付國(guó)楷,張林防,郭 飛,劉 進(jìn),張 智
?
榨菜廢水MFC多周期運(yùn)行產(chǎn)電性能及COD降解
付國(guó)楷*,張林防,郭 飛,劉 進(jìn),張 智
(重慶大學(xué),三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400045)
構(gòu)建了雙室微生物燃料電池系統(tǒng)(MFC)處理高鹽高濃度榨菜廢水,實(shí)現(xiàn)了污水處理與能量回收的雙重目的.高鹽高濃度榨菜廢水MFC多周期運(yùn)行過(guò)程中性能研究表明,該MFC可長(zhǎng)期、高效、穩(wěn)定運(yùn)行.在1000Ω外接電阻間歇運(yùn)行條件下,電池運(yùn)行至第5周期時(shí)產(chǎn)電性能達(dá)到最佳,最大功率密度、電池內(nèi)阻及開(kāi)路電壓分別為:7.44W/m3、88Ω、746mV,COD去除率及庫(kù)倫效率分別為:(65±2.5)%、(19.3±1)%.啟動(dòng)成功后污染物去除效果隨運(yùn)行時(shí)間的延長(zhǎng)緩慢提高,運(yùn)行至第8周期時(shí)COD去除率為(73±3.3)%,而庫(kù)倫效率緩慢降低,最大庫(kù)倫效率為(19.3±1)%.此外,隨著運(yùn)行時(shí)間的延長(zhǎng)陽(yáng)極出水pH值不斷減小,酸化程度不斷加重.在長(zhǎng)期運(yùn)行過(guò)程中系統(tǒng)穩(wěn)定功率輸出所對(duì)應(yīng)的外阻為500Ω左右.實(shí)驗(yàn)過(guò)程中功率密度和極化曲線出現(xiàn)了回折現(xiàn)象.
微生物燃料電池;高鹽高濃度榨菜廢水;多周期運(yùn)行性能;穩(wěn)定功率輸出;功率密度曲線回折
榨菜在生產(chǎn)過(guò)程中會(huì)排放大量高鹽高濃度的加工廢水[1].現(xiàn)今,榨菜廢水主要采用厭氧技術(shù)進(jìn)行預(yù)處理,然后利用好氧技術(shù)進(jìn)一步處理,為達(dá)標(biāo)排放,通常會(huì)增加物化單元進(jìn)行強(qiáng)化處理[1].然而常規(guī)的好氧技術(shù)能耗和運(yùn)行費(fèi)用高,并且污泥產(chǎn)量大,污泥的后續(xù)治理費(fèi)用也較高[2].另一方面, 研究表明[2],理論上每氧化1kg COD會(huì)產(chǎn)生3.86kW·h的能量.而以實(shí)際污水為MFC底物時(shí),降解每kg COD可獲得0.22~0.30kW·h的電能[3].因此,從污水(如榨菜廢水)中獲得能量用以補(bǔ)給污水廠運(yùn)行費(fèi)用值得探討與研究.
MFC是一項(xiàng)新興的能源技術(shù),在全球性的能源危機(jī)和環(huán)境污染問(wèn)題日益嚴(yán)重的情況下,因其能夠以產(chǎn)電微生物為催化劑,直接以簡(jiǎn)單有機(jī)物或?qū)嶋H廢水中的復(fù)雜有機(jī)物為燃料,將有機(jī)物中的化學(xué)能轉(zhuǎn)化為電能而備受關(guān)注.不同類型的污水已被用作MFC的燃料,比如生活污水[4-6]、污泥[7-11]、養(yǎng)豬廢水[12-13]、制藥廢水[14-15]、垃圾滲濾液[16]等.實(shí)驗(yàn)證明上述污水均可作為MFC的可利用基質(zhì),在降解污染物的同時(shí)實(shí)現(xiàn)能量的回收利用.鹽度對(duì)MFC性能影響顯著[17],研究表明20g/L的含鹽量是最佳的電池底物含鹽量[18],而這鹽度也正是榨菜廢水的鹽度,因此榨菜廢水具有用作電池燃料適宜的水質(zhì)特征:豐富的有機(jī)物含量、良好的可生化性及適宜的鹽度.Guo等[19]以高鹽高濃度榨菜廢水為MFC底物,對(duì)電池產(chǎn)電特性及污染物降解效果進(jìn)行了初步的探究,在雙室MFC系統(tǒng)中獲得了6.6W/m3的最高功率密度,COD最大去除率可達(dá)85%.
