田昆鵬,李顯旺,沈 成,張 彬,黃繼承,王錦國,周 楊
天牛仿生大麻收割機(jī)切割刀片設(shè)計(jì)與試驗(yàn)
田昆鵬,李顯旺,沈 成,張 彬※,黃繼承,王錦國,周 楊
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
針對現(xiàn)有大麻收割機(jī)切割刀片存在切割阻力大、功耗高、割茬質(zhì)量差的問題。運(yùn)用仿生學(xué)原理,通過提取天牛上顎切割齒部位齒廓曲線,以天牛切割齒廓代替普通稻麥?zhǔn)崭顧C(jī)刀片的三角形尖齒,設(shè)計(jì)了仿生切割刀片。利用雙動刀切割裝置測試平臺,對收割期大麻莖稈進(jìn)行了仿生刀片和普遍刀片單莖稈切割性能對比試驗(yàn)。試驗(yàn)表明,2種刀片的切割力-位移曲線都可分為擠壓、切割和切割完畢3個階段,其中仿生刀片具有切入能力強(qiáng)、切割茬口較平齊、切割質(zhì)量好的優(yōu)勢。通過對2組切割試驗(yàn)數(shù)據(jù)進(jìn)行均值統(tǒng)計(jì)和方差分析可知,仿生刀片和普通刀片單莖稈最大切割力和切割功耗平均值分別為442.6、478.1 N和2.16、2.35 J,仿生刀片和普通刀片相比,平均最大切割力和切割功耗分別降低7.4%和8.0%,表明仿生刀片較普通刀片具有更優(yōu)的減阻降耗性能;方差分析表明刀片類型對單莖稈最大切割力影響極顯著(P<0.01),對單莖稈切割功耗影響顯著(P<0.05)。
切割設(shè)備;仿生;機(jī)械化;大麻收割機(jī);天牛上顎;切割力;切割功耗
大麻是中國傳統(tǒng)的纖維作物[1-2],在中國有著較大面積的種植,由于大麻莖稈較高大粗壯,收割難一直是大麻生產(chǎn)面臨的重要難題。近年來,隨著中國農(nóng)業(yè)機(jī)械化進(jìn)程的加快,針對大麻收獲技術(shù)的研究不斷增多,用于大麻收割的機(jī)械相繼問世[3-4]。但經(jīng)調(diào)研發(fā)現(xiàn),目前對大麻等高稈類作物收割機(jī)械的研究主要集中在割臺機(jī)構(gòu)的設(shè)計(jì)及運(yùn)動參數(shù)匹配[5-8]、麻稈的力學(xué)特性分析[9-14]等方面,而對收割機(jī)的關(guān)鍵零件:切割刀片,卻缺乏相應(yīng)的創(chuàng)新設(shè)計(jì)研究。目前大麻收割機(jī)切割刀片普遍借用稻麥?zhǔn)崭顧C(jī)上使用的三角尖齒型刀片,由于大麻莖稈和稻、麥秸稈相比有較大差異,采用稻麥?zhǔn)崭顧C(jī)刀片收割大麻普遍存在切割阻力大、功耗高、割茬質(zhì)量差等問題,切割刀片已成為制約大麻收割機(jī)發(fā)展的一個重要瓶頸。
仿生學(xué)作為一門交叉學(xué)科,在解決切割刀具常見的能耗、質(zhì)量等問題時,為研究人員提供了研究思路和有效的研究方法[15]。自然界的昆蟲和其它動物經(jīng)過數(shù)以億萬年的生存競爭和進(jìn)化,形成了優(yōu)異的幾何形體結(jié)構(gòu)、高效的能量利用率等高度適應(yīng)環(huán)境的生理特征[16-18]。通過仿生學(xué)將動物的生理形態(tài)特征應(yīng)用于農(nóng)業(yè)機(jī)械設(shè)計(jì)的研究逐步受到人們的重視。在減阻降耗方面,仿生學(xué)已在開溝器、犁鏵、破茬旋耕刀具及收獲機(jī)械切割部件的設(shè)計(jì)中得到一定應(yīng)用。
Qaisrani等[19-20]根據(jù)蜣螂頭部的表面凸包結(jié)構(gòu)特征,對光滑推土板表面進(jìn)行了改形仿生設(shè)計(jì),研制了非光滑凸包推土板,試驗(yàn)表明隨著土壤含水量的增加,推土阻力隨之減小,仿生推土板平均最大降阻可達(dá)30%。Soni等[21-22]運(yùn)用仿生學(xué)將金龜子頭部非光滑凸包結(jié)構(gòu)應(yīng)用于犁鏵的設(shè)計(jì),設(shè)計(jì)了仿生犁鏵,試驗(yàn)表明當(dāng)凸包高度與直徑的比率為0.25,含水率為37.2%時,可降阻耗8%~36%,降阻效果較好。