張建平,劉宗元,王 靖,何永坤,羅紅霞
西南地區(qū)綜合干旱監(jiān)測模型構(gòu)建與驗證
張建平1,劉宗元2,王 靖3,何永坤1,羅紅霞2
(1. 重慶市氣象科學(xué)研究所,重慶 401147;2. 浙江省地理信息中心,杭州 310000;3. 中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
在全球極端天氣事件越來越多的大背景下,準(zhǔn)確監(jiān)測西南干旱對區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展具有重要的現(xiàn)實意義。該文選取降水距平百分率(percentage of precipitation anomaly index,Pa)、標(biāo)準(zhǔn)化降水指數(shù)(standard precipitation index,SPI)、相對濕潤指數(shù)(relative moisture index,MI)等3種氣象類干旱監(jiān)測模型以及植被供水指數(shù)(vegetation water supply index,VWSI)與歸一化植被指數(shù)(normalized differential vegetation index,NDVI)等2種遙感類干旱監(jiān)測模型,并分別與實測土壤濕度作相關(guān)分析,在此基礎(chǔ)上選取相關(guān)系數(shù)最高的相對濕潤指數(shù)與歸一化植被指數(shù)為自變量建立綜合干旱監(jiān)測指數(shù)(comprehensive drought monitoring index,DI)。結(jié)果表明,綜合干旱指數(shù)與土壤水分實測值有較好的相關(guān)性,監(jiān)測精度可達(dá)88.38%;在不同海拔高度內(nèi),綜合干旱指數(shù)的擬合效果比單一指數(shù)效果更好,精度更高;在分析2009-2010年西南特大干旱旱情發(fā)展的時空演變過程中,綜合干旱監(jiān)測結(jié)果與實際干旱情況有較好的空間一致性,監(jiān)測效果佳。研究成果為西南丘陵山區(qū)干旱監(jiān)測提供了一種新的方法。
干旱;監(jiān)測;模型;西南地區(qū)
西南地區(qū)熱量條件豐富、雨量充沛,對發(fā)展農(nóng)業(yè)生產(chǎn)較為有利。但由于區(qū)內(nèi)降水時空分布與主要糧食作物生長季不相匹配,加之區(qū)內(nèi)坡耕地多、工程水利設(shè)施不足和地下水開發(fā)利用程度低,造成該區(qū)域極易發(fā)生季節(jié)性干旱[1]。因此,探求西南地區(qū)干旱監(jiān)測技術(shù)、對提升當(dāng)?shù)剞r(nóng)業(yè)氣象業(yè)務(wù)服務(wù)與科技含量具有重要的現(xiàn)實意義。干旱監(jiān)測指數(shù)模型是定量分析干旱災(zāi)害的評判標(biāo)準(zhǔn),是干旱程度的數(shù)值表達(dá),在干旱災(zāi)害分析中起著度量、對比和綜合等重要作用,既是干旱災(zāi)害監(jiān)測和評估的基礎(chǔ),更是干旱災(zāi)害監(jiān)測和評估的核心[2]。目前的干旱監(jiān)測指數(shù)模型大致可以分為2大類,一類是基于地面氣象觀測站點的常規(guī)氣象干旱監(jiān)測模型[3],一類是基于衛(wèi)星空間數(shù)據(jù)的遙感干旱監(jiān)測模型[4]。在過去的干旱監(jiān)測研究中,用于模擬干旱發(fā)展的數(shù)據(jù)大多源于氣象觀測站的站點觀測信息,即大多采用常規(guī)氣象干旱監(jiān)測模型[5]。這種方法獲取的點位上地面信息非常準(zhǔn)確,在一定程度上可以從機理上揭示環(huán)境、人為等因素對干旱發(fā)展過程的影響,并可以連續(xù)模擬地表土壤水分狀態(tài),但需要耗費大量的人力、財力和物力,而且氣象觀測站點稀疏,一次只能獲得少量點位上的數(shù)據(jù)信息,其代表性和完整性有限,模型應(yīng)用到區(qū)域干旱監(jiān)測時參數(shù)的區(qū)域化困難,宏觀資料的獲取不易[6]。目前,絕大多數(shù)氣象干旱監(jiān)測指數(shù)是基于降水量、溫度、蒸散量等信息組合得到,實時性難以保證[7-8]。遙感監(jiān)測的信息是某個時間點上地物反應(yīng)出來的綜合物理信息,易受天氣、時相等因素影響,不能連續(xù)估測土壤水分,更不能從機理上解釋地物及其干旱的發(fā)展過程[9-12]。