MFC在長(zhǎng)期運(yùn)行過(guò)程中的性能穩(wěn)定性是其能否走向?qū)嶋H應(yīng)用關(guān)鍵所在,在實(shí)驗(yàn)室長(zhǎng)期運(yùn)行的MFC就其功率輸出會(huì)隨著運(yùn)行時(shí)間的延長(zhǎng)而逐漸降低[20-23,25-27].而出現(xiàn)此種現(xiàn)象的原因有諸多方面,如:陽(yáng)極水解發(fā)酵反應(yīng)的進(jìn)行[5]、質(zhì)子交換膜的污染[21]、陰極表面生物膜的生長(zhǎng)[26]等.已有研究大都以人工配制廢水[20-22,24,27]為MFC底物對(duì)電池長(zhǎng)期運(yùn)行過(guò)程中的性能變化加以探討,而以實(shí)際廢水為底物的MFC,其性能隨著運(yùn)行時(shí)間延長(zhǎng)的變化鮮有研究.以牛糞便為MFC底物運(yùn)行171d,穩(wěn)定產(chǎn)電時(shí)間長(zhǎng)達(dá)90d,且在整個(gè)實(shí)驗(yàn)過(guò)程中均有電能產(chǎn)生[25].Zhuang[28]等采用啤酒廢水為MFC底物時(shí)發(fā)現(xiàn),長(zhǎng)期運(yùn)行(180d)過(guò)程中陰極反應(yīng)是電池性能變化的決定因素.實(shí)際廢水(如榨菜廢水)因其水質(zhì)復(fù)雜,其長(zhǎng)期運(yùn)行過(guò)程中性能變化更為多變.而以高鹽高濃度榨菜廢水為底物的MFC在長(zhǎng)期運(yùn)行過(guò)程中的性能變化未見(jiàn)報(bào)道.
本實(shí)驗(yàn)以高鹽高濃度榨菜廢水為雙室MFC底物,考察高鹽高濃度榨菜廢水MFC在長(zhǎng)期運(yùn)行過(guò)程中的產(chǎn)電特征、污染物降解、能量回收效率及穩(wěn)定功率輸出等變化情況,判斷其多周期運(yùn)行穩(wěn)定性,為高鹽高濃度榨菜廢水的進(jìn)一步資源化處理提供理論依據(jù).
1.1 試驗(yàn)材料與試劑
實(shí)驗(yàn)中所用水樣采集自重慶市涪陵區(qū)榨菜集團(tuán)污水處理廠,廢水類型為初沉池出水和厭氧池出水,主要水質(zhì)特征如表1所示.陽(yáng)極進(jìn)水由初沉池出水與厭氧池出水以體積比1:4混合而成.具有磷酸鹽緩沖作用的0.1mol/L鐵氰化鉀溶液用作陰極電子受體.實(shí)驗(yàn)所用其他試劑均為分析純,實(shí)驗(yàn)用水為超純水(電導(dǎo)率為18.2MΩ·cm).
