柴春嶺,蘇艷娜,楊路華,劉宏權(quán)
·農(nóng)業(yè)水土工程·
基于變水位靜水法的梯形渠道滲漏強(qiáng)度函數(shù)構(gòu)建及驗(yàn)證
柴春嶺1,蘇艷娜1,楊路華2,劉宏權(quán)1
(1. 河北農(nóng)業(yè)大學(xué)城鄉(xiāng)建設(shè)學(xué)院,保定 071001;2. 天津農(nóng)學(xué)院水利工程學(xué)院,天津 300384)
變水位靜水法受規(guī)范中觀測(cè)方法限制,相鄰2次觀測(cè)時(shí)間段的計(jì)算只能代表平均水深的平均滲漏強(qiáng)度,且將觀測(cè)期間渠道滲漏的非線性過(guò)程假設(shè)為線性變化,該假設(shè)將導(dǎo)致計(jì)算誤差,從而使擬合的滲漏強(qiáng)度冪函數(shù)存在系統(tǒng)誤差。該文以渠道內(nèi)水位隨時(shí)間的滲漏過(guò)程擬合函數(shù)為基礎(chǔ),建立了關(guān)于梯形渠道變水位靜水法(dropping head ponding test,DHPT)的滲漏強(qiáng)度函數(shù)。以石津灌區(qū)6種梯形襯砌渠道的變水位靜水法試驗(yàn)為依據(jù)進(jìn)行實(shí)例分析,分析獲得6種梯形渠道的傳統(tǒng)冪函數(shù)和DHPT滲漏強(qiáng)度函數(shù),并應(yīng)用各函數(shù)進(jìn)行了滲漏時(shí)長(zhǎng)計(jì)算。通過(guò)滲漏時(shí)長(zhǎng)計(jì)算值與實(shí)測(cè)值對(duì)比表明,DHPT函數(shù)平均估計(jì)誤差0.978 h,最大相對(duì)誤差為1.552%;而傳統(tǒng)方法平均估計(jì)誤差為3.997 h,最大相對(duì)誤差為5.632%。表明DHPT函數(shù)能夠更好地描述梯形渠道的滲漏過(guò)程,可用于計(jì)算點(diǎn)水深下的滲漏強(qiáng)度。通過(guò)DHPT函數(shù)與傳統(tǒng)方法的計(jì)算結(jié)果對(duì)比,表明傳統(tǒng)方法計(jì)算的滲漏強(qiáng)度普遍偏高,實(shí)例中平均誤差達(dá)到0.248 L/(m2·h),而DHPT函數(shù)直接建立于觀測(cè)數(shù)據(jù)之間的函數(shù)關(guān)系,可避免線性假設(shè)的影響,提高計(jì)算精度,為分析變水位工況下的渠道水利用系數(shù)提供依據(jù)。
滲漏;渠道;函數(shù);變水位靜水法;混凝土襯砌;線性假設(shè)
中國(guó)農(nóng)業(yè)灌溉輸水工程以渠道為主,渠道的滲漏量計(jì)算直接影響農(nóng)業(yè)灌溉用水量估算,而中國(guó)是農(nóng)業(yè)大國(guó)且水資源短缺,故準(zhǔn)確的渠道滲漏水平觀測(cè)非常重要。靜水法是渠道滲漏觀測(cè)試驗(yàn)的方法之一,其方法在規(guī)范及論著中均進(jìn)行了詳細(xì)介紹[1-3]。這些論著規(guī)范同時(shí)提及動(dòng)水法,但動(dòng)水法受觀測(cè)方法限制,其不可控制因素眾多,尤其是穩(wěn)定流量條件不易保證和控制[4-6],故靜水法在國(guó)內(nèi)外一些灌區(qū)的渠道滲漏觀測(cè)任務(wù)中應(yīng)用較動(dòng)水法廣泛,且試驗(yàn)結(jié)果準(zhǔn)確可靠[7-11]。Moavenshahidi等[10-12]為降低靜水法復(fù)雜性,直接利用渠道閘門(mén)系統(tǒng)進(jìn)行靜水法試驗(yàn)。
靜水法和動(dòng)水法各自的優(yōu)缺點(diǎn)在眾多文獻(xiàn)中均多有分析[1,12-15]。根據(jù)文獻(xiàn)[1]中“10.1”條,靜水法依水位變動(dòng)與否分恒水位法和變水位法,其中恒水位法適宜對(duì)設(shè)計(jì)水位或者正常工作水位下的滲漏強(qiáng)度進(jìn)行觀測(cè),而變水位法則可描述渠道內(nèi)不同水位下的滲漏強(qiáng)度。規(guī)范中同時(shí)指出變水位靜水法為渠道滲漏達(dá)到穩(wěn)定后方能實(shí)施的試驗(yàn)方法,觀測(cè)水深從設(shè)計(jì)水位至觀測(cè)水位的1/6~1/8,觀測(cè)中須同時(shí)觀測(cè)降水量和蒸發(fā)量,觀測(cè)時(shí)間間隔依據(jù)試驗(yàn)條件而定,或安置自動(dòng)水位觀測(cè)設(shè)備。
