jié)構(gòu)測定的玉米根系電容間關(guān)系Fig.2 Relationship between maize root capacitance measured by two-terminal and four-terminal configurations under different relative soil moisture
二端子結(jié)構(gòu)由于只有“陽極電極-土壤-根系-陰極電極”這1條電流通路,而引線間(陽極電極和土壤)的“接觸面”實(shí)際是有限個接觸點(diǎn)、線或面組成的集合,因此當(dāng)電流從原來截面較大的導(dǎo)體(陽極電極)突然轉(zhuǎn)入截面較小的接觸點(diǎn)、線或面時會發(fā)生劇烈收縮[14],從而在接觸點(diǎn)、線或面形成壓降,進(jìn)而產(chǎn)生額外電容現(xiàn)象,即所謂的電極接觸效應(yīng)[13]。四端子結(jié)構(gòu)是在二端子結(jié)構(gòu)中的測量回路外圍引入2個電導(dǎo)電極形成1條激勵回路,并將測量回路連接到交流電容橋上1個有著極高輸入電阻的裝置上,通過改變電路路徑消除電極接觸效應(yīng)[26-27]。Tim等[13]指出通過研究某一土壤含水率水平下二端子和四端子2種結(jié)構(gòu)測定的根系電容間關(guān)系可定性反映該土壤含水率水平下電極接觸效應(yīng)對根系電容測量影響宏觀表現(xiàn),其以沙土栽培的蠶豆為試驗(yàn)材料,在土壤飽和含水率條件下對二端子和四端子2種結(jié)構(gòu)測定的根系電容進(jìn)行了回歸分析,結(jié)果顯示二者呈極顯著線性相關(guān)且決定系數(shù)R2為0.99,并表明土壤飽和含水率條件下二端子結(jié)構(gòu)中的電極接觸效應(yīng)對根系電容測量的影響可忽略不計(jì)。然而電極接觸效應(yīng)主要是由于引線間(陽極電極和土壤)的“接觸”并不完全而引起的[14],引線間(陽極電極和土壤)的接觸狀況決定了電極接觸效應(yīng)的大小。土壤作為二端子結(jié)構(gòu)下“陽極電極-土壤-根系-陰極電極”測量回路中的重要引線,其水分狀況不僅決定“根-土”接觸的有效性而且影響電極接觸效應(yīng)發(fā)生界面的大小(“陽極電極-土壤”)[28]。土壤含水率減小減少了“陽極電極-土壤”接觸面上可溶性鹽的溶解和降低了離子的交換能力,當(dāng)電流經(jīng)陽極電極轉(zhuǎn)入土壤時發(fā)生劇烈收縮的程度增大,從而增強(qiáng)電極接觸效應(yīng),導(dǎo)致對根系電容測量的影響增大[29]。
綜上,四端子結(jié)構(gòu)由于消除電極接觸效應(yīng)而增大了根系電容測量的有效性,且土壤含水率減小使這種影響更加明顯
2.2 四端子結(jié)構(gòu)估測玉米根系生物量的有效性
圖3為3個土壤相對含水率梯度下(25%~30%,55%~60%和85%~90%),二端子和四端子2種結(jié)構(gòu)測定的玉米根系電容與根系生物量的關(guān)系。
圖3 不同土壤相對含水率下2種電極結(jié)構(gòu)測定的玉米根系電容與根系生物量的關(guān)系Fig.3 Relationships between maize root capacitance measured by two terminal configurations and root biomass under different relative soil moisture