表1 初沉池出水和厭氧池出水水質(zhì)
1.2 試驗(yàn)裝置及方法
方形MFC由有機(jī)玻璃制成(圖1).陰極室和陽(yáng)極室尺寸相同:有效容積為260mL.兩個(gè)腔體通過(guò)質(zhì)子交換膜(CEM,Ultrex CMI7000, Membranes International Inc., USA)從中間隔開(kāi);陽(yáng)極和陰極電極材料均為碳布(Hesen Carbon Material Co., Shanghai, China),有效面積為60.5cm2(碳布雙面面積);電極由鈦絲導(dǎo)線引出,并用銅導(dǎo)線與變阻箱(ZX21旋轉(zhuǎn)式直流電阻箱,上海東茂公司)連接形成閉合回路;采用磁力加熱攪拌器(78-1攪拌器,上海梅香儀器有限公司)對(duì)陽(yáng)極室底物進(jìn)行攪拌混勻以免出現(xiàn)短流.裝置頂端預(yù)留有直徑8mm的圓孔用于更換電極液以及放置參比電極(RE-1C,江蘇江分儀器)以獲取極化曲線.
MFC啟動(dòng)時(shí)外接1000Ω電阻.陽(yáng)極室直接加入體積比為1:4的初沉池與厭氧池混合液進(jìn)行啟動(dòng),并加入?yún)捬醭匚勰噙M(jìn)行接種.運(yùn)行過(guò)程中保證陽(yáng)極室的絕對(duì)厭氧狀態(tài),當(dāng)電池電壓低于50mV時(shí)認(rèn)定完成一個(gè)產(chǎn)電周期,之后及時(shí)更換新鮮底物和陰極液,在至少連續(xù)3個(gè)周期電池均能達(dá)到相似電壓(相差不超過(guò)5%)及持續(xù)時(shí)間時(shí),認(rèn)為系統(tǒng)啟動(dòng)成功.所有實(shí)驗(yàn)采用續(xù)批式模式運(yùn)行,平行檢測(cè),實(shí)驗(yàn)溫度如無(wú)特殊說(shuō)明,均在(25±1)℃下進(jìn)行.
1.3 檢測(cè)指標(biāo)及方法
電池電壓通過(guò)數(shù)據(jù)采集模塊(DAS,PISO- 813. Hongge Co. Ltd., Taiwan)每隔1min自動(dòng)采集保存至電腦;電流通過(guò)歐姆定律計(jì)算:式中:為輸出電壓, V;為外電阻, Ω.功率計(jì)算公式:×;功率密度(體積功率密度P)通過(guò)功率除以陽(yáng)極室有效容積計(jì)算而得;極化曲線通過(guò)變外電阻法測(cè)得.其中曲線直線部分的斜率可定義為電池內(nèi)阻[29].COD采用便攜式分光光度法測(cè)定(DRB200&DR5000,HACH Co., USA);電導(dǎo)率和鹽度采用電導(dǎo)率儀(FE-30K, Metter- Toledo)測(cè)定,pH采用便攜式儀器檢測(cè)(Sension 1,HACH Co., USA).