可見,單一監(jiān)測模型不僅受限因素多,且監(jiān)測結(jié)果也具有片面性[13-15]。因此,完全有必要構(gòu)建一個綜合干旱監(jiān)測指數(shù),來彌補單一類型監(jiān)測指數(shù)的缺陷,豐富干旱監(jiān)測機理,提高干旱監(jiān)測指數(shù)在西南地區(qū)復(fù)雜地形中的適應(yīng)性。本研究擬在將3種氣象類干旱監(jiān)測模型與2種遙感監(jiān)測模型分別與土壤實測濕度進(jìn)行相關(guān)分析的基礎(chǔ)上,選取相關(guān)系數(shù)最高的2種模型來構(gòu)建綜合干旱監(jiān)測模型,并以實際干旱狀況加以驗證,以期為區(qū)域干旱提供一種新的監(jiān)測技術(shù)。
1.1 研究區(qū)概況
研究區(qū)位于98°~110°E與20°~35°N之間,包括云南省、四川省、貴州省和重慶市(簡稱“三省一市”),幅員面積1137 6×106km2,占全國總面積的11.77%。該區(qū)域地形復(fù)雜,包括川西高原、云貴高原、橫斷山區(qū)和四川盆地,地勢起伏大,氣候區(qū)域差異顯著,立體氣候明顯,其中峽谷廣布,河流縱橫,地貌以高原和山地為主,喀斯特地貌、盆地地貌和河谷地貌廣泛分布等。區(qū)內(nèi)徑流豐富、水流急湍,落差大,是中國水力資源最豐富的地區(qū),水利資源約占全國的40%。因地處低緯度地區(qū),以熱帶、亞熱帶季風(fēng)氣候為主,冬干夏濕、干濕分明是該區(qū)域的典型特征。降雨量豐沛,年均在900 mm以上,但受南亞季風(fēng)、東亞季風(fēng)和高原季風(fēng)的影響,時空分布極為不均,易形成季節(jié)性連旱和區(qū)域性干旱。因復(fù)雜多樣的地形地貌和氣候水熱條件影響,作物種植多樣化,主要有玉米、小麥、水稻等糧食作物和油菜、甘蔗、茶、棉花等經(jīng)濟作物,其中油菜和水稻產(chǎn)量分別占全國產(chǎn)量的24.2%和15.8%[16]。
1.2 氣象數(shù)據(jù)的選取及預(yù)處理
收集西南地區(qū)(重慶、四川、貴州、云南)92個氣象站點1961—2010年的觀測數(shù)據(jù),包括逐日降雨量、日最低溫度、日最高溫度、風(fēng)速、日照時數(shù)、空氣相對濕度等。86個站點1981—2010年的土壤墑情實測數(shù)據(jù),土壤墑情是土壤含水量與田間持水量的比值,即土壤相對濕度。眾多的研究結(jié)果表明光學(xué)遙感能有效的監(jiān)測土壤表層水分含量,而對深層土壤水分的監(jiān)測無能為力,且與土壤表層0~10 cm的土壤含水量相關(guān)性最好[17-19],因此,本文中涉及到的土壤墑情數(shù)據(jù)均為10 cm深度的土壤水分?jǐn)?shù)據(jù)。
氣象觀測站點空間分布圖和土壤墑情站點空間分布如圖1所示:
圖1 研究區(qū)氣象站點與土壤墑情站點分布圖Fig.1 Stations distribution of meteorology and soil moisture in study area
1.3 遙感數(shù)據(jù)的選取與預(yù)處理
采用具有高光譜分辨率、高時間分辨率,且空間分辨率適中,獲取便捷的MODIS數(shù)據(jù)[20-21]。由于本文研究的時間尺度為月尺度,將相鄰時相的MOD11A2、MOD09A1用最大值合成法分別合成月時間尺度的地表溫度和地表反射率圖像。使用ENVI軟件對影像進(jìn)行拼接,然后利用研究區(qū)域邊界矢量圖裁剪出研究區(qū)的地表溫度圖像、地表反射率圖像和植被指數(shù)圖像[22-23]。MOD11A2是1 km地表溫度8 d合成產(chǎn)品數(shù)據(jù)集,含有白天地表溫度和有效值范圍數(shù)據(jù),本文以白天地表溫度作為地表溫度。每一合成產(chǎn)品均有對應(yīng)的起止時間,根據(jù)產(chǎn)品的合成時間和有效值范圍以最大值合成方法計算成月值溫度數(shù)據(jù)。MOD09A1是500 m地表反射率8 d合成產(chǎn)品數(shù)據(jù)集,含有band1-7反射率和有效值范圍,本文選擇band1、band2和band33個波段。每一合成產(chǎn)品均有對應(yīng)的起止時間,根據(jù)產(chǎn)品的合成時間和有效值范圍以最大值合成方法計算成月反射率值。將500 mMOD09A1重采樣為1000 m月反射率數(shù)據(jù)。按照植被供水指數(shù)(vegetation water supply index,VWSI)、與歸一化植被指數(shù)(normalized differential vegetation index,NDVI)的計算公式,利用月溫度數(shù)據(jù)和月反射率數(shù)據(jù)計算出對應(yīng)的結(jié)果。
1.4 研究方法
