• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of EMD filtering based on l2-norm in denoising FOG signal

    2017-06-05 14:20:15LIYuhuanYANGGongliuLIUYuanyuan
    中國慣性技術(shù)學報 2017年2期
    關(guān)鍵詞:概率密度函數(shù)范數(shù)陀螺

    LI Yu-huan, YANG Gong-liu, LIU Yuan-yuan

    (1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China;

    2. Science and Technology on Inertial Laboratory, Beijing 100191, China;

    3. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd, Beijing 100854, China)

    Application of EMD filtering based on l2-norm in denoising FOG signal

    LI Yu-huan1,2, YANG Gong-liu1,2, LIU Yuan-yuan3

    (1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China;

    2. Science and Technology on Inertial Laboratory, Beijing 100191, China;

    3. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd, Beijing 100854, China)

    To reduce the random noise and drift of fiber optic gyros (FOG), a novel Hurst-exponent-based signal filtering method is introduced, which combines the empirical mode decomposition (EMD) and the similarity measure between the probability density function (pdf) of the signal and the pdf of each mode. When H<0.5, the relevant modes are selected by using l2-norm, and the partial reconstruction with relevant modes is formed and used to filter the FOG’s noisy signals; When H≥0.5, EMD interval thresholding (EMD-IT) is introduced into the relevant modes to carry on filter processing, then the FOG’s noisy signals are filtered according to partial reconstruction approach. This method is called as mixed EMD-pdf & EMD-IT method. Simulation and real data test are carried out to evaluate the effectiveness of the proposed method. Other EMD denoising methods, such as correlation-based EMD reconstruction (EMD-cor), single pdf-based EMD reconstruction (EMD-pdf), are also investigated to provide a comparison with this method. Experiment results show that its performance is superior to those of the other EMD denoising methods.

    fiber optic gyroscope; empirical mode decomposition; l2-norm; random drift

    Fiber optic gyroscope (FOG), as a kind of inertial sensors, has been widely used in inertial navigation system (INS) because of its significant advantages[1-3]. However, the random drift is the most remarkable issue that contributes to the performance degradation in inertial sensors[4-5]. Among different ways to restrain the random drift, mathematical models and denoising methods are two main techniques realized by software technology reported in relevant literatures.

    Empirical mode decomposition (EMD), first introduced by Huang et al. in [6], has been used for analyzing the non-linear and non-stationary signal processes by adaptively decomposing any signal into oscillatory components called intrinsic mode functions (IMFs)[7-8], where wavelet filtering has been the dominant technique for many years[9]. As opposed to wavelet filtering, EMDadaptively expresses the signal as an expansion of basic functions directly derived from the signal itself[10]. Recently, many EMD-based denoisings have been provided to remove noises from observed data, which can be classified into two main categories, i.e. the whole reconstruction with filtered modes and the partial reconstruction with relevant modes.

    Boudraaet al. in [9] proposed a variety of different whole reconstruction signal denoising schemes. However, it is limited to signals with white Gaussian random noise. Later, Boudraaet al. proved that EMD-based partial reconstruction performs in an adaptive way in [11], but in some cases, CMSE criterion can be trapped in local minima. A correlation-based threshold is established to distinguish relevant modes in reference [12], and its disadvantage is sensitive to different signal-to-noise power ratios (SNR). Kopsinis and Mclanglin developed a series of novel EMD-based denoisings inspired by wavelet thresholding in [13], where EMD interval thresholding termed EMD-IT is provided, while the relevant modes were selected based on experience. Quet al. provided a novel EMD-based mode cell filtering (MCF) method in [14] and selected the relevant modes from experience. Komatyet al. in [15] put forward a similarity measure between the probability density function (pdf) of the input and that of each extracted mode to determine the relevant modes, and the best results are given by the geometric similarity measures, especiallyl2-norm measure. However, the position of the first local maximum is proved to move forward by simulation when Hurst exponent of fractional Gaussian noise (fGn) increases. According to the statistical characterristics of white Gaussian noise and the fGn through EMD, the energy of noise decays at a slower rate whenHis close to 1. Thus it is disastrous for the EMD partial reconstruction usingl2-norm measure to select relevant modes. To avoid these shortcomings, a novel EMD-based signal filtering is introduced in this paper which combines Hurst exponent andl2-norm measure. WhenH≥0.5, EMD-IT is added to further denoise each relevant modes called mixed EMD-pdf & EMD-IT method; then the same partial reconstruction is implemented asH<0.5. Numerical simulation and real data test were carried out to evaluate the effectiveness of this proposed method.