《渠道防滲工程技術(shù)規(guī)范》中給出了恒水位及變水位靜水法試驗(yàn)的滲漏強(qiáng)度計(jì)算方法[1],該計(jì)算方法存在2處欠妥之處:1)滲漏強(qiáng)度計(jì)算公式簡(jiǎn)化了滲漏過(guò)程變化規(guī)律。通常滲漏強(qiáng)度與渠中水位的關(guān)系表現(xiàn)為非線性變化,而實(shí)際應(yīng)用中一般將其作為觀測(cè)時(shí)間段內(nèi)平均水深的滲漏強(qiáng)度值,屬于線性假設(shè),該假設(shè)將引起計(jì)算誤差,且該誤差隨著水位差增加而增加,其在恒水位法和變水位法中均難以避免,如陸成漢等[16-17]采用恒水位法對(duì)渠道進(jìn)行了試驗(yàn)觀測(cè)和分析,并計(jì)算得設(shè)計(jì)水位下的滲漏強(qiáng)度。當(dāng)然,在試驗(yàn)條件允許時(shí),可縮短觀測(cè)時(shí)間間隔,如文獻(xiàn)[18]的研究中安置了自動(dòng)水位觀測(cè)設(shè)備;2)變水位法的水深-滲漏強(qiáng)度關(guān)系定義為冪函數(shù),該類函數(shù)的回歸相關(guān)系數(shù)不盡理想,如李學(xué)績(jī)等分別采用恒水位法和變水位法對(duì)渠道進(jìn)行了試驗(yàn)觀測(cè),變水位法分析結(jié)果中“水深-滲漏強(qiáng)度”函數(shù)均為冪函數(shù)形式,其試驗(yàn)觀測(cè)記錄間隔以固定時(shí)間段或固定水面降落深度為準(zhǔn)[7,18-27],回歸函數(shù)的決定系數(shù)R2介于0.640~0.994[4,18,20-22]之間,可見(jiàn)冪函數(shù)形式約束了滲漏強(qiáng)度的回歸和計(jì)算精度。
渠道在執(zhí)行灌溉任務(wù)期間,當(dāng)工作水位不恒定時(shí),渠道的滲漏強(qiáng)度應(yīng)依水深而定[28-29],而建立良好的水深-滲漏強(qiáng)度函數(shù),改善線性假設(shè)的影響程度,提高滲漏強(qiáng)度的計(jì)算精度非常必要。田士豪等對(duì)變水位靜水法試驗(yàn)結(jié)果進(jìn)行了滲漏過(guò)程的分析[8,30],繪制了“水深-滲漏時(shí)間”過(guò)程,更以其導(dǎo)數(shù)描述了滲漏強(qiáng)度與時(shí)間的關(guān)系[30]。本文基于田士豪等的研究成果,以變水位靜水法觀測(cè)試驗(yàn)過(guò)程為依據(jù),以石津灌區(qū)四干三分干南四支渠為實(shí)例,通過(guò)擬合渠道中水位隨時(shí)間的變化過(guò)程,導(dǎo)出水位降落速度,進(jìn)而根據(jù)滲漏強(qiáng)度概念建立新的梯形渠道“水深-滲漏強(qiáng)度”函數(shù)(dropping head ponding test,DHPT),以期為渠道水利用系數(shù)的測(cè)算工作提供更為合理的依據(jù)。
1.1 傳統(tǒng)計(jì)算方法問(wèn)題分析
《渠道防滲工程技術(shù)規(guī)范》[1]給出滲漏強(qiáng)度計(jì)算公式為
式中qs為觀測(cè)時(shí)間段內(nèi)的穩(wěn)定滲漏強(qiáng)度,L/(m2·h);χ為觀測(cè)時(shí)間段內(nèi)平均濕周,m;Δt為測(cè)驗(yàn)時(shí)長(zhǎng),h;Δws為觀測(cè)時(shí)間段單位長(zhǎng)度水體變化量,m3/m;Bw為測(cè)驗(yàn)時(shí)間段的平均水面寬度,m;Δh為測(cè)驗(yàn)時(shí)間段水深差,m;I為降水量,m;E蒸發(fā)量,m。
由式(1)計(jì)算出的結(jié)果通常代表了測(cè)驗(yàn)時(shí)間段內(nèi)“某水深范圍”的平均滲漏強(qiáng)度,而非是“某一點(diǎn)水深”的滲漏強(qiáng)度。若該觀測(cè)時(shí)間段內(nèi)的高水深為h1,則低水深為h2=h1-Δh。一般情況下式(1)的計(jì)算結(jié)果代表的水深為(h1+h2)/2,亦即將滲漏過(guò)程視為線性變化;在實(shí)際工程中,通常梯形渠道的滲漏強(qiáng)度隨著水深降落逐漸減小,且該減小的速度逐漸變緩,表現(xiàn)為凹函數(shù)特征??梢?jiàn)該計(jì)算方法將滲漏強(qiáng)度與水深的非線性變化假設(shè)成為線性變化,將導(dǎo)致計(jì)算值偏大,且誤差隨著Δh增加而逐漸凸顯。而在此基礎(chǔ)上建立的水深-滲漏強(qiáng)度函數(shù)將存在系統(tǒng)誤差。