由圖3可知,土壤相對含水率為85%~90%時,2種結(jié)構(gòu)下玉米根系電容表征根系生物量的有效性相近(二端子結(jié)構(gòu):R2=0.63,P<0.05;四端子結(jié)構(gòu)R2=0.66,P<0.05);隨著土壤相對含水率減小至55%~60%和25%~30%,2種結(jié)構(gòu)下根系電容表征根系生物量的有效性均降低。與四端子結(jié)構(gòu)相比,二端子結(jié)構(gòu)下玉米根系電容表征根系生物量的有效性急劇下降,在土壤相對含水率為25%~30%時表現(xiàn)最為明顯(R2=0.37,P<0.05)。這是由于土壤含水率較低時,二端子結(jié)構(gòu)中電極接觸效應(yīng)較高,即減小根系電容測量的有效性更加顯著,從而使測定的根系電容表征根系生物量的有效性較低。消除了電極接觸效應(yīng)的四端子結(jié)構(gòu),其根系電容表征根系生物量的有效性隨土壤含水率降低呈現(xiàn)輕微減小,這可能與“根-土”的有效接觸面減小有關(guān)[30-32]。Dalton[12]提出的根系概念模型中,假設(shè)根系的任一級側(cè)根均可看作為一個軸向的、對稱的、均勻的圓柱形電容器,其中,根系木質(zhì)部視為內(nèi)電極,皮層組織視為介電質(zhì),與根表皮相接觸的土壤溶液視為外電極,當(dāng)外電場和介電質(zhì)一定時,根系電容取決于內(nèi)外兩柱形電極的正對面積[33],即根系表層與土壤溶液的接觸面積,這一方面取決于土壤水分狀況,另一方面取決于根系自身性狀特征,如根生物量、根長和根表面積等。當(dāng)根系性狀特征一定時,土壤含水率減小導(dǎo)致內(nèi)外兩柱形電極的正對面積減小,因此儲存在根系表層的電荷不能有效地反映根系性狀特征。
1)二端子結(jié)構(gòu)下根系電容觀測值較四端子結(jié)構(gòu)小,在土壤相對含水率為25%~30%時,2種結(jié)構(gòu)下根系電容間擬合度R2為0.66;在土壤相對含水率為55%~60%和85%~90%下,2種結(jié)構(gòu)下根系電容間擬合度R2為0.93和0.99??傮w而言,隨著土壤含水率減小,二端子結(jié)構(gòu)中電極接觸效應(yīng)增大,在土壤相對含水率為25%~30%下最為明顯。
2)土壤相對含水率為85%~90%時,2種結(jié)構(gòu)下玉米根系電容表征根系生物量的有效性相近(二端子結(jié)構(gòu):R2=0.63,P<0.05;四端子結(jié)構(gòu):R2=0.66,P<0.05),但隨著土壤含水率減小,與四端子結(jié)構(gòu)相比,二端子結(jié)構(gòu)下玉米根系電容表征根系生物量的有效性急劇下降,在土壤相對含水率為25%~30%時最為明顯(R2從0.59降低到0.37,P<0.05)。研究認(rèn)為,土壤含水率越低,與二端子結(jié)構(gòu)相比,四端子結(jié)構(gòu)下根系電容表征根系生物量的有效性越好。
該試驗(yàn)在一定程度上揭示了土壤含水率較低時,與二端子結(jié)構(gòu)相比,四端子結(jié)構(gòu)測定的根系電容表征根系生物量的有效性較高,但該試驗(yàn)材料單一,樣本容量較少,因此關(guān)于四端子結(jié)構(gòu)在不同試驗(yàn)材料如草本、灌木和喬木中的應(yīng)用有效性研究將有利于進(jìn)一步補(bǔ)充和完善電容法快速無損檢測植物根系技術(shù)。
[1] 李強(qiáng),劉國彬,許明祥,等.黃土丘陵區(qū)撂荒地土壤抗沖性及相關(guān)理化性質(zhì)[J].農(nóng)業(yè)工程學(xué)報,2013,29(10):153-159.
Li Qiang, Liu Guobin, Xu Mingxiang, et al. Soil antiscouribility and its related physical properties on abandoned land in the Hilly Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 153-159. (in Chinese with English abstract)
[2] 李強(qiáng),劉國彬,許明祥,等.黃土丘陵區(qū)凍融對土壤抗沖性及相關(guān)理化性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(17):105-112.