2.1 多周期運(yùn)行過(guò)程中MFC產(chǎn)電性能
由圖2可知,隨著運(yùn)行時(shí)間的延長(zhǎng),電池在一個(gè)產(chǎn)電周期內(nèi)的最高輸出電壓不斷增大:由第1個(gè)周期的589mV逐漸增加至第3個(gè)周期的681mV,直至第5周期的720mV,在此之后的80d運(yùn)行過(guò)程中輸出電壓保持穩(wěn)定,表明以榨菜廢水為底物的MFC可保持長(zhǎng)期穩(wěn)定電壓輸出.產(chǎn)電周期也由第1個(gè)周期的9d增加到第3個(gè)周期的12d,直至第5周期的21d,且在較高電壓階段運(yùn)行的時(shí)間也不斷增大.由于陰極電解液采用具有緩沖溶液的鐵氰化鉀作為電子受體,因而電池輸出電壓的變化主要受陽(yáng)極電勢(shì)的影響.產(chǎn)生上述現(xiàn)象的原因[20,27]主要為:(1)陽(yáng)極電勢(shì)的產(chǎn)生主要是由吸附在電極表面的產(chǎn)電微生物所致,而與懸浮在溶液中的微生物或者化學(xué)物質(zhì)無(wú)關(guān);(2)系統(tǒng)輸出電壓與電極表面的微生物數(shù)量有關(guān):在電池啟動(dòng)初期,吸附在電極表面的產(chǎn)電微生物數(shù)量較少[27],因此能夠傳遞給電極的電子數(shù)量較少,輸出電壓較低,產(chǎn)電周期較短,達(dá)到最大電壓的響應(yīng)時(shí)間也較長(zhǎng).隨著系統(tǒng)運(yùn)行時(shí)間的延長(zhǎng),電極表面的生物膜不斷成熟并趨于穩(wěn)定狀態(tài),最大輸出電壓也隨之不斷增大直至趨于穩(wěn)定,產(chǎn)電周期逐漸增長(zhǎng),達(dá)到最高電壓響應(yīng)時(shí)間也相應(yīng)縮短.從圖2中還可以看出榨菜廢水啟動(dòng)階段經(jīng)歷時(shí)間為50d,相比于Guo等[19]以榨菜廢水為MFC底物進(jìn)行產(chǎn)電特性研究時(shí)要多1倍,這可能與采用不同外接電阻、反應(yīng)器及電極大小有關(guān).
從第4周期開(kāi)始采用梯度改變外電阻的方法測(cè)量電池極化曲線及功率密度曲線,由圖3可知各個(gè)周期的最大功率密度依次為:3.96W/m3(周期4)、7.44W/m3(周期5)、6.62W/m3(周期6)、6.70W/m3(周期7)、6.37W/m3(周期8),實(shí)驗(yàn)結(jié)果略高于Guo[19]等報(bào)道的6.6W/m3.而Li等[14]利用制藥廢水進(jìn)行發(fā)電時(shí)最大功率密度為0.88W/m3. Puig等[16]以垃圾滲濾液作為MFC底物時(shí)最大功率密度僅為0.344W/m3.說(shuō)明高鹽高濃度榨菜廢水MFC是一種較為理想的電池燃料.
由圖4可知,對(duì)于系統(tǒng)的極化現(xiàn)象來(lái)說(shuō),陽(yáng)極電勢(shì)極化先減輕后緩慢加重;而陰極電勢(shì)保持穩(wěn)定,極化現(xiàn)象不明顯.因此陽(yáng)極電勢(shì)變化是各階段電壓變化的關(guān)鍵因素.系統(tǒng)的開(kāi)路電壓和內(nèi)阻分別為:734mV和282Ω(周期4)、746mV和88Ω(周期5)、752mV和101Ω(周期6)、754mV和101Ω (周期7)、752mV和110Ω(周期8).產(chǎn)生上述變化趨勢(shì)的原因[5,20-22,27]為:在運(yùn)行初期,陽(yáng)極表面產(chǎn)電菌處于富集成長(zhǎng)階段,電極表面活化反應(yīng)速率較低,活化內(nèi)阻較大,極化較為嚴(yán)重,導(dǎo)致輸出電壓和功率密度較小.隨著系統(tǒng)運(yùn)行時(shí)間的延長(zhǎng),陽(yáng)極產(chǎn)電菌逐漸富集完畢且成熟,活化內(nèi)阻降低;并且此時(shí)膜污染較輕,擴(kuò)散內(nèi)阻和歐姆內(nèi)阻較小,從而電流密度增大,輸出電壓和功率密度增加明顯.隨著運(yùn)行時(shí)間的進(jìn)一步延長(zhǎng),膜污染逐漸加重,此時(shí)擴(kuò)散內(nèi)阻和歐姆內(nèi)阻占總電池內(nèi)阻的比例不斷增大,極化開(kāi)始加重,電流密度減小,輸出電壓和功率密度也隨之緩慢減小.此外,隨著運(yùn)行時(shí)間的延長(zhǎng)陽(yáng)極產(chǎn)甲烷菌的增殖也會(huì)影響到電池的產(chǎn)電性能.雖然電池性能有所下降,但下降緩慢,高鹽高濃度榨菜廢水MFC在多周期運(yùn)行過(guò)程中可實(shí)現(xiàn)穩(wěn)定產(chǎn)電.