    1 Brief review of EMD

    A noisy signalx(t) is adaptively broken down intoLIMFs by EMD, termedh(i)(t) (1≤i≤L). Those basic building blocks are obtained through a sifting process according to the following steps[9]. A schematic of the inner and outer loops of the EMD is shown in Fig.1.

    Fig.1 Pictorial representation of empirical mode decomposition

    The extracted modes are nearly orthogonal to each other, which form a complete set because accumulating all modes with the residual can restore the decomposed signal. The signal can be expressed as follows:

    2 Principle of EMD-based denoising

    Consider a noiseless signaly(t) contaminated by an additive noisen(t):

    The denoising is to find an estimate(t) of the observed signalx(t). For EMD-based partial reconstructtion denoising,(t) is given by

    To identify the relevant modes of decomposed signal, the signal is first decomposed into several IMFs followed by an estimation of their pdfs using the kernel density estimator. The two pdfs, namedPandQ, can be seen as two sets of points. Thel2-norm is defined by

    From Eq.(4), we can see that thel2-norm is sensitive to the variation of the distance between two correspondding points. The similarity measure usingl2-norm is defined as follows:

    The “dist” stands for the distance between two pdfs measured by l2-norm. The first selected mode is the one when the distance starts decreasing after the first local maximum. The kthis identified by

    Fig.2 illustrates how this novel filtering works, where EMD-IT is applied to each relevant mode to further eliminate the effect of noises. Details on the EMD-IT are fully available in [13]. EMD-IT can effectively reduce the discontinuity. With respect to the threshold selection, the universal threshold is a popular candidate.

    3 Results and discussions

    To verify the effectiveness of this novel denoising method, the noisy signals considered in this section include simulation and real test signals.

    Fig.2 Illustration of novel filtering scheme using l2-norm

    3.1 E xperiment 1

    To illustrate the effectiveness of this proposed filtering, the EMD-cor and EMD-pdf methods are also investigated as comparisons in this paper. The code of EMD can serve as reference implementation.

    For the noisy “Doppler” signal with length 2048, three denoising methods can restore the denoised signal, as shown in the Fig.3. In Fig.3(1), EMD-pdf exhibits the same behavior with EMD-cor for the SNR=12.04 dB. In contrast, the mixed EMD-pdf & EMD-IT enhances the performance of denoising where the SNR is up to 13.34 dB. In Fig.3(2), the gains in SNRs are respectively up to 8.15 dB and 8.03 dB by EMD-cor and EMD-pdf, while the mixed method improves the SNR up to 9.65 dB.

    From the Fig.3, we can see that the mixed EMD-pdf & EMD-IT method has better results compared with other two methods. In this paper, we proposed this mixed method only used when H≥0.5.

    Fig.3 Results of filtered signals

    We have performed numerical simulations for the signals of “Blocks”, “Bumps”, “Heavysine”, and “ECG”, which were generated using Matlab software and the size is N=2048. We have adopted short (0

    Fig.4 Results of EMD-based filtering

    3.2 E xperiment 2

    Under the normal temperature (25℃), we make experiment testing for FOG drift signal. The sample period is 1 s, and the total number of samples is N=332 852. To avoid the variation of temperature in startup time, this paper selects the samples length of 4096 from 14 097~ 18 193 to assess the filtering, shown in Fig.5, such as EMD-cor, EMD-pdf, mixed EMD-pdf & EMD-IT. The H of the signal is 0.7880 estimated by the wfbmesti function in Matlab, which affirms the fact that the timecorrelation colored noise really exists in inertial sensors.