當(dāng)然,為獲得更為精細(xì)的觀測(cè)結(jié)果,可通過(guò)縮短觀測(cè)時(shí)間間隔實(shí)現(xiàn),也可安置水位自動(dòng)觀測(cè)設(shè)備,但隨著觀測(cè)密度增加,觀測(cè)水深差縮小,若渠中水深落差足夠?。ㄈ? mm),則觀測(cè)時(shí)計(jì)數(shù)誤差將成為主要誤差影響因素,勢(shì)必直接影響計(jì)算結(jié)果的可靠性。水位自動(dòng)觀測(cè)設(shè)備可實(shí)現(xiàn)實(shí)時(shí)觀測(cè),其觀測(cè)過(guò)程可繪制1條水深隨觀測(cè)時(shí)間變化的降落過(guò)程線,但渠道常置于田間路旁,觀測(cè)時(shí)間可長(zhǎng)達(dá)數(shù)天,其安置及維護(hù)存在一定困難。
可見(jiàn),式(1)的計(jì)算條件不盡完美,若能在式(1)計(jì)算之前,直接建立觀測(cè)數(shù)據(jù)之間的函數(shù)關(guān)系,以數(shù)學(xué)方法推導(dǎo)滲漏強(qiáng)度函數(shù),將可有效地避免線性假設(shè)造成的誤差。
1.2 DHPT滲漏強(qiáng)度函數(shù)構(gòu)建方法
通過(guò)常規(guī)的變水位靜水法試驗(yàn),可記錄一系列時(shí)間點(diǎn)對(duì)應(yīng)的渠道水深,觀測(cè)時(shí)間間隔可根據(jù)實(shí)際觀測(cè)條件適當(dāng)加密,則渠中水深的滲漏過(guò)程線可由觀測(cè)系列數(shù)據(jù)繪制而得,并由此代替自計(jì)觀測(cè)過(guò)程線。
以觀測(cè)水深為自變量、觀測(cè)時(shí)間為因變量繪制散點(diǎn)圖,并對(duì)散點(diǎn)進(jìn)行擬合,擬合方程t=t(h),表達(dá)了渠道內(nèi)水深的滲漏過(guò)程,其反函數(shù)h=h(t)可計(jì)算每一時(shí)刻渠道內(nèi)對(duì)應(yīng)的水深,則h′(t)可表達(dá)水深h隨時(shí)間t的變化梯度。若渠道為矩形,則等水深的水體體積相同,h′(t)與濕周χ的比即可表明渠道的滲漏強(qiáng)度隨水深的變化規(guī)律。但中國(guó)大中型灌區(qū)中除矩形斷面渠道外,還存在梯形、U型和拋物線形等斷面形式,尤其是梯形斷面在平原區(qū)尤為常見(jiàn)。此時(shí),h′(t)尚無(wú)法明確表達(dá)滲漏強(qiáng)度隨水深的變化規(guī)律,還需輔以渠中水深與水體積函數(shù)關(guān)系,以及水深與濕周的函數(shù)關(guān)系。以梯形渠道為例,假設(shè)渠道斷面如圖1所示。
圖1 梯形渠道滲漏強(qiáng)度計(jì)算示意圖Fig.1 Sketch of seepage rate calculation of trapezoid canal
令渠道長(zhǎng)度為L(zhǎng),由圖1可知,若水面降落(水深差)為Δh,耗時(shí)Δt,當(dāng)Δh足夠小時(shí),滲漏強(qiáng)度為
其中水面寬度Bw和濕周χ均為水深h的函數(shù):
式中α為坡面角度,(°);B為渠道底寬,m。
若L=1 m,則滲漏強(qiáng)度表達(dá)為
其中包括h和t共2個(gè)自變量,可由2個(gè)變量的散點(diǎn)圖推求所得的t=t(h)代入式(5),即得到滲漏強(qiáng)度與水深的函數(shù)關(guān)系式
同樣,若斷面形式為U型或拋物線形均可根據(jù)斷面方程推求Bw、χ與h函數(shù)。若斷面形式因渠道沖刷等原因而無(wú)規(guī)則斷面形式,則可在靜水法試驗(yàn)中,觀測(cè)水面寬Bw、水深h,并繪制Bw與h散點(diǎn)圖,形成回歸方程,進(jìn)而推求χ與h關(guān)系。
DHPT滲漏強(qiáng)度函數(shù)的推求可描述為如下6個(gè)步驟:
1)以水深h為自變量、時(shí)間t為因變量建立坐標(biāo)系生成散點(diǎn)圖,回歸方程t=t(h);
2)求反函數(shù)h= h(t),以及一階導(dǎo)數(shù)h′(t);
3)以水深h為自變量、水面寬度Bw為因變量,根據(jù)斷面形式建立Bw=Bw(h)(或由觀測(cè)資料回歸而得);
4)以水深h為自變量、濕周χ為因變量,根據(jù)斷面形式建立χ=χ(h)(或由觀測(cè)資料回歸而得);
5)建立渠道滲漏強(qiáng)度qs與水深h關(guān)系方程式(6);
6)根據(jù)時(shí)段蒸發(fā)量觀測(cè)記錄,計(jì)算蒸發(fā)量E在渠道滲漏總水深差Δh中的比值Pe=E/Δh,修正后滲漏強(qiáng)度函數(shù)qns=(1-Pe)·qs。
2.1 案例概況
以石津灌區(qū)四干三分干南四支渠道為研究渠道,渠道共設(shè)6種襯砌形式,橫斷面為梯形,渠底寬B為1.2 m,邊坡角度α為32°。根據(jù)靜水法試驗(yàn)規(guī)范,每種形式均選取50 m代表性渠段進(jìn)行了變水位靜水法試驗(yàn),水深采用渠道邊坡及橫隔堤上安置的水尺進(jìn)行觀測(cè),同時(shí)觀測(cè)蒸發(fā)量(降水量為0)。以此為例,推求該渠道6種襯砌形式的DHPT滲漏強(qiáng)度函數(shù)。各襯砌形式如表1示。
表1 6種襯砌形式Table1 Description of 6 concrete lined forms
2.2 結(jié)果與分析
2.2.1 DHPT滲漏強(qiáng)度函數(shù)的建立
試驗(yàn)觀測(cè)期間無(wú)降水,觀測(cè)時(shí)長(zhǎng)介于81.25~176.92 h。根據(jù)變水位靜水法觀測(cè)數(shù)據(jù)繪制散點(diǎn)圖,同時(shí)建立二次曲線回歸方程,各襯砌形式散點(diǎn)回歸方程t=t(h)見(jiàn)圖2。
圖2 渠道水深-滲漏時(shí)間關(guān)系Fig.2 Relationship between water depth of canal (h) and seepage time (t)
由圖2可知,回歸函數(shù)t=t(h)均為拋物線形式(R2≈1,P<0.01)。設(shè)函數(shù)一般形式為t=a·h2+b·h+c,則反函數(shù)為
反函數(shù)一階導(dǎo)數(shù)h′表征拋物線斜率,由圖2可知,各襯砌形式回歸曲線斜率均為負(fù),則
將t=a·h2+b·h+c代入式(8),得
根據(jù)式(3)~(4)可得Bw=3.201h+1.2,χ=3.774 h+1.2。
將Bw與χ代入式(5),并考慮蒸發(fā)比例1-Pe=1-0.062=0.938,則襯砌形式1的DHPT滲漏強(qiáng)度函數(shù)為
襯砌形式1及其他襯砌形式滲漏強(qiáng)度函數(shù)如表2。
表2 滲漏強(qiáng)度函數(shù)Table2 Seepage rate function
2.2.2 滲漏時(shí)長(zhǎng)實(shí)測(cè)值與計(jì)算值誤差分析
為比較傳統(tǒng)方法與DHPT滲漏強(qiáng)度函數(shù)的計(jì)算精度,根據(jù)試驗(yàn)結(jié)果設(shè)定總滲漏水量不變,分別應(yīng)用2種函數(shù)計(jì)算滲漏所需時(shí)間,并與實(shí)測(cè)值對(duì)比。
根據(jù)文獻(xiàn)[1]中方法確定6種襯砌渠道的滲漏強(qiáng)度冪函數(shù)分別為qns=6.148h0.214、qns=9.779h0.190、qns=6.711 h0.288、qns=5.176h0.618、qns= 6.917 h0.30、qns=10.408 h0.351。
對(duì)比方法描述如下:
1)根據(jù)變水位靜水法試驗(yàn)實(shí)測(cè)結(jié)果,計(jì)算試驗(yàn)觀測(cè)時(shí)段的滲漏總水深差Δh和總實(shí)測(cè)時(shí)長(zhǎng)tr;
2)對(duì)渠道Δh離散化,離散間距0.001 m,以離散水深為自變量hi(i =1,2……n)。離散水深樣本為h1,h2,……,hn。h1為初始觀測(cè)時(shí)刻水深,hn為觀測(cè)終止時(shí)刻水深。若取渠道長(zhǎng)度為1 m,則可計(jì)算各離散水深對(duì)應(yīng)水量wi;