氣象干旱類監(jiān)測模型選取降水距平百分率Pa[24]、標(biāo)準(zhǔn)化降水指數(shù)SPI[25]、相對濕潤度指數(shù)MI[26],遙感類監(jiān)測模型選擇能有效反映植被水分含量信息的歸一化植被指數(shù)NDVI[27]以及綜合考慮植被指數(shù)和地表溫度的植被供水指數(shù)VWSI[28]。由于篇幅所限,關(guān)于5種監(jiān)測模型的計算方法此處不再累贅,詳見參考文獻(xiàn)[29]。
為使各個干旱監(jiān)測指數(shù)具有可比性,采用相同的土壤相對濕度站點與各個指數(shù),以及各個指數(shù)間進(jìn)行相關(guān)性分析,統(tǒng)計的結(jié)果如表1所示。
表1 土壤相對濕度與各干旱指數(shù)間相關(guān)性Table1 Correlation between relative soil moisture and drought indices
從表1可以看出,不論是土壤相對濕度數(shù)據(jù)與各干旱監(jiān)測指數(shù)間,還是各干旱監(jiān)測指數(shù)之間,基本上通過了0.01的雙側(cè)性顯著檢驗,而且均成正相關(guān)。氣象類干旱監(jiān)測指數(shù)中,Pa與SPI相關(guān)性最高,為0.692;其次為SPI與MI,相關(guān)性為0.672。遙感干旱監(jiān)測指數(shù)中VWSI與NDVI相關(guān)性為0.630。氣象類干旱監(jiān)測指數(shù)與遙感類干旱監(jiān)測指數(shù)中,NDVI與MI相關(guān)性最高,為0.477,其次為NDVI與SPI,相關(guān)性為0.338。由此可見,同一類型的干旱監(jiān)測指數(shù)之間的相關(guān)性高于不同類型指數(shù)之間的相關(guān)性,進(jìn)一步說明不同類型指數(shù)進(jìn)行干旱監(jiān)測的機理和反映的干旱信息不同,二者具有互補性。
此外還可得出,在月時間尺度下,各干旱指數(shù)與土壤相對濕度之間均有良好的相關(guān)性。其中,氣象類干旱指數(shù)與土壤相對濕度的相關(guān)性分析中,MI與土壤相對濕度的相關(guān)性最高為0.477,其次為SPI,相關(guān)性為0.392。遙感干旱指數(shù)與土壤相對濕度分析中,NDVI與土壤相對濕度的相關(guān)性最高為0.416。這在一定程度上定量的說明了在研究的幾個旱情監(jiān)測指數(shù)中,MI指數(shù)監(jiān)測干旱效果最好,其次為NDVI指數(shù)。
綜上所述,為使構(gòu)建的綜合模型既能反映氣象類干旱指數(shù)的降雨、溫度和蒸散量信息,又能反映出遙感干旱監(jiān)測指數(shù)的植被生理特征信息,以與土壤相對濕度相關(guān)性最高為原則,選擇氣象類干旱監(jiān)測指數(shù)中的MI和遙感類干旱監(jiān)測指數(shù)中的NDVI作為建立綜合干旱模型的指數(shù)參量。
由于部分土壤墑情站點分布于受云雪覆蓋的區(qū)域,將這些站點剔除后剩下50個有效站點,考慮到后續(xù)模型的驗證問題,選擇35個站點作為建模站點,15個站點作為驗證站點,同時保證這15個站點分布在不同海拔高度上[29]。用專業(yè)數(shù)據(jù)分析處理軟件SPSS17.0對35個有效站點數(shù)據(jù)進(jìn)行分析,以土壤相對濕潤度為因變量,MI和NDVI2個指數(shù)為自變量,進(jìn)行多元線性回歸,以普通最小二乘法確定系數(shù),建立綜合干旱監(jiān)測指數(shù)模型,詳見式(1)。
式中DI(drought index)為綜合干旱監(jiān)測指數(shù)值,值越大表示越濕潤,值越小越干旱。
根據(jù)綜合干旱監(jiān)測指數(shù)像元值統(tǒng)計結(jié)果、結(jié)合農(nóng)業(yè)干旱等級劃分標(biāo)準(zhǔn)[30]、綜合監(jiān)測指數(shù)與土壤水分?jǐn)?shù)據(jù)的關(guān)系,以及西南地區(qū)農(nóng)業(yè)干旱實際情況,得到綜合干旱監(jiān)測指數(shù)的干旱等級劃分標(biāo)準(zhǔn),如表2所示。
表2 綜合干旱監(jiān)測指數(shù)DI的干旱等級劃分Table2 Drought classification of integrated drought monitoring index
利用沒有參與模型構(gòu)建的15個有效站點土壤相對濕度實測值對新建模型模擬得到的土壤水分進(jìn)行精度驗證,結(jié)果表3所示。