    Fig.5 FOG drift signal

    Based on the EMD-cor, the kthis 2 where the correlation coefficient between the input and its modes starts smaller than the prefixed threshold. In contrast, the kthis 4 using l2-norm, less relevant modes are selected as useful signal for partial reconstruction.

    Additionally, our proposed mixed EMD-pdf & EMD-IT method is applied on the selected relevant modes to further filter the noises. To illustrate the differrence between EMD-pdf and the mixed EMD-pdf & EMD-IT, the results of relevant modes with IMFs number 4 to 9 before and after denoising are shown in Fig.6, where red lines are the filtered signal, those relative smaller mode cells are considered noises and discarded.

    Fig.6 Relevant modes before and after EMD-IT denoising

    The denoising results using EMD-cor, EMD-pdf, mixed EMD-pdf & EMD-IT method are given in Fig.7.To verify the denoising performance, the most commonly used Allan variance for FOG noise analysis is employed as the criterion. As shown in Fig.8, the proposed method can effectively filter the noise, where the mixed method has lower slope as compared to EMD-cor and EMD-pdf.

    Fig.7 Results of EMD-based filtering

    Fig.8 Allan variance analysis before and after denoising

    4 C onclusion

    In this paper, a novel mixed EMD-pdf & EMD-IT method is proposed to filter noisy signals when H≥0.5 and a single EMD-pdf method is used when H<0.5, where the l2-norm is used to select relevant modes. However, the first local maximum obtained from l2-norm is sensitive to the form of noise. Thus, according to the value of H, the mixed or the single method is chosen for denoising. In addition, the threshold is estimated on the basis of the characteristics of fGn through EMD.

    To illustrate the effectiveness of this proposed method, we carried out numerical simulations with different SNR under each H level. This improved method exhibits an enhanced performance of denoising compared with EMD-cor and EMD-IT methods. Finally, this proposed method is applied to the real signal: FOG drift signal. From the Allan variance curves, we can see that the random error has been greatly decreased by the mixed EMD-pdf and EMD-IT method. Hence, the proposed FOG denoising algorithm has been proved to have potential applications in INS domain.

    [1] Liu Y Y, Yang G L, Li S Y. Application of BP-Bagging model in temperature compensation for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(2): 254-259.

    [2] Liu Y Y, Yang G L, Li S Y. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239.

    [3] Liu Y Y, Yang G L, Li S Y. Temperature compensation for fiber optic gyroscope based on dual model[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 131-136.

    [4] Liu Y Y, Yang G L, Li M, et al. Variational mode decomposition denoising combined the detrended fluctuation analysis[J], Signal Processing, 2016, 125: 349-364.

    [5] Yang G L, Liu Y Y, Li M, et al. AMA- and RWE-based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J]. Sensors, 2015, 15: 26940-26960.

    [6] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London, Series A, 1998, 454(3): 903-995.

    [7] Zhang S Y, Liu Y Y, Yang G L. EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C]//Proceedings of the 34th Chinese Control Conference. 2015: 4081-4086.

    [8] Huang M, Liu Y Y, Yang G L, et al. An innovation based DFA and EMD method for denoising fiber optic gyroscope drift signal[C]//Proceedings of the 3rd International Conference on Information Science and Control Engineering. 2016: 1262-1266.

    [9] Yang G L, Liu Y Y, Wang Y Y, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95-109.

    [10] Tsakalozos N, Drakakis K, Rickard S. A formal study of the nonlinearity and consistency of the empirical mode decomposition[J]. Signal Proceesing, 2012, 92(9): 1961-1969.