2.2 多周期運(yùn)行過(guò)程污染物去除率及庫(kù)倫效率
MFC在多周期運(yùn)行過(guò)程中,分別在第4周期、第5周期、第6周期、第7周期及第8周期對(duì)COD去除率及庫(kù)倫效率進(jìn)行檢測(cè)計(jì)算.由圖5可知,COD去除率由第4周期的(53±1.8)%增加至第5周期的(65±2.5)%直至第8周期的(73±3.3)%.啟動(dòng)成功后COD去除效率不斷緩慢提高.Guo等[19]以不同濃度榨菜廢水為MFC底物時(shí)COD去除率在(57±6)%與85%之間.由圖6可知多周期運(yùn)行過(guò)程中MFC庫(kù)倫效率分別為:(14.2±0.8)%、(19.3±1)%、(18.7± 0.9)%、(18.1±1.1)%、(17.2± 0.9)%,Guo等[19]以同類型榨菜廢水為MFC底物時(shí)庫(kù)倫效率為(44.3± 2)%,這主要是由反應(yīng)器體積不同造成.實(shí)驗(yàn)結(jié)果表明:運(yùn)行初期電極表面產(chǎn)電微生物富集量較少, COD去除率和庫(kù)倫效率都較低;隨著陽(yáng)極生物膜的不斷富集成熟,對(duì)污染物的降解量也不斷增大,庫(kù)倫效率明顯提高;運(yùn)行時(shí)間繼續(xù)延長(zhǎng),膜污染逐漸加劇[21],造成陽(yáng)極H+累積,陽(yáng)極酸化加重.
由圖7可知,隨著運(yùn)行周期的延長(zhǎng),陽(yáng)極出水pH值由第4周期的7.21降低到第6周期的6.54直至第8周期的5.12.此外Zhang[9]及Guo[19]等認(rèn)為,陽(yáng)極pH值的下降表明了水解發(fā)酵反應(yīng)在陽(yáng)極室的發(fā)生,而水解發(fā)酵反應(yīng)一方面會(huì)促進(jìn)有機(jī)物的降解,使COD去除率有所提高;另一方面卻會(huì)抑制產(chǎn)電菌的活性,從而降低庫(kù)倫效率.雖然庫(kù)倫效率呈下降趨勢(shì),但下降緩慢,說(shuō)明了高鹽高濃度廢水MFC可實(shí)現(xiàn)長(zhǎng)期穩(wěn)定產(chǎn)電.
2.3 多周期運(yùn)行過(guò)程中最大穩(wěn)定輸出功率
由圖8可知,在多周期運(yùn)行過(guò)程中通過(guò)改變外電阻的方法測(cè)量極化曲線時(shí),陰極電勢(shì)在外電阻改變過(guò)程中幾乎沒(méi)有變化,而陽(yáng)極電勢(shì)變化明顯,與電池輸出電壓的變化趨勢(shì)相符.由于陰極采用具有緩沖作用的鐵氰化鉀作為電子受體,因而陽(yáng)極反應(yīng)是電池性能變化的主要影響因素.陽(yáng)極電勢(shì)控制著電子從微生物轉(zhuǎn)移到電極的速率,是整個(gè)MFC反應(yīng)過(guò)程中的限速步驟.