表3 綜合干旱監(jiān)測指數(shù)模擬精度驗證Table3 Simulation accuracy verification of integrated drought monitoring index
從表3可以看出,綜合干旱監(jiān)測指數(shù)對土壤濕度的模擬精度均在70%以上,最高精度為98.62%,最低精度為71.90%,平均精度為88.38%,整體反演精度較好。
由于土壤墑情站點均分布在海拔低于2 500 m的地區(qū),本文以500 m高程為間隔劃分為5個不同海拔高度段,在各高度段內(nèi)選擇1~2個站點作為代表站(榮縣站點代表500 m以下區(qū)域、凱里站點代表500~1 000 m區(qū)域、蒙自和思茅站點代表1 000~1 500 m區(qū)域、玉溪和盤縣站點代表1 500~2 000 m區(qū)域、昭覺和威寧站點代表2 000~2 500 m區(qū)域),對比分析各個區(qū)域內(nèi)模型擬合前(相對濕潤度指數(shù)MI、歸一化植被指數(shù)NDVI)和模型擬合后(綜合干旱監(jiān)測指數(shù)DI)結(jié)果與站點土壤相對濕度實測結(jié)果的相關(guān)系數(shù)。從表4可知,不同海拔高度內(nèi),MI、NDVI與DI等3種干旱指數(shù)與土壤相對濕度均成正相關(guān),其中DI與土壤相對濕度的相關(guān)系數(shù)最高,成顯著正相關(guān)。海拔2 000 m以下時,3種干旱指數(shù)與土壤相對濕度相關(guān)性較好,均通過0.05的顯著性檢驗;海拔2 000 m以上時,只有DI通過了0.05的顯著性檢驗,說明綜合干旱監(jiān)測指數(shù)DI在復(fù)雜地形中監(jiān)測干旱更具有優(yōu)越性。
表4 不同海拔高度代表站點土壤相對濕度與干旱指數(shù)的相關(guān)性分析Table4 Correlation between drought index and relative soil moisture of representative stations at different altitudes
可見,新建的綜合干旱監(jiān)測指數(shù)估算值與土壤相對濕度實測值擬合效果較好,說明綜合干旱監(jiān)測指數(shù)DI能較好的反映出地表土壤水分信息,表征干旱情況;此外不同海拔高度內(nèi)地DI與土壤相對濕度的擬合效果明顯優(yōu)于MI或NDWI與土壤相對濕度的擬合效果,說明基于氣象和遙感類的多數(shù)據(jù)源的擬合效果比單一數(shù)據(jù)源的擬合效果要好,更能適應(yīng)不同地形的干旱監(jiān)測。由此可證明該綜合干旱監(jiān)測模型精度較高,可用來監(jiān)測西南地區(qū)的干旱發(fā)展情況。
依據(jù)綜合干旱監(jiān)測指數(shù)干旱等級,研究分析西南地區(qū)2009年8月-2010年6月期間逐月的干旱時空信息演化特征。如圖2所示,此次干旱重災(zāi)區(qū)主要集中在四川南部攀西地區(qū)、云南大部、貴州西部地區(qū)。
圖2 2009年8月—2010年6月西南干旱時空演變過程Fig.2 Temporal and spatial evolution of drought at August 2009 and June 2010 in Southwest China
從圖2可以看出,西南地區(qū)2009年8月—2010年6月特大干旱在2009年9月初露旱象,云南東部和貴州中部呈現(xiàn)零星狀出現(xiàn)干旱;10月旱情迅速發(fā)展;11月、12月旱情進(jìn)一步加重,四川南部也出現(xiàn)嚴(yán)重干旱;1月、2月旱情更加嚴(yán)重,四川南部、云南西北部邊緣和南部熱帶雨林區(qū)以外的全部區(qū)域和貴州西部出現(xiàn)大面積的嚴(yán)重干旱;3月局部地區(qū)旱情有所緩解,但旱情仍然嚴(yán)重,重旱區(qū)域集中分布在云南東部和貴州西部地區(qū);4月旱情進(jìn)一步減緩;5月旱情明顯緩解;6月恢復(fù)正常。這次干旱的時空演變過程可以概括為:9月旱情初現(xiàn),10月至次年2月旱情逐步發(fā)展至最旱,次年3月-5月旱情逐漸緩解,次年6月恢復(fù)正常??梢?,監(jiān)測的干旱時空演變歷程與干旱災(zāi)情實際上報點分布格局基本一致,說明采用綜合干旱監(jiān)測指數(shù)監(jiān)測西南地區(qū)干旱過程,具有較好的可靠性。由于該綜合監(jiān)測指數(shù)融合了地表植被信息、降雨、溫度、蒸散量信息,克服了單一方法監(jiān)測干旱時出現(xiàn)的不確定性,使得干旱監(jiān)測更具穩(wěn)定性、連續(xù)性和真實性。