3)根據(jù)滲漏強(qiáng)度函數(shù)計(jì)算平均離散水深(hi+hi+1)/2時(shí)的滲漏強(qiáng)度qnsi,計(jì)入蒸發(fā)比例,得到qsi;
4)計(jì)算各離散水量滲漏消耗時(shí)間Δti,Δti=wi/qsi;
計(jì)算結(jié)果如表3。
表3 滲漏時(shí)長(zhǎng)計(jì)算值及試驗(yàn)值比較Table3 Relative error of calculated and experimental seepage time
由誤差分析可知,DHPT滲漏強(qiáng)度函數(shù)計(jì)算的總滲漏時(shí)長(zhǎng)與試驗(yàn)值相差較小,絕對(duì)誤差在0.308~2.102 h之間,平均誤差0.978 h,最大相對(duì)誤差為1.552%,最小相對(duì)誤差只有0.377%;而傳統(tǒng)方法絕對(duì)誤差在1.137~9.433 h之間,平均誤差為3.399 h,最大相對(duì)誤差為5.632%,最小相對(duì)誤差為1.386%。同時(shí)可以看出傳統(tǒng)方法計(jì)算的滲漏時(shí)長(zhǎng)均低于實(shí)測(cè)值,所計(jì)算的滲漏強(qiáng)度普遍偏高,可見(jiàn)其回歸冪函數(shù)具有系統(tǒng)性誤差。
2.2.3 傳統(tǒng)方法與DHPT函數(shù)計(jì)算的滲漏強(qiáng)度比較
根據(jù)觀測(cè)數(shù)據(jù),將6種襯砌渠道每天的觀測(cè)結(jié)果作為分析樣本,共獲得分析樣本27個(gè),根據(jù)式(1)對(duì)27個(gè)樣本進(jìn)行滲漏強(qiáng)度的直接計(jì)算。同時(shí),根據(jù)表3中建立的DHPT滲漏強(qiáng)度函數(shù)計(jì)算27個(gè)樣本“日平均水深”下的滲漏強(qiáng)度值。結(jié)果對(duì)比如圖3。
圖3 傳統(tǒng)方法與DHPT滲漏強(qiáng)度函數(shù)計(jì)算的滲漏強(qiáng)度對(duì)比Fig.3 Seepage rate comparison between traditional method and DHPT function
由圖3可知,傳統(tǒng)的計(jì)算結(jié)果普遍偏高,27個(gè)分析樣本中,有25個(gè)高于DHPT函數(shù)的計(jì)算結(jié)果,比DHPT平均高0.248 L/(m2·h),甚至高達(dá)0.878 L/(m2·h)。
本文通過(guò)對(duì)渠道變水位靜水法試驗(yàn)特點(diǎn),及滲漏過(guò)程分析,建立梯形渠道的 DHPT滲漏強(qiáng)度函數(shù),在不增加或可相應(yīng)減少試驗(yàn)觀測(cè)工作量的條件下,可更好地描述渠道的滲漏特征。
1)在建立滲漏過(guò)程擬合方程基礎(chǔ)上,求取反函數(shù)的一階導(dǎo)數(shù),從而得到水深隨時(shí)間的變化梯度函數(shù),該變化梯度函數(shù)反映了渠道內(nèi)水位的降落速度,再結(jié)合水面寬度與水深函數(shù)關(guān)系、濕周與水深的函數(shù)關(guān)系,以及蒸發(fā)比例,即可得到滲漏強(qiáng)度與水深的表達(dá)公式。
2)通過(guò)石津灌區(qū)二干三分干南四支6種襯砌形式梯形渠道的變水位靜水法數(shù)據(jù)分析,建立了該6種襯砌形式的滲漏強(qiáng)度函數(shù),通過(guò)滲漏強(qiáng)度函數(shù)計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比可知,本次觀測(cè)時(shí)長(zhǎng)在81.25~176.92 h條件下,DHPT滲漏強(qiáng)度函數(shù)模擬計(jì)算結(jié)果的絕對(duì)誤差介于0.308~2.102 h之間,平均值為0.978 h,而傳統(tǒng)方法的計(jì)算結(jié)果誤差介于1.137~9.433 h之間,平均值為3.997 h??梢?jiàn)DHPT滲漏強(qiáng)度函數(shù)能夠較好地模擬渠道的滲漏過(guò)程,可更為精確地計(jì)算渠道滲漏量。