張金波等[23]將家鼠爪趾結(jié)構(gòu)特征應(yīng)用于深松鏟結(jié)構(gòu)設(shè)計(jì),設(shè)計(jì)了破土刃口為指數(shù)函數(shù)曲線的仿生深松鏟,對比試驗(yàn)表明,仿生減阻深松鏟耕作阻力可降低8.5%~39.5%。李默等[24-25]根據(jù)螳螂前足的形態(tài)特征,設(shè)計(jì)了根茬切割仿生刀片,試驗(yàn)表明,仿生刃口刀片切削阻力及功耗相對普通刀片最大降幅可達(dá)23%,減阻降耗效果明顯。賈洪雷科研團(tuán)隊(duì)[26-28]研究了善于嚙噬草本或禾本植物的蝗蟲的咀嚼口器,以蝗蟲咀嚼齒為仿生對象,設(shè)計(jì)了留高茬式玉米收獲機(jī)切割鋸條和圓盤刀,結(jié)果表明仿生齒鋸條能夠減少切割力15.87%,降低切割功耗12.85%;仿生圓盤刀相比普通圓盤刀片平均扭矩可降低14.89%,平均功耗可降低18.49%,切割時秸稈受到的拉力降低達(dá)31.5%,仿生刀片切割效果優(yōu)勢顯著。
天牛被稱為自然界的“鋸木匠”,是硬質(zhì)莖干植物中常見的一種危害力極強(qiáng)的害蟲[29-31]。天牛口器上顎獨(dú)特的弧形齒結(jié)構(gòu)具有優(yōu)良的咀嚼割切性能,能將夾在其間的植物莖枝輕松咬碎或夾斷,造成植株長勢衰弱甚至枯萎死亡。同以植物鮮根嫩葉為食的蝗蟲、螻蛄等昆蟲相比,天牛口器上顎更鋒利,咬割性能更強(qiáng),具有更大的危害性。基于此,本文將汲害為利,以中國常見的云斑天牛口器上顎為仿生原型,將天牛口器特征應(yīng)用于大麻收割機(jī)切割刀片設(shè)計(jì)中,以期研制出一種適合大麻收割機(jī)使用的低阻、低耗、切割質(zhì)量好的切割刀片。
1.1 云斑天牛及上顎結(jié)構(gòu)形態(tài)分析
云斑天牛(如圖1a所示)一般體長為32~65 mm,體寬為9~20 mm,體黑色或黑褐色。云斑天??谄魃项€(如圖1b所示)一般長5~8 mm,寬3~5 mm,為黑色半月牙型形態(tài),左右對稱分布各一個。參與咬割的齒刃(即圖1b中OP所示的齒廓段)較鋒利,被上顎外側(cè)的弧狀突起包圍,以保障齒刃在咬割時有足夠的強(qiáng)度。天牛進(jìn)食時左右上顎同時向中間做剪切運(yùn)動以將植物莖枝割斷,此運(yùn)動特性和本文研究的大麻收割機(jī)雙動刀切割刀片的工作原理相似,這也是本文采用天牛上顎作為仿生對象的依據(jù)。
圖1 云斑天牛標(biāo)本及其口器上顎圖Fig.1 Batocera horsfieldi and its mouthparts palate
1.2 天牛上顎切割部位輪廓的提取
以圖1b中的O點(diǎn)為坐標(biāo)原點(diǎn),OP為X軸,建立平面直角坐標(biāo)系XOY。運(yùn)用MATLAB圖像處理軟件中的Training Image Labler工具對圖1b所示的云斑天牛上顎切割齒部位的弧形輪廓邊界點(diǎn)進(jìn)行提取[32],將提取的邊界點(diǎn)坐標(biāo)用plot繪圖指令繪制出天牛上顎切割齒輪廓點(diǎn)軌跡,再運(yùn)用Curve Fiting 曲線擬合工具對點(diǎn)軌跡進(jìn)行多項(xiàng)式方程曲線擬合,最后可得出上顎擬合曲線的多項(xiàng)式方程表達(dá)式。天牛上顎齒廓切割部位提取點(diǎn)及齒廓擬合曲線如圖2所示,其上顎擬合曲線方程式見式(1)。式中0≤x≤5.0 mm。
圖2中O′、P′所示坐標(biāo)點(diǎn)與圖1b中的O、P點(diǎn)相對應(yīng)。由圖2中的齒廓擬合曲線可知,云斑天牛上顎切割部位弧形齒長度O′P′為5.0 mm,齒高O′R′為0.9 mm。擬合曲線的擬合優(yōu)度R2為0.994,表明擬合出的曲線形狀與云斑天牛上顎的實(shí)際輪廓曲線高度吻合。
圖2 云斑天牛上顎切割部位齒廓提取點(diǎn)及齒廓擬合曲線Fig.2 Extracted points and fitted curve of cutting tooth of batocera horsfieldi palate
1.3 仿生刀片設(shè)計(jì)