當(dāng)外接電阻改變時(shí),常用陽(yáng)極電勢(shì)相對(duì)減小量(RDAP)來(lái)評(píng)估MFC最大穩(wěn)定輸出功率[30-31].由圖8C可知,RDAP隨外阻變化曲線分為3個(gè)區(qū)域:在高外電阻區(qū)RDAP隨外電阻減小線性增加,外電阻是電子從陽(yáng)極傳遞到陰極的主要限制因素,此時(shí)外電阻控制著MFC的功率輸出;在低外電阻區(qū),電子傳遞至陰極的主要限制因素為傳質(zhì)及活化阻力,內(nèi)阻是MFC功率輸出大小的限制因素,并且RDAP也隨著外電阻的減小線性增加;當(dāng)外電阻與內(nèi)阻相當(dāng)時(shí),即圖8C中橢圓區(qū)域,此時(shí)外部阻力與內(nèi)部阻力對(duì)MFC的功率輸出貢獻(xiàn)相當(dāng),功率輸出處于穩(wěn)定狀態(tài),此時(shí)對(duì)應(yīng)的外部電阻值約為500Ω左右,比Mohan等[31]的實(shí)驗(yàn)結(jié)果4500Ω及Menicucci等[30]的2500~4000Ω要小的多,這是因?yàn)楦啕}高濃度榨菜廢水較高的離子強(qiáng)度可以有效的降低電池內(nèi)阻[19],從而在較低外部電阻值下即可獲得最大穩(wěn)定輸出功率.
2.4 多周期運(yùn)行過(guò)程中功率密度與極化曲線回折分析
由圖3和4可以看出,在MFC多周期運(yùn)行過(guò)程中功率密度及極化曲線出現(xiàn)了回折現(xiàn)象,在不同檢測(cè)周期內(nèi)功率密度及極化曲線發(fā)生折點(diǎn)時(shí)所對(duì)應(yīng)的電流密度分別為:7.05A/m3(0.61A/m2)、24.23A/m3(2.08A/m2)、21.06A/m3(1.81A/m2)、21.15A/m3(1.82A/m2)、19.62A/m3(1.69A/m2),啟動(dòng)成功前,折點(diǎn)出現(xiàn)時(shí)所對(duì)應(yīng)的電流密度較小,而成功啟動(dòng)后在高電流密度區(qū)才產(chǎn)生折點(diǎn).Watson等[32]外接1000Ω外電阻啟動(dòng)MFC并運(yùn)行100余d,運(yùn)行30d后功率密度及極化曲線折點(diǎn)出現(xiàn)時(shí)所對(duì)應(yīng)的電流密度為0.22mA/cm2,100d后增至0.38mA/cm2,并且陽(yáng)極極化曲線出現(xiàn)折點(diǎn),陰極并未出現(xiàn),電流密度增大時(shí)陽(yáng)極電勢(shì)的突然升高引起了功率密度及極化曲線折點(diǎn)的產(chǎn)生,表明電子在陽(yáng)極的傳遞受到限制.此外,當(dāng)電流密度進(jìn)一步增大時(shí),功率密度和極化曲線會(huì)產(chǎn)生回折現(xiàn)象,例如在第7周期功率密度曲線在電流密度為20.92A/m3處開(kāi)始回折.Ieropoulos等[33]認(rèn)為,隨著電流密度的進(jìn)一步增大,電子/質(zhì)子的供需平衡關(guān)系逐漸恢復(fù),功率密度曲線將恢復(fù)正常狀態(tài).上述結(jié)果充分體現(xiàn)了高鹽高濃度廢水MFC陽(yáng)極產(chǎn)電菌在自身調(diào)節(jié)作用下對(duì)外部環(huán)境變化的適應(yīng)性.
3.1 高鹽高濃度榨菜廢水MFC可實(shí)現(xiàn)長(zhǎng)期穩(wěn)定產(chǎn)電.在外接1000Ω電阻間歇運(yùn)行條件下,電池運(yùn)行至第5周期時(shí)產(chǎn)電性能達(dá)到最佳,最大功率密度、電池內(nèi)阻及開(kāi)路電壓分別為:7.44W/m3、88Ω、746mV,COD去除率及庫(kù)倫效率分別為: (65±2.5)%、(19.3±1)%.