3)受假設(shè)不當(dāng)?shù)挠绊?,傳統(tǒng)方法滲漏強(qiáng)度計(jì)算結(jié)果普遍偏高,比DHPT滲漏強(qiáng)度函數(shù)計(jì)算值平均高0.248 L/(m2·h)。DHPT滲漏強(qiáng)度函數(shù)直接建立在觀測(cè)數(shù)據(jù)之間的函數(shù)關(guān)系上,以數(shù)學(xué)方法推導(dǎo)水深與滲漏強(qiáng)度之間的函數(shù)形式,與傳統(tǒng)滲漏強(qiáng)度函數(shù)相比,該滲漏強(qiáng)度函數(shù)的求取過(guò)程避免了滲漏強(qiáng)度平均值的計(jì)算,從而可減少計(jì)算中線性假設(shè)產(chǎn)生的誤差,同時(shí)DHPT滲漏強(qiáng)度函數(shù)在物理意義上較冪函數(shù)更為明確。在實(shí)際觀測(cè)中,也可相應(yīng)降低觀測(cè)工作的任務(wù)量。
另外,本文分析的實(shí)例為梯形橫斷面,若為其他形式斷面,則水面寬度、濕周與水深的關(guān)系可根據(jù)斷面形式,建立相應(yīng)的函數(shù)關(guān)系。如當(dāng)橫斷面為矩形時(shí),水面寬度與水深的關(guān)系為一常數(shù)。然而,若渠道橫斷面因沖刷等原因,函數(shù)關(guān)系無(wú)法確定,則可在靜水法試驗(yàn)觀測(cè)中,觀測(cè)水深與時(shí)間的數(shù)據(jù)系列,以擬合方程替之。
[1] 中華人民共和國(guó)水利部. 渠道防滲工程技術(shù)規(guī)范:GB/ T50600-2010[S]. 北京: 中國(guó)計(jì)劃出版社,2011:64-67.
[2] 中華人民共和國(guó)水利部. 節(jié)水灌溉工程技術(shù)規(guī)范:GB/ T50363-2006[S]. 北京:中國(guó)計(jì)劃出版社,2004:106-122.
[3] Robinson A R, Carl Rohwer. Measuring Seepage from Irrigation Canals[M]. Washington, DC:US Government Printing Office, 1959: 7-9.
[4] 柴春嶺,高惠嫣,楊路華,等. 基于動(dòng)水法的流量過(guò)程線推移法在渠道滲漏計(jì)算中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):151-157.
Chai Chunling, Gao Huiyan, Yang Luhua, et al. Flow hydrograph moving method based on inflow-outflow tests and its application on canal seepage calculation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 151-157. (in Chinese with English abstract)
[5] Alam M M, Bhutta M N. Comparative evaluation of canal seepage investigation techniques[J]. Agricultural Water Management, 2004, 66(1): 65-76.
[6] Akkuzu E. Usefulness of empirical equations in assessing canal losses through seepage in concrete-lined canal[J]. Irrigation and Drainage Engineering, 2015,141(12): 455-460.
[7] 徐培強(qiáng). 渠道靜水法與動(dòng)水法滲漏測(cè)試初步研究[J].防滲技術(shù),1991(1):23-30.
[8] 田士豪,李林榮,方彥軍,等. 靜水法渠道測(cè)滲計(jì)算[J].農(nóng)田水利與小水電,1995(8):14-17.
[9] Moghazi H E M, Ismail E S. A study of losses from field channels under arid region conditions[J]. Irrigation Science, 1997, 17(3): 105-110.