采用站點與像元窗口均值配對的方法對氣象干旱監(jiān)測指數(shù)、遙感監(jiān)測指數(shù)和土壤相對濕潤度數(shù)據(jù)進(jìn)行了相關(guān)分析。結(jié)果表明在月時間尺度下,各干旱指數(shù)與土壤相對濕度之間均有良好的相關(guān)性。其中,氣象類干旱指數(shù)MI與土壤相對濕度的相關(guān)性最高為0.477,歸一化植被指數(shù)NDVI與土壤相對濕度的相關(guān)性最高為0.416;此外,同一類型干旱監(jiān)測指數(shù)間的相關(guān)性高于不同類型指數(shù)之間的相關(guān)性,可見不同類型指數(shù)表征的干旱信息不同,二者具有互補性。
通過相關(guān)分析,構(gòu)建了以歸一化植被指數(shù)NDVI和氣象指數(shù)MI為驅(qū)動的綜合干旱監(jiān)測指數(shù)。為驗證綜合模型的合理性,將該指數(shù)模型的模擬數(shù)據(jù)與實測數(shù)據(jù)進(jìn)行精度驗證,估算值與實測值有較好的相關(guān)性,估算平均精度為88.38%,模型精度較高能用于西南地區(qū)干旱旱情監(jiān)測。此外,將各海拔高度段內(nèi)的綜合干旱監(jiān)測指數(shù)、MI、NDVI與土壤相對濕度進(jìn)行相關(guān)性對比分析,發(fā)現(xiàn)各海拔高度內(nèi)的綜合干旱監(jiān)測指數(shù)的相關(guān)系數(shù)均明顯高于MI或NDVI與土壤相對濕度的相關(guān)系數(shù),表明基于多數(shù)據(jù)源的綜合指數(shù)在復(fù)雜地形的擬合效果比單一指數(shù)好。
采用綜合干旱監(jiān)測指數(shù)監(jiān)測2009年8月—2010年6月西南地區(qū)干旱的時空演變過程,其監(jiān)測結(jié)果與實際情況有較好的一致性,對西南復(fù)雜地形有更強的適應(yīng)性,進(jìn)一步驗證了綜合干旱監(jiān)測模型的可靠性。
[1] 劉宗元,張建平,羅紅霞,等. 基于農(nóng)業(yè)干旱參考指數(shù)的西南地區(qū)玉米干旱時空變化分析[J]. 農(nóng)業(yè)工程學(xué)報. 2014,30(2):105-115.
Liu Zongyuan, Zhang Jianping, LuoHongxia, et al. Temporal and spatial distribution of maize drought in Southwest of China based on agricultural reference index for drought[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 105-115. (in Chinese with English abstract)
[2] 張俊,陳桂亞,楊文發(fā). 國內(nèi)外干旱研究進(jìn)展綜述[J]. 人民長江,2011,42(10):65-69.
Zhang Jun, Chen Guiya, Yang Wenfa. Review on theresearch progress of drought both at home and abroad[J]. Yangtze River, 2011, 42(10): 65-69. (in Chinese with English abstract)
[3] 王勁松,郭江勇,周躍武,等. 干旱指標(biāo)研究的進(jìn)展與展望[J]. 干旱氣象,2007,30(1):60-65.
Wang Jingsong, Guo Jiangyong, Zhou Yuewu, et al. Progress and prospect of drought index research[J]. Journal of Arid Meteorology, 2007, 30(1): 60-65. (in Chinese with English abstract)
[4] 侯英雨,何延波,柳欽火,等. 干旱監(jiān)測指數(shù)研究[J]. 生態(tài)學(xué)雜志,2007,26(6): 892-897.
HouYingyu,, He Yanbo, Liu Qinhuo, et al. Research progress on drought indices[J]. Chinese Journal of Ecology, 2007, 26(6): 892-897. (in Chinese with English abstract)
[5] 李芬,于文金,張建新,等. 干旱災(zāi)害評估研究進(jìn)展[J]. 地理科學(xué)進(jìn)展,2011,30(7):891-898.