為便于對比分析,仿生刀片采用與普通稻麥?zhǔn)崭顧C(jī)刀片相同的刀片基體結(jié)構(gòu)參數(shù),即,取a=76 mm,b= 120 mm,c=51 mm,d=29 mm,e=13 mm,h=18 mm,k=6.2 mm,t=2.3 mm。根據(jù)刀片基體的基本結(jié)構(gòu)參數(shù)在PRO/E繪圖軟件中構(gòu)建仿生刀片基體的三維模型,以天牛上顎齒廓擬合曲線方程作齒廓的樣條曲線,并將齒廓樣條曲線并列均勻布置在刀片兩側(cè)的刃面上。加工時,齒背的凹槽由通過與齒廓形狀相同的磨齒模具磨出,凹槽方向與刀片的切割運(yùn)動方向平行,以保障刀刃在有足夠強(qiáng)度的同時,盡可能地減少切割阻力。仿生刀片和普通標(biāo)準(zhǔn)刀片結(jié)構(gòu)分別如圖3a、3b所示。
圖3 切割刀片結(jié)構(gòu)示意圖Fig.3 Structure diagram of cutting blade
由上述2種刀片結(jié)構(gòu)圖對比可知,普通刀片和仿生刀片不同之處主要在于切割齒齒形、齒距、齒高3個方面。普通刀片齒形為三角形齒,經(jīng)測量,其相鄰齒距m1為2.6 mm,齒高n1為2.0 mm;仿生刀片齒形是以天牛上顎齒廓擬合曲線(見圖3b中s所示)為齒刃的弧形凹槽齒,根據(jù)測量的天牛上顎實(shí)際齒形尺寸可知,仿生刀片齒距m2為5.0 mm,齒高n2為0.9 mm。根據(jù)刀片結(jié)構(gòu)圖加工出的普通刀片和仿生刀片實(shí)物圖分別如圖4所示。
圖4 切割刀片實(shí)物圖Fig.4 Physical figure of cutting blade
試驗(yàn)的目的在于通過仿生切割刀片和普通刀片切割大麻的試驗(yàn)對比,以單莖稈最大切割力、切割功耗和割茬效果為評價指標(biāo),分析仿生刀片的切割性能。
2.1 試驗(yàn)材料
試驗(yàn)材料采集自國家麻類產(chǎn)業(yè)體系六安大麻試驗(yàn)站處于收割期的大麻,采集部位為莖稈自地面以上30 cm段。根據(jù)大麻收割機(jī)工作要求,大麻機(jī)收留茬高度約為10 cm,經(jīng)測量大麻在此處平均直徑為15 mm,為便于定量對比分析,統(tǒng)一采集地面以上10 cm處長勢勻稱、無病蟲害、直徑誤差在(15±1) mm的莖稈作為試驗(yàn)材料。
前期試驗(yàn)測定發(fā)現(xiàn),收割期大麻莖稈徑向結(jié)構(gòu)符合復(fù)合材料的特性,其木質(zhì)部軸向彈性模量為1 343.5 MPa,韌皮部徑向彈性模量為3 607.5 MPa,莖稈軸向彈性模量為17 433.5 MPa,莖稈徑向壓縮彈性模量為88.0 MPa,木質(zhì)部剪切模量為33.5 MPa,莖稈剪切模量為32.0 MPa[12]。為最大限度地保持收獲期大麻莖稈的物理力學(xué)特性,摒除含水率變化對莖稈物料特性的影響,在莖稈樣本采集密封處理后48 h之內(nèi)完成試驗(yàn)。
2.2 試驗(yàn)設(shè)備
本試驗(yàn)使用的設(shè)備包括自主研制的雙動刀切割試驗(yàn)裝置(如圖5所示)、濟(jì)南思達(dá)WDW-10微機(jī)控制電子萬能試驗(yàn)機(jī)(其測力量程5 kN,力傳感器和位移傳感器精度都在±1%之內(nèi))、普通切割刀片和仿生切割刀片以及游標(biāo)卡尺、卷尺等輔助測量工具。
圖5 雙動刀切割裝置結(jié)構(gòu)示意圖Fig.5 Structure diagram of double-action cutting device
試驗(yàn)時將同類型的刀片相對固定在雙動刀切割裝置兩側(cè)的刀片固定板上,將雙動刀切割裝置驅(qū)動端與萬能試驗(yàn)機(jī)的加載端連接,組成一個雙動刀切割力測試系統(tǒng)(如圖6所示)。該測試系統(tǒng)工作原理為:當(dāng)萬能試驗(yàn)機(jī)以一定的速度加載時,帶動雙動刀切割裝置的齒輪齒條傳動機(jī)構(gòu)作嚙合運(yùn)動,齒輪齒條的嚙合運(yùn)動帶動固定在刀片固定板上的刀片作速度相同、方向相反的上下直行運(yùn)動,從而實(shí)現(xiàn)刀片對固定在支撐架上的莖稈的剪切動作。切割力、位移和時間等信息通過測量傳感器傳遞給萬能試驗(yàn)機(jī)的測量系統(tǒng),并記錄下相關(guān)信息的變化。
圖6 雙動刀切割力測試系統(tǒng)Fig.6 Cutting force testing system of double-action blades