[10] Moavenshahidi A. A computer model to estimate seepage rates from automated irrigation distribution channels during periods of shutdown[J]. Journal of Hydroinformatics, 2014, 16(6): 1302-1317.
[11] Moavenshahidi A, Smith R, Gillies M. Factors affecting the estimation of seepage rates from channel automation data [J]. Irrigation and Drainage Engineering, 2015, 141(6): 1-11.
[12] 袁堯,蔡守華,顧宏,等. 量測(cè)大型渠道水利用系數(shù)的簡(jiǎn)易靜水法[J]. 節(jié)水灌溉,2010(7): 73-75.
Yuan Yao, Cai Shouhua, Gu Hong, et al. Simple hydrostatic method for measure of water using efficiency in large scale canals[J]. Water Saving Irrigation, 2010(7): 73-75. (in Chinese with English abstract)
[13] 榮豐濤. 關(guān)于如何用動(dòng)水法測(cè)渠道滲漏的具體意見(jiàn)[J]. 山西水利科技,2008(2):1-3.
Rong Fengtao. On how to measure canal seepage amount by current-meter method[J]. Shanxi Hydro Technics, 2008(2): 1-3. (in Chinese with English abstract)
[14] Kinzli K D, Martinez M, Oad R, et al. Using an ADCP to determine canal seepage loss in an irrigation district [J]. Agricultural Water Management, 2010, 97(6): 801-810.
[15] 李德成. 灌溉渠道滲漏損失的實(shí)測(cè)方法分析[J]. 黑龍江水利科技,2012,40(3):152-153.
[16] 陸成漢,劉美華. 混凝土防滲渠道滲漏情況測(cè)驗(yàn)[J]. 江蘇水利,1998(增刊1):36-38.
[17] Sarki A, Memon S Q, Leghari M. Comparison of different methods for computing seepage losses in an earthen watercourse[J]. Agricultura Tropica Et Subtropica, 2008, 41(4): 197-205.
[18] 李學(xué)績(jī),趙文明. FBS-1型玻纖布防滲渠道滲漏測(cè)試及效益分析[J]. 防滲技術(shù),1992(4):25-30.
[19] 趙東輝. 靜水法渠道滲漏測(cè)試分析[J]. 防滲技術(shù),1997,3(2):17-21.
[20] 段雷振. 靜水法試驗(yàn)測(cè)定托卡依干渠滲漏強(qiáng)度[J]. 水利科技與經(jīng)濟(jì),2008,14(11):872-873.
[21] 李瑞軒.渠道靜水測(cè)滲中滲漏過(guò)程法與定水位法的比較[J].防滲技術(shù),1991(2):50-53.
[22] 黃景中,冉茂桑,章正為. 渠道靜水法滲漏測(cè)試研究[J]. 防滲技術(shù),1991(2):42-49.
[23] 艾合買提江·艾木拉,依力哈木·依明江. 新疆和田灌區(qū)渠道滲漏試驗(yàn)[J]. 西北水力發(fā)電,2006,22(5):20-22.
Ahmatjan·Ayihamu, Yilihamu·Yimingjiang. Experimental study on canal seepage in Hotan, Xinjiang[J]. Journal of Northwest Hydroelectric Power, 2006, 22(5): 20-22. (in Chinese with English abstract)
[24] Iqbal Z, MacLean R T, Taylor B D, et al. et al. Seepage losses from irrigation canals in southern alberta[J]. Canadian Biosystems Engineering, 2002, 44(1): 21-27.
[25] Burt C, Orvis S, Alexander N. Canal seepage reduction by soil compaction[J]. Journal of Irrigation and Drainage Engineering, 2010, 136(7): 479–485.
[26] Sarki A, Memon S Q, Leghari M. Comparison of different methods for computing seepage losses in an earthen watercourse[J]. Agricultura Tropica Et Subtropica, 2008, 41(4): 197-205.
[27] Chad A Martin, Timothy K Gates. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic doppler devices[J]. Journal of Hydrology, 2014, 517: 746–761.
[28] 李紅星,樊貴盛. 渠道水深對(duì)渠床滲漏量影響研究[J]. 太原理工大學(xué)學(xué)報(bào),2007,38(1):56-59.
Li Hongxing, Fan Guisheng. Study of the influence of canal water depth on canal seepage[J]. Journal of Taiyuan University of Technology, 2007, 38(1): 56-59. (in Chinese with English abstract)
[29] 李紅星,樊貴盛.基于點(diǎn)入滲參數(shù)計(jì)算土質(zhì)渠床自由滲漏損失的方法[J]. 水科學(xué)進(jìn)展,2010,21(3):321-326.