Li Fen, Yu Wenjin, Zhang Jianxin, et al. Review of drought disaster evalution[J]. Progress in Geography, 2011, 30(7):891-898. (in Chinese with English abstract)
[6] 周躍武,馮建英. 美國20世紀(jì)干旱指數(shù)評述[J]. 干旱氣象,2006,24(1):79-89.
Zhou Yuewu, Feng Jianying. Review of drought index in the United States in twentieth Century[J]. Journal of Arid Meteorology, 2006, 24(1): 79-89. (in Chinese with English abstract)
[7] 張強,張良,崔顯成,等. 干旱監(jiān)測與評價技術(shù)的發(fā)展及其科學(xué)挑戰(zhàn)[J]. 地球科學(xué)進(jìn)展,2011,26(7):763-778.
Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progress and challenges in drought assessment and monitoring[J]. Advances in Earth Science, 2011, 26(7): 763-778. (in Chinese with English abstract)
[8] 趙麗,馮寶平,張書花. 國內(nèi)外干旱及干旱指標(biāo)研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2012,40(8):345-348.
Zhao Li, FengBaoping, Zhang Shuhua. Research progress of drought and drought index at home and abroad[J]. Jiangsu Agricultural Science, 2012, 40(8): 345-348. (in Chinese with English abstract)
[9] 王治海. 基于遙感信息的區(qū)域農(nóng)業(yè)干旱模擬技術(shù)研究[D].北京:中國氣象科學(xué)研究院,2013.
Wang Zhihai. Regional Agro-drought Simulation Based on Remote Sensing Technology[D]. Beijing: Chinese Academy of Meteorological Sciences, 2013. (in Chinese with English abstract)
[10] 夏虹,武建軍,劉雅妮,等. 中國用遙感方法進(jìn)行干旱監(jiān)測的研究進(jìn)展[J]. 遙感信息,2005(1):55-58.
Xia Hong, Wu Jianjun, Liu Yani, et al. Progress on drought monitoring by remote sensing method in China[J]. Remote Sensing Information, 2005(1): 55-58. (in Chinese with English abstract)
[11] 田國良,楊希華,鄭柯. 冬小麥旱情遙感監(jiān)測模型研究[J].環(huán)境遙感,1992,7(2):83-89.
Tian Guoliang, Yang Xihua, Zheng Ke. Remote sensing model for winter wheat drought monitoring[J]. Remote sensing of Environment China, 1992, 7(2): 83-89. (in Chinese with English abstract)
[12] 張仁華,孫曉敏,朱治林,等. 以微分熱慣量為基礎(chǔ)的地表蒸發(fā)全遙感信息模型及在甘肅沙頭坡地區(qū)的驗證[J].中國科學(xué)(D輯:地球科學(xué)),2002,32(12):1041-1051.
Zhang Renhua,Sun Xiaomin, Zhu Zhilin, et al. Validation of a remote sensing model based on thermal inertia and surface evaporation at slope area in Gansu[J]. Science in China(Series D:Earth Sciences), 2002, 32(12): 1041-1051. (in Chinese with English abstract)
[13] 杜靈通,田慶久,王磊,等. 基于多源遙感數(shù)據(jù)的綜合干旱監(jiān)測模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(9):126-132
Du Lingtong, Tian Qingjiu, Wang Lei, et al. A synthesized drought monitoring model based on multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 126-132. (in Chinese with English abstract)
[14] 李海亮,戴聲佩,胡盛紅,等. 基于空間信息的農(nóng)業(yè)干旱綜合監(jiān)測模型及其應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(22): 181-188.
Li Hailiang, Dai Shengpei, Hu Shenghong, et al. Comprehensive monitoring model for agricultural drought and its application based on spatial information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 181-188. (in Chinese with English abstract)
[15] 包欣. 基于多源數(shù)據(jù)的旱情監(jiān)測方法研究[D]. 合肥:安徽理工大學(xué),2013.
Bao Xin. Research on Drought Monitoring Method Based on Multi source Data[D]. Hefei: Anhui University of Science and Technology, 2013. (in Chinese with English abstract)
[16] 韓蘭英,張強,馬鵬里,等. 中國西南地區(qū)農(nóng)業(yè)干旱災(zāi)害風(fēng)險空間特征[J]. 中國沙漠,2015,35(4):1015-1023.
Han Lanying, Zhang Qiang, Ma Pengli, et al. Spatial characteristics of comprehensive risk of agricultural drought disaster in Southwesten China[J]. Journal of Desert Research. 2015, 35(4): 1015-1023. (in Chinese with English abstract)
[17] 楊曦,武建軍. 基于地表溫度-植被指數(shù)特征空間的區(qū)域土壤干濕狀況[J]. 生態(tài)學(xué)報,2009,29(3):1205-1216.