2.3 試驗(yàn)方法
試驗(yàn)采用單因素試驗(yàn)法,分別采用普通刀片和仿生刀片對單個大麻莖稈進(jìn)行切割,每組試驗(yàn)重復(fù)20次。萬能試驗(yàn)機(jī)加載速度設(shè)定為25 mm/min,每次試驗(yàn)完成后記錄下相應(yīng)的切割力變化曲線,并將切割后的割茬分類保存,以便對2種刀片的割茬效果進(jìn)行對比分析。
計(jì)算切割功時,刀片切割莖稈做功為切割力所做的功減去空載時驅(qū)動力所做的功,即圖7a中切割-位移曲線和空載驅(qū)動力-位移曲線所圍成的面積,切割功耗計(jì)算公式如式(2)所示。
式中W為切割功耗,J;Fi為第i個采樣點(diǎn)處所對應(yīng)的切割力值,N;Fi0為第i個采樣點(diǎn)處所對應(yīng)的空載驅(qū)動力值,N;Δx為萬能試驗(yàn)機(jī)相鄰兩采樣點(diǎn)時間間隔壓頭的加載位移,mm。
2.4 試驗(yàn)結(jié)果與分析
安裝有普通刀片和仿生刀片的雙動刀切割裝置的空載驅(qū)動力-位移曲線及2種刀片單莖稈切割力-位移曲線圖如圖7所示。由于普通刀片和仿生刀片切割裝置的空載驅(qū)動力主要由切割裝置的齒輪-齒條機(jī)構(gòu)、滑動導(dǎo)軌機(jī)構(gòu)、兩刀片固定板及刀片之間的摩擦力引起,2種刀片采用同一切割裝置,摩擦力值差異較小,故空載驅(qū)動力-位移曲線變化趨勢較一致,如圖7a所示。2種刀片割茬效果對比如圖7b所示。不同刀片單莖稈最大切割力和切割功耗試驗(yàn)數(shù)據(jù)如表1所示,對影響最大切割力和切割功耗的試驗(yàn)因素進(jìn)行單因素方差分析。
由圖7a可知,2種刀片的切割力變化曲線都可分為3個階段,即擠壓階段、切割階段和切割完畢階段。圖7a中AB1和AB2所示的曲線段為擠壓階段。由仿生刀片切割力曲線可知,此階段切割力在總趨勢增大的同時伴有力值突降。經(jīng)分析,其主要原因在于,在刀片切向大麻莖稈過程中,由于仿生刀片齒距較大、齒尖較鋒利,當(dāng)?shù)镀佑|到麻稈時,麻稈單位面積所受切割應(yīng)力較大,致使齒尖在擠壓階段已開始發(fā)生局部切割現(xiàn)象。而普通刀片由于刀齒排列較緊密,在相同切割驅(qū)動力作用下,麻稈單位面積所受應(yīng)力較小,刀片更多地表現(xiàn)為對莖稈的擠壓作用。對比擠壓階段切割力變化曲線可知,仿生切割刀片具有易于切入的優(yōu)勢。
圖7 2種刀片切割力和割茬效果對比Fig.7 Comparison of cutting force and cutting stubbles of two types of blades
圖7 a中B1C1和B2C2所示的階段為莖稈切割階段。由切割力變化曲線可知,采用仿生刀片切割時,切割力從最大值急劇下降至最小值。而普通刀片的切割力則表現(xiàn)為在波動過程中下降。經(jīng)分析,其主要原因在于仿生刀片獨(dú)特的弧形齒和齒背凹槽結(jié)構(gòu)。在擠壓階段齒尖發(fā)生局部切割后,由于弧形齒刃結(jié)構(gòu)的存在,在后續(xù)地切割過程中,齒刃的切割狀態(tài)主要表現(xiàn)為滑切,滑切作用的存在大大降低了切割阻力、提高了切割效果;其次,相鄰弧形齒組成的突起邊界形成了鋒利的楔形塊結(jié)構(gòu),在切割驅(qū)動力作用下,鋒利的楔形塊起到了瞬時將木質(zhì)部橫向劈裂的作用;此外,齒背的凹槽也起到了容納切割后木質(zhì)物料的作用,這也大大降低了切割后物料對刀片的阻力。而普通刀片由于滑切效果差且無容削空間,該結(jié)構(gòu)在切割粗莖稈大麻時起到了阻礙作用。由于普通刀片切入能力不強(qiáng),切割階段仍伴有擠壓莖稈現(xiàn)象發(fā)生,受到擠壓的莖稈在不能被瞬時徹底切斷的情況下發(fā)生縱向劈裂,從而引起切割力在波動中下降。
表1 兩種刀片單莖稈最大切割力與切割功耗試驗(yàn)結(jié)果Table1 Test results of single stalk maximum cutting force and cutting energy consumption of two types of blades