Li Hongxing, Fan Guisheng. Method for calculating seepage losses from earth-lined irrigation channels based on point cumulative infiltration[J]. Advances in Water Science, 2010, 21(3): 321-326. (in Chinese with English abstract).
[30] Yao Liqiang, Feng Shaoyuan, Mao Xiaomin, et al. Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics[J]. Journal of Hydrology, 2012, S430/431(14): 91-102.
Seepage rate function establishment and validation for trapezoidal canal based on dropping head ponding test
Chai Chunling1, Su Yanna1, Yang Luhua2, Liu Hongquan1
(1. Institute of Urban and Rural Construction, Agricultural University of Hebei, Baoding 071001, China; 2. College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300384, China)
Dropping head ponding test is a typical method for canal seepage measurement, particularly under variable canal capacities during irrigation. This study analyzed the limitations of traditional method for seepage rate calculation and proposed a new method based on dropping head ponding test (DHPT). Based on dropping head ponding test results and a standard method in Technical Code for Seepage Control Engineering on Canal, seepage rates were calculated, and a power function was established to describe the relationships between water-level and seepage rate. The standard calculation method had two inaccurate hypotheses. One was the linear variation of water-level dropping speed between a pair of contiguous measurements. However, water-level dropping speed slowed down while water level dropping down, and dropping speed change was obviously nonlinear in trapezoidal canals. The other hypothesis was the power functions that restricted regression precision. In addition, calculation error increased while measurement interval was prolonged, and it resulted in an integral error to the power functions. The new DHPT function was developed with 3 components in this study: the relationship between water level and its dropping speed, water surface width variation due to water level, and wetted width variation due to water level. The DHPT function development process was simplified to 6 steps: 1) Making plot of water-depth vs measuring time to generate a water variation function; 2) Deriving an inverse function of water-depth variation and its first derivative expressed as water level dropping speed; 3) Deriving a function between water surface width and water depth; 4) Deriving a function between wetted width and water depth; 5) Establishing a seepage rate function; and 6) subtracting evaporation from total lost water, and then correcting seepage rate function. In a case study, test canals were designed for 6 types of lining forms with a cross-section form of trapezoid in side slope angle for 32° and bed width 1.2 m. The dropping head ponding test was applied on all the types. The DHPT seepage rate functions and traditional power functions were both established. Function errors were examined. In order to decrease the influence of linear variation, total seepage depths were discretized into millimeters using a traditional method to calculate unit seepage time. The test seepage time was between 81.25 -176.92 h. By DHPT seepage rate function, the largest error was 2.102 h and the minimum error was 0.308 h. While by traditional power function, the largest error was 9.433 h and the minimum error was 1.137 h. Error analysis showed that the DHPT seepage rate function described seepage characteristics of trapezoid canals well and gained higher accuracy in seepage rate estimation. Finally, the traditional method and the DHPT functions were applied to 6 types of lining canals calculation. The traditional calculation used day as measuring interval and its result was expressed as seepage rate of average water depth in day. Average water depth was used as an independent variable in the DHPT function. For 27 samples, the calculated seepage rates were higher by traditional method than those by DHPT function generally. The traditional method was averagely 0.248 L/(m2·h)higher than the DHPT function results. Compared with the traditional method, the DHPT functions showed higher accuracy. This study indicates that the new function is better than the standard function in dropping head ponding test, and the method provides a better technical support for seepage estimation in irrigation system management.
seepage; canals; functions; dropping head ponding test; lined with concrete; linear variation
10.11975/j.issn.1002-6819.2017.05.013
S274
A
1002-6819(2017)-05-0091-05
柴春嶺,蘇艷娜,楊路華,劉宏權(quán). 基于變水位靜水法的梯形渠道滲漏強(qiáng)度函數(shù)構(gòu)建及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):91-95.
10.11975/j.issn.1002-6819.2017.05.013 http://www.tcsae.org
Chai Chunling, Su Yanna, Yang Luhua, Liu Hongquan. Seepage rate function establishment and validation for trapezoidal canal based on dropping head ponding test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 91-95. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.013 http://www.tcsae.org
2016-05-05
2016-10-10
河北省水利科研項(xiàng)目(2012-108);河北省計(jì)劃重點(diǎn)項(xiàng)目(15963608D);河北省水科院項(xiàng)目(冀水科院合2015-120)
柴春嶺,男,河北滄州人,博士,主要從事節(jié)水灌溉理論與技術(shù)研究。保定 河北農(nóng)業(yè)大學(xué)城鄉(xiāng)建設(shè)學(xué)院,071001。Email:252813183@qq.com