3.2 高鹽高濃度廢水MFC運(yùn)行50d(4個(gè)周期)啟動(dòng)完畢.啟動(dòng)成功后污染物去除率隨運(yùn)行時(shí)間的延長(zhǎng)緩慢提高,而庫(kù)倫效率則緩慢降低,陽(yáng)極pH不斷下降,酸化程度加重,在后續(xù)的實(shí)驗(yàn)中可以考慮通過(guò)向陽(yáng)極添加緩沖溶液、更換質(zhì)子交換膜緩解陽(yáng)極酸化現(xiàn)象.
3.3 多周期運(yùn)行過(guò)程中最大穩(wěn)定功率輸出對(duì)應(yīng)的外阻為500Ω左右,在后續(xù)的實(shí)驗(yàn)中可以考慮采用500Ω外接電阻運(yùn)行MFC;實(shí)驗(yàn)過(guò)程中功率密度和極化曲線出現(xiàn)了回折現(xiàn)象.
[1] Chai H X, Kang W. Influence of biofilm density on anaerobic sequencing batch biofilm reactor treating mustard tuber wastewater [J]. Applied Biochemistry and Biotechnology, 2012, 168(6):1664-1671.
[2] McCary P L, Bae J, Kim J. Domestic wastewater treatment as a net energy producer-can this be achieved [J] Environment Science and Technology, 2011,45(17):7100-7106.
[3] Kaewkannetra P, Chiwes W, Chiu T Y. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology [J]. Fuel, 2011,90:2746-2750.
[4] Kim K Y, Yang W L, Logan B E. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells [J]. Water Research, 2015,80:41-46.
[5] Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell [J]. Environment Science and Technology, 2004,38(21):5809-5814.
[6] Ge Z, Ping Q Y, Xiao L, et al. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater [J]. Desalination, 2012,312:52-59.
[7] Ghadge A N, Jadhav D A, Pradhan H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell [J].Bioresource Technology, 2015,182:225-231.
[8] Wang Z W, Ma J X, Xu Y L, et al. Power production from different types of sewage sludge using microbial fuel cells: A comparative study with energetic and microbiological perspectives [J]. Journal of Power Sources, 2013,235:280-288.
[9] Zhang G D, Zhao Q L,Jiao Y, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell [J]. Water Research, 2012,46(1):43-52.
[10] 鄭 峣,劉志華,李小明,等.剩余污泥生物燃料電池輸出功率密度的影響因素 [J]. 中國(guó)環(huán)境科學(xué), 2010,30(1):64-68.
[11] 劉志華,李小明,方 麗,等.污泥為燃料的微生物燃料電池運(yùn)行特性研究 [J]. 中國(guó)環(huán)境科學(xué), 2012,32(2):268-273.
[12] Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewater using microbial fuel cells [J]. Water Research, 2005, 39(20):4961-4968.
[13] Ichihashi O, Hirooka K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell [J]. Bioresource Technology, 2012,114:303-307.
[14] Li H, Ni J R. Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell [J]. Bioresource Technology, 2011,102:2731-2735.
[15] Liu R, Gao C Y, Zhao Y G, et al. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cell [J].Bioresource Technology, 2012,123:86-91.
[16] Puig S, Serra M, Coma M, et al. Microbial fuel cell application in landfill leachate treatment [J]. Journal of Hazardous Materials, 2011,102:10886-10891.
[17] 羅 勇,駱海萍,覃邦余,等.鹽度對(duì)MFC產(chǎn)電及其微生物群落的影響 [J]. 中國(guó)環(huán)境科學(xué), 2013,33(5):832-837.
[18] Lefebvre O, Tan Z, harkwal S, et al. Effect of increasing anodic NaCl concentration on microbial fuel cell performance [J]. Bioresource Technology, 2012,112:336-340.
[19] Guo F, Fu G K, Zhang Z. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells [J]. Bioresource Technology, 2013.136:425-30.