圖7a中C1D1和C2D2所示的曲線段為切割完畢階段。由該階段切割力變化曲線可知,仿生刀片的切割力與空載驅(qū)動力較接近,而普通刀片切割力卻遠(yuǎn)遠(yuǎn)大于空載驅(qū)動力。這是因?yàn)槠胀ǖ镀懈詈?,由于切割不徹底,仍有部分未割斷的麻皮纖維和較多木質(zhì)部碎渣進(jìn)入兩刀片之間,對刀片的上下運(yùn)動起了阻礙作用,增大了切割摩擦力。而仿生刀片由于能夠?qū)β槠ず湍举|(zhì)部有效切割,且產(chǎn)生碎渣較少,此現(xiàn)象不明顯。
結(jié)合圖7b中的割茬效果對比可知,仿生刀片和普通刀片相比,仿生刀片對麻皮和木質(zhì)部能更為有效切割,無未割斷麻皮纖維及多余木質(zhì)部殘?jiān)霈F(xiàn),切割茬口更平齊,割茬質(zhì)量更好。
由表1試驗(yàn)結(jié)果可知,仿生刀片單莖稈最大切割力平均值為442.6 N、標(biāo)準(zhǔn)差為27.7 N,切割功耗平均值為2.16 J、標(biāo)準(zhǔn)差為0.20 J;普通刀片單莖稈最大切割力平均值為478.1 N、標(biāo)準(zhǔn)差為29.4 N,切割功耗平均值為2.35 J、標(biāo)準(zhǔn)差為0.29 J。經(jīng)計(jì)算可知,仿生刀片和普通刀片相比,平均最大切割力和切割功耗分別降低7.4%和8.0%,表明仿生刀片在減阻降耗方面具有較大優(yōu)勢。對不同刀片最大切割力試驗(yàn)數(shù)據(jù)進(jìn)行F檢驗(yàn),F(xiàn)值為15.49,顯著性水平P值為0.000 3(P<0.01),表明不同刀片類型對單莖稈最大切割力有極顯著影響;對不同刀片切割功耗試驗(yàn)數(shù)據(jù)進(jìn)行F檢驗(yàn),得F值為5.735,顯著性水平P值為0.021 7(0.01<P<0.05),表明不同刀片類型對單莖稈切割功耗有顯著影響。
1)運(yùn)用仿生學(xué)原理,將天??谄魃项€結(jié)構(gòu)特性應(yīng)用于大麻收割機(jī)切割刀片的設(shè)計(jì),設(shè)計(jì)了一種切割刀片。
2)為驗(yàn)證仿生刀片的切割性能,進(jìn)行了仿生刀片和普通刀片切割大麻莖稈的對比試驗(yàn),試驗(yàn)表明仿生刀片和普通刀片相比具有切割能力強(qiáng)、割茬平齊、切割效果好的優(yōu)勢。
3)通過對試驗(yàn)數(shù)據(jù)進(jìn)行分析可知,仿生刀片和普通刀片單莖稈最大切割力和切割功耗平均值分別為442.6、478.1 N和2.16、2.35 J,仿生刀片和普通刀片相比,平均最大切割力和切割功耗分別降低7.4%和8.0%,仿生刀片的減阻降耗效果顯著,滿足使用要求。
[1] 呂江南,龍超海,馬蘭,等.大麻鮮莖剝皮機(jī)的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報,2014,30(14):298-307.
Lu Jiangnan, Long Chaohai, Ma Lan, et al. Design and experiment on decorticator of hemp fresh stem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 298-307. (in Chinese with English abstract)
[2] 郭麗,王明澤,王殿奎,等.工業(yè)大麻綜合利用研究進(jìn)展與前景展望[J].黑龍江農(nóng)業(yè)科學(xué),2014(8):132-134.
Guo Li, Wang Mingze, Wang Diankui, et al. Research progress and prospect of comprehensive utilization of industrial hemp[J]. Heilongjiang Agriculture Sciences, 2014(8): 132-134. (in Chinese with English abstract)
[3] 沐森林,陳長林,張彬,等.國內(nèi)麻類作物收獲機(jī)械現(xiàn)狀及對策建議[J].中國農(nóng)機(jī)化,2010(3):11-14.