Li Qiang, Liu Guobin, Xu Mingxiang, et al. Effect of seasonal freeze-thaw on soil santi-scouribility and its related physical property in hilly Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 105-112. (in Chinese with English abstract)
[3] 王巧利,賈燕鋒,王寧,等.黃土丘陵溝壑區(qū)自然恢復(fù)坡面植物根系的分布特征[J].水土保持研究,2012,19(5):16-22.
Wang Qiaoli, Jia Yanfeng, Wang Ning, et al. Distribution of root on vegetation recovery slope in the hilly and gully Loess Plateau[J]. Research of Soil and Water Conservation, 2012, 19(5): 16-22. (in Chinese with English abstract)
[4] 燕輝,劉廣全,李洪生.青楊人工林根系生物量、表面積和根長密度變化[J].應(yīng)用生態(tài)學(xué)報,2010,21(11):2763-2768.
Yan Hui, Liu Guangquan, Li Hongsheng. Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation[J]. Journal of Applied Ecology, 2010, 21(11): 2763-2768. (in Chinese with English abstract)
[5] 李克新,宋文龍,朱良寬.作物根系原位觀測識別新方法綜述[J].浙江農(nóng)業(yè)學(xué)報,2011,23(4):851-856.
Li Kexin, Song Wenlong, Zhu Liangkuan. Review on new methods of observation and recognition in situ for crop roots[J]. Acta Agriculturae Zhejiangensis, 2011, 23(4): 851-856. (in Chinese with English abstract)
[6] Dietrich R C, Bengough A G, Jones H G, et al. Can root electrical capacitance be used to predict root mass in soil?[J]. Ann Bot, 2013, 112(2): 207-222.
[7] Aulen M, Shipley B. Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species[J]. Plant Soil, 2012, 355(1): 41-49.
[8] Pitre F E, Brereton N J B, Audoire S,et al. Estimating root biomass in Salix viminalis × Salix schwerinii cultivar ‘Olof’using the electrical capacitance method[J]. Plant Biosyst, 2010, 144(2): 479-483.
[9] Kendal W A, Pederson G A, Hill R R. Root size estimates of red clover and alfalfa based on electrical capacitance and root diameter measurements[J]. Grass Forage Sci, 1982, 37(3): 253-256.
[10] Tim E, Wayne M, Keryn P, et al. Electrical capacitance as a rapid and non-invasive indicator of root length[J]. Tree Physiol, 2013, 33(1): 3-17.
[11] Amato M, Basso B, Celano G, et al. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging[J]. Tree Physiol, 2008, 28(10): 1441-1448.
[12] Dalton F N. In-situ root extent measurements by electrical capacitance methods[J]. Plant and Soil, 1995, 173(1): 157-165.
[13] Tim E, Wayne M, Laimonis K. Electrical capacitance of bean (Vicia faba) root systems was related to density–A test for the Dalton Model[J]. Plant Soil, 2012, 366(1): 575-584.
[14] Dvorák M, Cernohorská J, Janácek K. Characteristics of current passage through plant tissue[J]. Biol Plant, 1981, 23(4): 306-310.
[15] 張正,劉國彬,李強(qiáng),等.電容法估測植物根系生物量研究[J].草地學(xué)報,2015,23(2):383-386.
Zhang Zheng, Liu Guobin, Li Qiang, et al. Estimating plant root biomass using electrical capacitance method[J]. Acta Agrestia Sinica, 2015, 23(2): 383-386. (in chinese with English abstract)
[16] Preston G M, McBride R A, Bryan J, et al. Estimating root mass in young hybrid poplar trees using the electrical capacitance method[J]. Agroforest Syst, 2004, 60(3): 305-309.