    [11] Boudraa A O, Cexus J C. EMD-based signal fi ltering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2196-2202.

    [12] Ayenu-Prah A, Attoh-Okine N. A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition[J]. Advance in Adaptive Data Analysis, 2010, 2(1): 1-24.

    [13] Kopsinis Y, Mclanglin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1351-1362.

    [14] Qu C S, Yu H, Xu H L, et al. Random signal de-noising based on empirical mode decomposition for laser gyro[J]. Infrared and Laser Engineering, 2009, 38(5): 859-863.

    [15] Komaty A, Boudraa A O, Augier B, D. et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (1): 27-34.

    1005-6734(2017)02-0244-05

    基于l2范數(shù)的EMD濾波方法在光纖陀螺信號中的應(yīng)用

    李宇寰1,2,楊功流1,2,劉元元3

    (1. 北京航空航天大學 儀器科學與光電工程學院,北京 100191;2. 慣性技術(shù)國防重點實驗室,北京 100191;3. 北京航天時代光電科技有限公司,北京 100854)

    光纖陀螺的隨機漂移限制了慣性導航系統(tǒng)的精度,如何減小它是一項非常艱巨的任務(wù)。結(jié)合經(jīng)驗模態(tài)分解(EMD)和信號與模態(tài)之間的概率密度函數(shù),提出了一種新型的依賴Hurst指數(shù)的信號濾波方法。當H<0.5時,利用l2范數(shù)選擇出相關(guān)模態(tài),累加并形成的部分重構(gòu)方法來對光纖陀螺的信號進行濾波;當H≥0.5時,間隔閾值的經(jīng)驗模態(tài)(EMD-IT)被引入對相關(guān)模態(tài)進行濾波,之后按照部分重構(gòu)的方法對光纖陀螺的信號進行濾波;稱為混合的EMD-pdf和EMD-IT。與其它的濾波方法進行對比,如基于相關(guān)函數(shù)的EMD部分重構(gòu)(EMD-cor),基于概率密度函數(shù)的EMD部分重構(gòu)(EMD-pdf),仿真信號和實際數(shù)據(jù)結(jié)果表明,該混合模型的優(yōu)越性,有效減小了光纖陀螺的隨機誤差。

    光纖陀螺;經(jīng)驗模態(tài)分解;l2范數(shù);隨機漂移

    V241.5

    A

    2017-01-04;

    2017-03-24

    國家自然科學基金(61340044,11202010);中央高校基本科研業(yè)務(wù)費專項資金資助項目(YWF-10-01-B30)