Mu Senlin, Chen Changlin, Zhang Bin, et al. Current situation and existing problem of bast fiber harvester in China[J]. Chinese Agricultural Mechanization, 2010(3): 11-14. (in Chinese with English abstract)
[4] 呂江南,龍超海,馬蘭,等.我國麻類作物機(jī)械化作業(yè)技術(shù)裝備發(fā)展現(xiàn)狀與建議[J].中國麻業(yè)科學(xué),2013(6):307-312,328.
Lu Jiangnan, Long Chaohai, Ma Lan, et al. Research progress and suggestions on mechanized equipments for bast fiber crops in China[J]. Plant Fiber Sciences in China, 2013(6): 307-312, 328. (in Chinese with English abstract)
[5] 沈成,李顯旺,張彬,等.苧麻莖稈臺架切割試驗(yàn)與分析[J].農(nóng)業(yè)工程學(xué)報,2016,32(1):68-76.
Shen Cheng, Li Xianwang, Zhang Bin, et al. Bench experiment and analysis on ramie stalk cutting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 68-76. (in Chinese with English abstract)
[6] 張世福,宋占華,閆銀發(fā),等.農(nóng)作物秸稈切割試驗(yàn)臺測控系統(tǒng)的研制與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報,2013,29(增刊1):10-17.
Zhang Shifu, Song Zhanhua, Yan Yinfa, et al. Development and experiment of measure and control system for stalk cutting test bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(Supp.1): 10-17. (in Chinese with English abstract)
[7] 黃繼承,李顯旺,沈成,等.苧麻聯(lián)合收割機(jī)切割器的運(yùn)動仿真和結(jié)構(gòu)分析[J].中國農(nóng)機(jī)化學(xué)報,2013(6):170-173.
Huang Jicheng, Li Xianwang, Shen Cheng, et al. Kinematics simulation and structural analysis on cutter of ramie combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2013(6): 170-173. (in Chinese with English abstract)
[8] 陳巧敏,李顯旺,張彬,等.苧麻收割機(jī)升降門架有限元分析:基于ANSYS Workbench[J].農(nóng)機(jī)化研究,2014,36(5):11-15.
Chen Qiaomin, Li Xianwang, Zhang Bin, et al. Lifting door frame of ramie combine harvester finite element analysis based on ansys workbench[J]. Journal of Agriculture Mechanization Research, 2014, 36(5): 11-15.(in Chinese with English abstract)
[9] 黃海東,李繼波,廖慶喜.收割期苧麻底部莖稈剪切的機(jī)械物理特性與參數(shù)[J].華中農(nóng)業(yè)大學(xué)學(xué)報,2008,27(3):453-455.
Huang Haidong, Li Jibo, Liao Qingxi. The shearing characteristics and parameters of the bottom stalk of ramie in harvesting period[J]. Journal of Huazhong Agricultural University, 2008, 27(3): 453-455. (in Chinese with English abstract)
[10] 蘇工兵,劉儉英,王樹才,等.苧麻莖稈木質(zhì)部力學(xué)性能試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報,2007,38(5):62-65.
Su Gongbing, Liu Jianying, Wang Shucai, et al. Study on mechanical properties of xylem of ramie stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(5): 62-65. (in Chinese with English abstract)
[11] Cao Zhen, Jin Xin, Liao Qingxi. Experimental research on physical and mechanical parameters of matured bottom stalk of the reed for harvester design[J]. International Journal of Agricultural and Biological Engineering, 2011, 4(2): 36-42.
[12] 周楊,李顯旺,沈成,等.工業(yè)大麻莖稈力學(xué)模型的試驗(yàn)分析[J].農(nóng)業(yè)工程學(xué)報,2016,32(9):22-29.
Zhou Yang, Li Xianwang, Shen Cheng, et al. Experimental analysis on mechanical model of industrial hemp stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 22-29. (in English with Chinese abstract)
[13] 沈成,李顯旺,田昆鵬,等.苧麻莖稈力學(xué)模型的試驗(yàn)分析[J].農(nóng)業(yè)工程學(xué)報,2015,31(20):26-33.
Shen Cheng, Li Xianwang, Tian Kunpeng, et al. Experimental analysis on mechanical model of ramie stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 26-33. (in Chinese with English abstract)
[14] 沈成,陳巧敏,李顯旺,等.苧麻莖稈軸向壓縮力學(xué)試驗(yàn)與分析[J].浙江農(nóng)業(yè)學(xué)報,2016,28(4):688-692.
Shen Cheng, Chen Qiaomin, Li Xianwang, et al. Test and analysis of axial compressive mechanical properties for ramie stalk[J]. Acta Agriculturae Zhejiangensis, 2016, 28(4): 688-692. (in Chinese with English abstract)
[15] 高知輝.金屬鋸切圓鋸片的仿生設(shè)計(jì)[D].長春:吉林大學(xué),2016.