Yang Xi, Wu Jianjun. Assessment of regional soil moisture status based on characteristics of surface temperature/ vegetation index space[J]. Acta Ecologica Sinica, 2009, 29(3): 1205-1216. (in Chinese with English abstract)
[18] 李紅軍,李春強,鄭力,等. 大范圍旱情遙感監(jiān)測的分帶計算[J]. 遙感技術(shù)與應(yīng)用,2006,21(2):137-141.
Li Hongjun, Li Chunqiang, Zheng Li, et al. Zonal calculation of drought inspection using remote sensing in large-scale[J]. Remote Sensing Technology and Application, 2006, 21(2): 137-141. (in Chinese with English abstract)
[19] 易永紅. 植被參數(shù)與蒸發(fā)的遙感反演方法及區(qū)域干旱評估應(yīng)用研究[D]. 北京:清華大學(xué),2008. Yi Yonghong. Remote Sensing Retrieval Method of Vegetation Parameters and Evaporation and Application of Regional drought assessment[D]. Beijing: Tsinghua University, 2008. (in Chinese with English abstract)
[20] 呂婷婷,劉闖. 基于MODIS數(shù)據(jù)的泰國耕地信息提取[J].農(nóng)業(yè)工程學(xué)報,2010,26(2):244-250
Lü Tingting, Liu Chuang. Extraction of information of cultivated land using time-series MODIS data in Thailand[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 244-250. (in Chinese with English abstract)
[21] 左麗君,董婷婷,汪瀟,等. 基于MODIS/EVI的中國北方耕地復(fù)種指數(shù)提取[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(8):141-146.
ZuoLijun, Dong Tingting, Wang Xiao, et al. Multiple cropping index of North China based on MODIS/EVI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(8): 141-146. (in Chinese with English abstract)
[22] 劉靜. 基于遙感技術(shù)的三峽庫區(qū)農(nóng)業(yè)干旱評價研究[D].重慶:西南大學(xué),2008.
Liu Jing. Evaluation of Agricultural Drought in the Three Gorges Reservoir Area Based on Remote Sensing Technology[D]. Chongqing: Southwest University, 2008. (in Chinese with English abstract)
[23] 杜啟勝,劉志平,王新生,等. 基于ENVI的MODIS數(shù)據(jù)預(yù)處理方法[J]. 地理空間信息,2009,7(4):98-100
Du Qisheng, Liu Zhiping, Wang Xinsheng, et al. Method for
MODIS data pre-processing based on ENVI[J]. Geospatial Information, 2009, 7(4): 98-100. (in Chinese with English abstract)
[24] 楊紹鍔,吳炳方,熊雋,等. 基于TRMM降水產(chǎn)品計算月降水量距平百分率[J]. 遙感信息,2010(5):62-66.
Yang Shaoe, Wu Bingfang, Xiong Jun, et al. Calculation of monthly precipitation anomaly percentage based on TRMM precipitation product[J]. Sensing Information, 2010(5): 62-66. (in Chinese with English abstract)
[25] 黃晚華,楊曉光,李茂松,等. 基于標(biāo)準(zhǔn)化降水指數(shù)的中國南方季節(jié)性干旱近58a演變特征[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(7):50-59.
Huang Wanhua, Yang Xiaoguang, Li Maosong, et al. Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standard precipitation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 50-59. (in Chinese with English abstract)
[26] 姚玉璧,王勁松,尚軍林,等. 基于相對濕潤度指數(shù)的西南春季干旱10年際演變特征[J]. 生態(tài)環(huán)境學(xué)報,2014,23(4):547-554.
Yao Yubi, Wang Jingsong, Shang Junlin, et al. Decadal variations of spring drought based on relative moisture index in Southwest of China[J]. Ecology and Environmental Sciences, 2014, 23(4): 547-554. (in Chinese with English abstract)
[27] 宋小寧,趙英時. 應(yīng)用MODIS衛(wèi)星數(shù)據(jù)提取植被-溫度-水分綜合指數(shù)的研究[J]. 地理與地理信息科學(xué),2004,20(2):13-17.
Song Xiaoning, Zhao Yingshi. Study on vegetationtemperature-water synthesis index using Modis satellite data[J]. Geography and Geo-information Science, 2004, 20(2): 13-17. (in Chinese with English abstract)
[28] 易佳. 基于EOS-MODIS的重慶市干旱遙感監(jiān)測技術(shù)研究[D]. 重慶:西南大學(xué),2010.