    李宇寰(1978—),男,博士研究生、陸軍參謀,從事慣性技術(shù)研究。E-mail: lyhzl1112@163.com

    聯(lián) 系 人:楊功流(1967—),男,教授,博士生導師。E-mail: bhu17-yang@139.com

    10.13695/j.cnki.12-1222/o3.2017.02.020

    猜你喜歡
    概率密度函數(shù)范數(shù)陀螺
    冪分布的有效估計*
    做個紙陀螺
    玩陀螺
    學生天地(2019年6期)2019-03-07 01:10:46
    陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
    軍事文摘(2018年24期)2018-12-26 00:58:18
    我最喜歡的陀螺
    快樂語文(2018年36期)2018-03-12 00:56:02
    已知f(x)如何求F(x)
    當代旅游(2018年8期)2018-02-19 08:04:22
    基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
    矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
    一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
    基于概率密度函數(shù)的控制系統(tǒng)性能評價
    色播在线永久视频| 国产成人一区二区在线| 国产免费一区二区三区四区乱码| 免费高清在线观看视频在线观看| 另类亚洲欧美激情| 国产精品久久久久久精品电影小说| 精品第一国产精品| 久久久亚洲精品成人影院| 欧美老熟妇乱子伦牲交| 18禁观看日本| 九色亚洲精品在线播放| 久久久久视频综合| 国产伦人伦偷精品视频| 日本91视频免费播放| 激情视频va一区二区三区| 一区二区三区四区激情视频| www.999成人在线观看| 国产精品香港三级国产av潘金莲 | 成人亚洲精品一区在线观看| 19禁男女啪啪无遮挡网站| 国产福利在线免费观看视频| 国产男女超爽视频在线观看| 日韩人妻精品一区2区三区| 国产精品成人在线| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 美女高潮到喷水免费观看| 纯流量卡能插随身wifi吗| 十八禁网站网址无遮挡| 黑人巨大精品欧美一区二区蜜桃| 五月天丁香电影| 黄色毛片三级朝国网站| 国产成人啪精品午夜网站| 亚洲欧美成人综合另类久久久| 久久人妻福利社区极品人妻图片 | 亚洲av日韩在线播放| 国产精品香港三级国产av潘金莲 | 亚洲,欧美,日韩| 欧美成人精品欧美一级黄| 丰满少妇做爰视频| 大香蕉久久成人网| 午夜福利,免费看| 99久久人妻综合| 亚洲三区欧美一区| 丰满迷人的少妇在线观看| 日韩一本色道免费dvd| 国产成人一区二区在线| 三上悠亚av全集在线观看| 久久 成人 亚洲| 国产熟女午夜一区二区三区| 国产精品九九99| videos熟女内射| 天天躁日日躁夜夜躁夜夜| 操美女的视频在线观看| 免费女性裸体啪啪无遮挡网站| h视频一区二区三区| 午夜两性在线视频| 啦啦啦中文免费视频观看日本| 国产国语露脸激情在线看| 中文字幕另类日韩欧美亚洲嫩草| 久久av网站| 亚洲图色成人| 丰满饥渴人妻一区二区三| 中文字幕高清在线视频| 夫妻午夜视频| 可以免费在线观看a视频的电影网站| 电影成人av| 大香蕉久久网| 在线观看www视频免费| 老汉色∧v一级毛片| 日韩制服丝袜自拍偷拍| 国产精品麻豆人妻色哟哟久久| 成人国产一区最新在线观看 | 国产日韩欧美亚洲二区| tube8黄色片| 日本91视频免费播放| 一区二区日韩欧美中文字幕| 国产又色又爽无遮挡免| 国产伦理片在线播放av一区| 国产一卡二卡三卡精品| 久久狼人影院| 亚洲精品久久成人aⅴ小说| 国产精品久久久av美女十八| 午夜福利视频在线观看免费| 欧美av亚洲av综合av国产av| 亚洲图色成人| 午夜免费成人在线视频| 