Gao Zhihui. Bionic Design of Circular Saw Blade for Metal Cutting[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract)
[16] Vincent J F, Mann D L. Systematic technology transfer from biology to engineering[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2002, 360 (1791): 159-173.
[17] Junior W K, Candido H A, Marques A C, et al. Development of junction elements from study of the bionics[J]. Journal of Bionic Engineering, 2007, 4(1): 41-46.
[18] 王立新,高雅妍.農(nóng)業(yè)機(jī)械領(lǐng)域的工程仿生研究概況與應(yīng)用前景[J].河北科技大學(xué)學(xué)報,2014,35(4):309-317.
Wang Lixin, Gao Yayan. Research advance and development prospect of engineering bionics in agricultural machinery field[J]. Journal of Hebei University of Science and Technology, 2014, 35(4): 309-317. (in Chinese with English abstract)
[19] Qaisrani A R, Chen Bingcong, Ren Luquan. Modified and unsmoothed plow surfaces-a means to reduce plowing resistance[J]. International Agricultural Engineering Journal, 1992, 1(3): 115-124.
[20] Qaisrani A R, Tong Jin, Ren Luquan, et al. The effects of unsmoothed surfaces on soil adhesion and draft of bulldozing plates[J]. Transactions of the Chinese Society of AgriculturalEngineering, 1993, 9(1): 7-13.
[21] Soni P, Salokhe V M. Influence of dimensions of UHMW-PE protuberances on sliding resistance and normal adhesion of bangkok clay soil to biomimetic plates[J]. Journal of Bionic Engineering, 2006, 3(2): 63-71.
[22] Soni P, Salokhe V M, Nakashima H. Modification of a mouldboard plough surface using arrays of polyethylene protuberances[J]. Journal of Terramechanics, 2007, 44(6): 411-422.
[23] 張金波,佟金,馬云海.仿生減阻深松鏟設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報,2014,45(4):141-145.
Zhang Jinbo, Tong Jin, Ma Yunhai. Design and experiment of bionic anti-drag subsoiler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 141-145. (in Chinese with English abstract)
[24] 李默.基于螳螂前足結(jié)構(gòu)特征的仿生切茬刀片設(shè)計(jì)[D].長春:吉林大學(xué),2013.
Li Mo. Design of Bionic Stubble-cutting Blade Based on the Structure Characteristic of Praying Mantis’s Foreleg[D]. Changchun: Jinlin University, 2013.(in Chinese with English abstract)
[25] Li Mo, Chen Donghui, Zhang Shujun, et al. Biomimeitc design of a stubble-cutting disc using finite element analysis[J]. Journal of Bionic Engineering, 2013, 10(1): 118-127.
[26] Jia Honglei, Li Changying, Zhang Zhihong, et al. Design of bionic saw blade for corn stalk cutting[J]. Journal of Bionic Engineering, 2013, 10(4): 497-505.
[27] 李常營.留高茬式玉米收獲機(jī)切割部件的仿生設(shè)計(jì)及其切割機(jī)理[D].長春:吉林大學(xué),2014.
Li Changying. Bionic Blade of Corn Harvester for Leaving High Stubble and Its Cutting Mechanism[D]. Changchun: Jinlin University, 2014. (in Chinese with English abstract)
[28] 王剛,賈洪雷,趙佳樂,等.玉米留高茬切割器的設(shè)計(jì)及留茬效果試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報,2014,30(23):43-49.
Wang Gang, Jia Honglei, Zhao Jiale, et al. Design of corn high-stubble cutter and experiments of stubble retaining effects[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2014, 30(23): 43-49. (in Chinese with English abstract)
[29] 蔡小娜,黃大莊.中國主要天牛危害狀識別鑒定研究[J].中國森林病蟲,2009,28(6):37-40.
Cai Xiaona, Huang Dazhuang. Recognition and identification of damgae features of main longhorn beetles in china[J]. China’s Forest Diseases and Pests, 2009, 28(6): 37-40.(in Chinese with English abstract)
[30] 周琦.森林害蟲:天牛的危害和防治[J].黑龍江科學(xué),2015,6(1):47-48.
Zhou Qi. Hazards and control the forest pests-beetles[J]. Heilongjiang Science, 2015, 6(1): 47-48.(in Chinese with English abstract)
[31] 劉鳳華,王新亮,劉濤,等.云斑天牛的危害及防治技術(shù)[J].安徽農(nóng)業(yè)科學(xué),2014,42(23):7814-7816.
Liu Fenghua, Wang Xinliang, Liu Tao, et al. Biological characters and control of batocera horsfieldi[J]. Journal of Anhui Agri.Sci, 2014, 42(23): 7814-7816. (in Chinese with English abstract)
[32] 于萬波.基于MATLAB的圖像處理[M].北京:清華大學(xué)出版社,2008.