[20] Tremouli A, Intzes A, Intzes P, et al. Effect of periodic complete anolyte replacement on the long term performance of a four air cathodes single chamber microbial fuel cell [J]. Journal of Applied Electrochemistry, 2015,45(7):755-763.
[21] Zhang G D, Wang K,Zhao Q L, et al. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells [J]. Bioresource Technology, 2012,118:249-256.
[22] He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells [J]. Electroanalysis, 2006,18:2009-2015.
[23] Baranitharan E, Khan M R,Prasad D M R, et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent [J]. Bioprocess and Biosystems Engineering, 2015,38(1):15-24.
[24] Bond D R, Lovley D R. Electricity production byattached to electrodes [J]. Applied and Environmental Microbiology, 2003,69(3):1548-1555.
[25] Zhang G D, Zhao Q L,Jiao Y, et al. Long-term operation of manure- microbial fuel cell [J]. Bioresource Technology, 2015, 180:365-369.
[26] Kiely P D, Rader G,Regan J M, et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts [J]. Bioresource Technology, 2011,102(1):361-366.
[27] 詹亞力,張佩佩,閆光緒,等.無(wú)中間休無(wú)膜微生物燃料電池的構(gòu)建與運(yùn)行 [J]. 高等化學(xué)工程學(xué)報(bào), 2008,22(1):177-181.
[28] Zhuang L, Yuan Y,Wang Y Q, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater [J]. Bioresource Technology, 2012,123:406-412.
[29] Logan B E, Regan J M. Microbial fuel cells-Challenges and Applications [J].Environment Science and Technology, 2006, 40(17):5172-5180.
[30] Menicucci J, Beyenal H,Marsili E, et al. Procedure for determining maximum sustainable power generated by microbial fuel cells [J]. Environment Science and Technology, 2016,40: 1062-1068.
[31] Mohan S V, Mohanakrishna G,Srikanth S, et al. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia [J]. Fuel, 2008,87(12):2667-2676.
[32] Watson V J, Logan B E. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells [J]. Electrochemistry Communications, 2011,13(1):54-56.
[33] Ieropoulos I, Winfield J, Greenman J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells [J]. Bioresource Technology, 2010,101:3520-3525.
Electricity generation and COD removal of MFC using mustard tuber wastewater as substrate in multi-cycle running.
FU Guo-kai*, ZHANG Lin-fang, GUO Fei, LIU Jin, ZHANG Zhi
(Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China).
Mustard tuber wastewater was utilized in a dual-chamber microbial fuel cell (MFC) to achieve simultaneous bio-energy recovery and pollutant removal. The multi-cycle performance of MFC using high strength mustard tuber wastewater were in stable batch operation with a 1000Ω external resistor. The maximum power density of 7.44W/m3were observed in the fifth cycle, and the according internal resistance, open circuit voltage, COD removal and columbic efficiency were 88Ω, 746mV, (65 ± 2.5)% and (19.3 ± 1)%, respectively. COD removal continuously increased to (73 ±3.3)%, the maximum rate, in the eighth cycle after start-up; meanwhile, the rapid increase of columbic efficiency till (19.3±1)% in the fifth cycle were followed by the slow declination. PH values of the anode effluent continuously decreased during the operation leading to the acidification. A sustainable power generation was able to be achieved with a 500Ω external resistor. An overshoot was also observed in power curves in the multi-cycle operation.
microbial fuel cell;mustard tuber wastewater;multi-cycle performance;sustainable power;power overshoot
X703.5
A
1000-6923(2017)04-1401-07
2016-08-04
高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃資助(B13041)
付國(guó)楷(1979-),男,副教授,博士,主要從事水污染控制與水體修復(fù)研究.發(fā)表論文30余篇.
* 責(zé)任作者, 副教授, fuguokai@cqu.edu.cn
, 2017,37(4):1401~1407