美女中出高潮动态图| 国产精品久久久av美女十八| 国产真人三级小视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲av成人不卡在线观看播放网 | 中文字幕av电影在线播放| 9色porny在线观看| 高潮久久久久久久久久久不卡| 精品第一国产精品| 国产男女内射视频| 91麻豆av在线| 成人三级做爰电影| 极品人妻少妇av视频| 视频区图区小说| 十八禁人妻一区二区| 1024视频免费在线观看| 亚洲激情五月婷婷啪啪| 久久99一区二区三区| 免费观看av网站的网址| 欧美日韩亚洲综合一区二区三区_| 大香蕉久久网| www.av在线官网国产| 久久av网站| 亚洲久久久国产精品| 午夜免费男女啪啪视频观看| 美女午夜性视频免费| videos熟女内射| 日本91视频免费播放| 久9热在线精品视频| 日韩视频在线欧美| 一本综合久久免费| 欧美少妇被猛烈插入视频| 亚洲精品日韩在线中文字幕| 精品国产一区二区三区四区第35| 超碰成人久久| 丝袜美足系列| 大码成人一级视频| 啦啦啦在线观看免费高清www| 十分钟在线观看高清视频www| 别揉我奶头~嗯~啊~动态视频 | 成人亚洲精品一区在线观看| 久久女婷五月综合色啪小说| videosex国产| 国产亚洲欧美在线一区二区| 国产一区二区激情短视频 | 波多野结衣av一区二区av| 晚上一个人看的免费电影| 悠悠久久av| 精品亚洲成a人片在线观看| 赤兔流量卡办理| kizo精华| 国产精品av久久久久免费| 在线观看免费日韩欧美大片| 日韩中文字幕视频在线看片| 久久ye,这里只有精品| 99国产精品99久久久久| 手机成人av网站| 黄网站色视频无遮挡免费观看| 欧美国产精品va在线观看不卡| 婷婷色综合www| 在线 av 中文字幕| 9热在线视频观看99| 女人爽到高潮嗷嗷叫在线视频| 日本av手机在线免费观看| 男女边吃奶边做爰视频| 欧美黄色淫秽网站| 视频区图区小说| 99精品久久久久人妻精品| 成人黄色视频免费在线看| 中文精品一卡2卡3卡4更新| 各种免费的搞黄视频| 少妇人妻 视频| 亚洲欧美成人综合另类久久久| 最新在线观看一区二区三区 | 国产男人的电影天堂91| svipshipincom国产片| 午夜久久久在线观看| 国产精品三级大全| 亚洲av成人精品一二三区| 一区在线观看完整版| 亚洲国产av影院在线观看| 欧美精品一区二区免费开放| 国产熟女午夜一区二区三区| 首页视频小说图片口味搜索 | 飞空精品影院首页| 99久久人妻综合| 美女中出高潮动态图| 精品视频人人做人人爽| 国产真人三级小视频在线观看| 日韩制服丝袜自拍偷拍| 波多野结衣av一区二区av| 精品视频人人做人人爽| 久久毛片免费看一区二区三区| 黄片小视频在线播放| 亚洲,欧美精品.| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 亚洲九九香蕉| 国产女主播在线喷水免费视频网站| 亚洲黑人精品在线| 视频在线观看一区二区三区| 69精品国产乱码久久久| 七月丁香在线播放| 免费久久久久久久精品成人欧美视频| 黄片播放在线免费| 中文字幕av电影在线播放| 女性被躁到高潮视频| 青青草视频在线视频观看| 亚洲欧洲日产国产| 制服诱惑二区| 你懂的网址亚洲精品在线观看| 女人久久www免费人成看片| 免费少妇av软件| 亚洲三区欧美一区| 亚洲av综合色区一区| 一本久久精品| 九色亚洲精品在线播放| 亚洲精品在线美女| 国产亚洲av片在线观看秒播厂| 午夜影院在线不卡| 午夜免费男女啪啪视频观看| 亚洲一码二码三码区别大吗| 色精品久久人妻99蜜桃| 99热网站在线观看| 男女高潮啪啪啪动态图| 久久 成人 亚洲| 在线 av 中文字幕| 日韩中文字幕欧美一区二区 | 欧美日韩综合久久久久久| 十八禁网站网址无遮挡| videosex国产| 国产福利在线免费观看视频| 一级,二级,三级黄色视频| 亚洲av国产av综合av卡| 亚洲av成人精品一二三区| 2018国产大陆天天弄谢| 校园人妻丝袜中文字幕| 真人做人爱边吃奶动态| 最近手机中文字幕大全| 少妇 在线观看| 国产亚洲av高清不卡| www.