Design and test of cutting blade of cannabis harvester based on longicorn bionic principle
Tian Kunpeng, Li Xianwang, Shen Cheng, Zhang Bin※, Huang Jicheng, Wang Jinguo, Zhou Yang
(Nanjing Reseach Institute for Agricultural Mechanization of Ministry of Agriculture, Nanjing 210014, China)
Cutting blade is one of the key parts of a cannabis harvester and the cutting performance of the blade directly determines the performance of the machine. Due to the current lack of special cutting blades for existing cannabis harvesters, rice and wheat harvester cutting blades have to be utilized instead. However, these cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cutting quality. For these reasons, this study aimed to utilize the principle of bionics to develop a longicorn mouthparts palate for a bionic prototype. This was achieved by extracting the cutting tooth profile curve of longicorn mouthparts palate, instead of the ordinary rice and wheat harvester blade triangular tines, and thus designing the bionic cutting blade. Using a double-action blades testing system, which was composed of a self-developed double-action blades cutting device and a WDW-10 computer-controlled electronic universal testing machine, a single stalk cutting performance contrast test was carried out using the cannabis stalks of harvest time. Comparing the 2 types of blades’ cutting force -displacement curves can be seen that both of the curves could be divided into extrusion, cutting, and cutting out stages. In extrusion stage, due to the large pitch and sharp teeth of the bionic blade, the unit area of cannabis stalk suffered great stress, consequently strengthening the cutting ability of the bionic blade. While the teeth of ordinary blades were arranged closer, achieving the same cutting driving force, the unit area of cannabis stalk suffered less stress, thus, the blade showed more effect of compression on the stalk. In cutting stage, due to the unique arc tooth and tooth back groove structure of the bionic blade, the teeth edge mainly played a role of sliding cut, which can greatly reducing the cutting resistance during cutting. Secondly, the adjacent protrusions of the arc tooth boundary formed a wedge block structure, which resulted in the effect of splitting the transverse xylem instantly. In addition, the back groove of tooth played a role of accommodating the shred wooden material, which can also reduce the resistance of cutting. While, due to the close arrangement of the triangular teeth of ordinary blade, the sliding cut effect was poor and they had no capacity to accommodate the shred material. When cutting, the structure suffered from a blocking effect instead, which resulted in an increase of cutting resistance. In cutting out state, due to the bionic blade can cut more thoroughly, less uncut bark fiber and wood debris entered the two opposite blades, thus keeping the friction small, and the bionic blade force is closer to no-load driving force. Comparison of cutting stubbles of two types of blades can be seen that the stubbes cut by bionic blades is more flush than that by ordinary blades. The statistical average of both groups of test data showed that the single stalk maximum cutting force and the cutting energy consumption of bionic blade and ordinary blade were 442.6, 478.1 N and 2.16, 2.35 J, respectively. In comparison to an ordinary blade, the bionic blade achieved a reduction of the average maximum cutting force and cutting energy consumption by 7.4% and 8.0%, respectively. This showed that the bionic blade has a better performance of drag reduction and consumption reduction than the ordinary blade. The maximum cutting force of different blades was verified via F test, resulting in an F value of 15.49 at a significance level of P<0.01, which reveals that the blade type has a significant influence on the cutting force. Furthermore, the cutting energy consumption of different blades was also verified via F test, resulting in an F value of 5.735 at a significance level of P<0.05, which reveals that the blade type also has a significant influence on the cutting energy consumption of a single stalk.
cutting equipment; bionic; mechanization; cannabis harvester; longicorn palate; cutting force; cutting energy
10.11975/j.issn.1002-6819.2017.05.008
S225.5+9
A
1002-6819(2017)-05-0056-06
田昆鵬,李顯旺,沈 成,張 彬,黃繼承,王錦國,周 楊. 天牛仿生大麻收割機(jī)切割刀片設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(5):56-61.
10.11975/j.issn.1002-6819.2017.05.008 http://www.tcsae.org
Tian Kunpeng, Li Xianwang, Shen Cheng, Zhang Bin, Huang Jicheng, Wang Jinguo, Zhou Yang. Design and test of cutting blade of cannabis harvester based on longicorn bionic principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 56-61. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.05.008 http://www.tcsae.org
2016-06-14
2017-02-07
國家農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系崗位任務(wù)(CARS-19-E22);國家“十二五”科技支撐計(jì)劃項(xiàng)目(2011BAD20B05-4);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目(莖稈作物機(jī)械化收獲團(tuán)隊(duì))
田昆鵬,男,河南商丘人,助理研究員,主要從事莖稈類作物收獲裝備技術(shù)研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。Email:tiankp2005@163.com
※通信作者:張 彬,女,浙江東陽人,副研究員,主要從事農(nóng)業(yè)裝備工程技術(shù)研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。
Email:xtsset@hotmail.com