[17] Walker J M, Electrical A C. Resistance and capacitance of Zea mays[J]. Plant Soil, 1965, 23(2): 270-274.
[18] Aubrecht L, Stanek, Z, Koller J. Electrical measurement of the absorption surfaces of tree roots by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments[J]. Tree Physiol, 2006, 26(9): 1105-1112.
[19] Van B J, Smith M E, Zobel R W. Estimating root mass in maize using a portable capacitance meter[J]. Agron J, 1998, 90(4): 566-570.
[20] Dietrich R, Bengough A G, Jones H G, et al. A new physical interpretation of plant root capacitance[J]. J Exp Bot, 2012, 63(17): 6149-6159.
[21] Tsukahara K, Yamane K, Yamaki Y, et al. A non-destructive method for estimating the root mass of young peach trees after root pruning using electrical capacitance measurements[J]. J Agric Meteorol, 2009, 65(2): 209-213.
[22] Tim E, Wayne M, Keryn P, et al. Electrical capacitance as a rapid and non-invasive indicator of root length[J]. Tree Physiol, 2013, 33(1): 3-17.
[23] Urban J, Bequet R, Mainiero R. Assessing the applicability of the earth impedance method for in situ studies of tree root systems[J]. J Exp Bot, 2011, 62(6): 1857-1869.
[24] Cao Y, Repo T, Silvennoinen R, et al. Analysis of the willow root system by electrical impedance[J]. J Exp Bot, 2011, 62(1): 351-358.
[25] Cao Y, Repo T, Silvennoinen R, et al. An appraisal of the electrical resistance methodfor assessing root surface area[J]. J Exp Bot, 2010, 61(9): 2491-2497.
[26] 李強(qiáng),曹楊,張正,等. 電阻抗法在植物根系生物學(xué)研究中的應(yīng)用[J]. 植物科學(xué)學(xué)報,2016,34(3):488-495. Li Qiang, Cao Yang, Zhang Zheng, et al. Review on the application of bioimpedance methods in plant root biology research[J]. Plant Science J, 2016, 34(3): 488-495. (in Chinese with English abstract)
[27] Amato M, Bitella G, Rossi R, et al. Multi-electrode 3D resistivity imaging of alfalfa root zone[J]. Eur J Agron, 2009, 31(4): 213-222.
[28] Rajkai K, Vegh K R, Nacsa T. Electrical capacitance as the indicator of root size and activity[J]. Agrokémia és Talajtan, 2002, 51(1): 89-98.
[29] Wu Shiyan, Zhou Qiyou, Wang Gang, et al. The relationship between electrical capacitance-based dielectric constant and soil water content[J]. Enviro Earth Sci, 2011, 62(5): 999-1011.
[30] Repo T, Laukkanen J, Silvennoinen R. Measurement of the tree root growth using electrical impedance spectroscopy[J]. Silva Fennica, 2005, 39(2): 159-166.
[31] Aubrecht L, Stanek, Z, Koller J. Electrical measurement of the absorption surfaces of tree roots by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments[J]. Tree Physiol, 2006, 26(9): 1105-1112.
[32] Cermák J, Ulrich R, Stanek Z, et al. Electrical measurement of tree root absorbing surfaces by the earth impedance method[J]. Tree Physiol, 2006, 26(9): 1113-1121.
[33] Daian G, Taube A, Birnboim A, et al. Modeling the dielectric properties of wood[J]. Wood Sci Technol, 2006, 40(3): 237-246.