Yi Jia. Research on Remote Sensing Monitoring Technology of Drought Based on EOS-MODIS in Chongqing[D]. Chongqing: Southwest University, 2010. (in Chinese with English abstract)
[29] 劉宗元. 基于多源數(shù)據(jù)的西南地區(qū)綜合干旱監(jiān)測指數(shù)研究及其應(yīng)用[D]. 重慶:西南大學(xué),2015.
Liu Zongyuan. Study on Comprehensive Drought Monitoring Index and Its Application Based on Multi-source Data in Southwest China[D]. Chongqing: Southwest University, 2015. (in Chinese with English abstract)
[30] 中華人民共和國國家標(biāo)準(zhǔn). 農(nóng)業(yè)干旱等級[M]. 北京:中國標(biāo)準(zhǔn)出版社,2015.
Construction and validation of comprehensive drought monitoring model in Southwest China
Zhang Jianping1, Liu Zongyuan2, Wang Jing3, He Yongkun1, Luo Hongxia2
(1. Chongqing Institute of Meteorological Sciences, Chongqing 401147, China; 2. Zhejiang Geographic Information Center, Hangzhou 310000, China; 3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193)
Under the context of more frequent global extreme weather events, accurately monitoring the impact of drought on crop growth in Southwest China has important practical significance for the sustainable development of regional agriculture. Firstly, the study selected 3 types of meteorological drought monitoring models including the percentage of precipitation anomaly(Pa), the standardized precipitation index(SPI), and the relative moisture index (MI) and 2 types of remote sensing drought monitoring models including the vegetation supply water index(VSWI) and the normalized differential vegetation index(NDVI). Secondly, the correlation analysis between 3 meteorological drought monitoring indices, 2 remote sensing monitoring indices and soil relative moisture data was made by using a pixel-to-station paired correlation approach. Thirdly, MI and NDVI, which had the highest correlation coefficients with soil relative moisture, were selected to develop a comprehensive drought index(DI) finally. The new comprehensive DI makes full use of the complementary advantage of ground meteorological site data and remote sensing spatial data, and is suitable to the condition of complex underlying surface. The independent soil moisture data and observed actual drought disaster were used to test the reliability of model. The study result showed that in a month time scale, MI had a highest correlation coefficient of 0.477 with soil relative humidity among all the meteorological drought indices while NDVI had a higher correlation coefficient of 0.416 with soil relative humidity than VSWI. In addition, the correlation of the same type of drought monitoring indices was higher than the different type of drought monitoring indices. This demonstrated that different types of drought indices were complementary because they represented different drought information. Estimated DI had a good correlation with measured soil moisture with the r of 0.816 and the estimated average accuracy reached 88.38%, which was a high accuracy for drought monitoring in southwest area. Furthermore, DI performed better than the single index MI or NDVI in all altitudes, which suggested that DI based on multiple data sources was better than the index based on single data source in different altitudes. The spatial-temporal distribution of drought in 2009-2010 over the southwest region was analyzed according to the DI. The results of drought monitoring showed that the drought disaster area was mainly concentrated in Panxi region in southern Sichuan Province, most part of Yunnan Province and western Guizhou Province. The drought emerged from September 2009, increased gradually from October 2009 to February 2010, relieved gradually from March to May 2010 and terminated in June 2010. The temporal and spatial distribution of drought based on the drought monitoring model was consistent with the actual observed data, which showed DI had a good reliability to monitor the drought process in Southwest China. DI integrated the information of vegetation, rainfall, temperature and evapotranspiration and reduced the uncertainty of the single index inmonitoring drought. Therefore, DI could monitor drought more stably, continuously and truly compared to other drought monitoring indices. This work provides a new approach to monitor drought in Southwest China.
drought; monitoring; models; Southwest China
10.11975/j.issn.1002-6819.2017.05.015
TP79
A
1002-6819(2017)-05-0102-06
張建平,劉宗元,王 靖,何永坤,羅紅霞. 西南地區(qū)綜合干旱監(jiān)測模型構(gòu)建與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(5):102-107.
10.11975/j.issn.1002-6819.2017.05.015 http://www.tcsae.org
Zhang Jianping, Liu Zongyuan, Wang Jing, He Yongkun, Luo Hongxia. Construction and validation of comprehensive drought monitoring model in Southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 102-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.015 http://www.tcsae.org
2016-05-17
2016-12-21
國家重點基礎(chǔ)研究發(fā)展計劃課題(2013CB430205);重慶市業(yè)務(wù)技術(shù)攻關(guān)重點項目(ywgg-201509)
張建平,男,內(nèi)蒙古烏蘭察布市人,博士,高級工程師,主要從事農(nóng)業(yè)氣象災(zāi)害影響評估技術(shù)研究。重慶 重慶市氣象科學(xué)研究所,401147。Email:jeepjohn@163.com