Four-terminal configuration enhancing estimation efficiency of root biomass by electrical capacitance method
Zhang Zheng1, Liu Guobin1,2※, Li Qiang3
(1. Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3. College of Life Sciences, Yulin University, Yulin 719000, China)
Validity measurement of electrical capacitance across a root system is the precondition for using electrical capacitance method to estimate root biomass. When using two-terminal configuration to measure root electrical capacitance, the parasitic electrode contact effect would affect validity measurement of electrical capacitance. The primary goal of this study was to evaluate the validity of root electrical capacitance by four-terminal configuration compared with two-terminal configuration to measure root biomass. Maize (Zea mays) were grown in pots containing a loessial soil. Each pot contained one individual and its root system was measured under electrode configuration of two-terminal and four-terminal. The measurements were conducted at stage of jointing, tasseling and maturity of maize, respectively. A total of 5 plants were measured for each stage. Electrical capacitance of the root system was determined using a portable alternating current (AC) digital capacitance bridge (MT-4080A) with a pure sine wave excitation at a frequency of 1 kHz. Home-made stainless, low resistance electrode (5 cm in length and 2 cm in diameter), which was sharpened at one end and pushed into the soil vertically, was used to connect root system and capacitance bridge. Before each measurement, the relative soil moisture of pots was controlled to 25%-30%, 55%-60% and 85%-90%, respectively. Soil water content of pots was measured and controlled by TDR-300 combined with the weighing method. In measurements under two-terminal configuration, one electrode was inserted through the center of the stem about 1 cm from crown, and the other one was inserted into the soil about 5 cm from the base. Compared with the two-terminal configuration, the four-terminal configuration used a further 2 electrodes which were placed above the stem electrode and further from the base. After measurement of each pot, the roots were harvested and the biomas was determined. The results showed that soil water content had an evident effect on electrode contact effect. The electrode contact effect was presented and root electrical capacitance of maize measured by the two-terminal configuration was smaller than the four-terminal configuration. The electrode contact effect increased with the decrease in soil water content and it was the most obvious at the relative soil moisture of 25%-30%. In detail, compared with the two-terminal configuration, the root electrical capacitance determined by the four-terminal configuration increased by 1.04, 0.21 and 0.04 times at relative soil moisture of 25%-30%, 55%-60% and 85%-90%, respectively. Additionally, the validity of root electrical capacitance characterizing root biomass was similar under two configurations at the relative soil moisture of 85%-90% (two-terminal configuration: R2=0.63, P<0.05; four-terminal configuration: R2=0.66, P< 0.05). However, compared with the four-terminal configuration, the validity of root electrical capacitance characterizing root biomass under the two-terminal configuration declined sharply when soil water decreased, and it was most pronounced at the relative soil moisture of 25%-30% (R2decreased from 0.59 to 0.37, P<0.05). In conclusion, compared with the two-terminal configuration, the validity of root electrical capacitance characterizing root biomass under the four-terminal configuration was better when soil water content was lower.
soil moisture; biomass; roots; electrical capacitance; two-terminal configuration; four-terminal configuration; electrode contact effect
10.11975/j.issn.1002-6819.2017.05.027
TM938.84
A
1002-6819(2017)-05-0185-05
張 正,劉國彬,李 強(qiáng). 四端子電極提高根系生物量電容法估測的有效性[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(5):185-189.
10.11975/j.issn.1002-6819.2017.05.027 http://www.tcsae.org
Zhang Zheng, Liu Guobin, Li Qiang. Four-terminal configuration enhancing estimation efficiency of root biomass by electrical capacitance method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 185-189. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.027 http://www.tcsae.org
2016-06-10
2016-12-10
國家自然科學(xué)基金項(xiàng)目(41661101);黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(A314021402-1604);黃土高原水土流失綜合治理技術(shù)及示范(2016YFC0501700)
張 正,男,陜西榆林人,博士生,主要從事植被地下生態(tài)研究。楊陵 西北農(nóng)林科技大學(xué)水土保持研究所,712100。
Email:zhangzheng@nwsuaf.edu.cn
※通信作者:劉國彬,男,陜西榆林人,研究員,主要從事流域生態(tài)系統(tǒng)管理研究。楊陵 西北農(nóng)林科技大學(xué)水土保持研究所,712100。
Email:gbliu@ms.iswc.ac.cn