自偷自拍.com| 欧美变态另类bdsm刘玥| 国产高清不卡午夜福利| 久久天躁狠狠躁夜夜2o2o | 天堂8中文在线网| 国产精品熟女久久久久浪| 欧美亚洲日本最大视频资源| 欧美+亚洲+日韩+国产| 嫩草影视91久久| 久久精品国产a三级三级三级| 精品国产一区二区三区四区第35| 少妇被粗大的猛进出69影院| 亚洲中文av在线| 人成视频在线观看免费观看| 欧美日韩成人在线一区二区| 亚洲国产av新网站| 国产日韩一区二区三区精品不卡| av国产精品久久久久影院| 亚洲精品第二区| 久久久久久人人人人人| 天天影视国产精品| 一二三四社区在线视频社区8| 男女之事视频高清在线观看 | 国产国语露脸激情在线看| 国产精品 欧美亚洲| 啦啦啦视频在线资源免费观看| 2021少妇久久久久久久久久久| 免费在线观看影片大全网站 | 国产精品一区二区在线观看99| 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 国产在线视频一区二区| 大陆偷拍与自拍| 国产在线免费精品| 亚洲中文av在线| 国产在线免费精品| 欧美黑人欧美精品刺激| 欧美日韩亚洲综合一区二区三区_| 九草在线视频观看| 日韩av在线免费看完整版不卡| 免费人妻精品一区二区三区视频| 一本—道久久a久久精品蜜桃钙片| 久久人人爽av亚洲精品天堂| 夜夜骑夜夜射夜夜干| 侵犯人妻中文字幕一二三四区| 99久久人妻综合| 亚洲成av片中文字幕在线观看| 国产成人精品久久二区二区91| 午夜老司机福利片| 黄色a级毛片大全视频| 侵犯人妻中文字幕一二三四区| 丁香六月天网| 五月开心婷婷网| 亚洲欧洲国产日韩| 亚洲国产欧美网| 成人国产一区最新在线观看 | 在线观看免费日韩欧美大片| 99久久精品国产亚洲精品| 国产精品 欧美亚洲| 亚洲国产欧美网| 一区二区三区激情视频| 亚洲国产看品久久| 欧美黑人欧美精品刺激| 久久99一区二区三区| 婷婷色综合大香蕉| 啦啦啦在线观看免费高清www| 丰满迷人的少妇在线观看| 99九九在线精品视频| 亚洲五月色婷婷综合| 精品人妻一区二区三区麻豆| 国产一卡二卡三卡精品| 99国产综合亚洲精品| 免费高清在线观看视频在线观看| 在线av久久热| 亚洲美女黄色视频免费看| 一区二区av电影网| 男女高潮啪啪啪动态图| 又黄又粗又硬又大视频| 午夜两性在线视频| av在线老鸭窝| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av | 午夜两性在线视频| 亚洲国产欧美网| av电影中文网址| 免费一级毛片在线播放高清视频 | 亚洲精品在线美女| 三上悠亚av全集在线观看| 另类亚洲欧美激情| 日韩av在线免费看完整版不卡| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 欧美av亚洲av综合av国产av| 国产男人的电影天堂91| 中文字幕av电影在线播放| 每晚都被弄得嗷嗷叫到高潮| 中文字幕亚洲精品专区| 麻豆乱淫一区二区| 激情五月婷婷亚洲| 一级黄片播放器| 尾随美女入室| 在线观看免费午夜福利视频| 王馨瑶露胸无遮挡在线观看| 午夜av观看不卡| 国产男女内射视频| 欧美 亚洲 国产 日韩一| 欧美变态另类bdsm刘玥| 一区二区三区精品91| 日韩av在线免费看完整版不卡| 人妻一区二区av| 免费看十八禁软件| 久久热在线av| 人人妻,人人澡人人爽秒播 | 亚洲激情五月婷婷啪啪| 两个人看的免费小视频| 天天躁夜夜躁狠狠躁躁| 亚洲久久久国产精品| av线在线观看网站| 一二三四社区在线视频社区8| 久久99精品国语久久久| 黑人欧美特级aaaaaa片| 激情视频va一区二区三区| 欧美精品高潮呻吟av久久| 国产老妇伦熟女老妇高清| 亚洲av成人精品一二三区| 精品第一国产精品| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 狂野欧美激情性xxxx| 天天躁日日躁夜夜躁夜夜| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看| 欧美亚洲日本最大视频资源| 午夜视频精品福利| 国产一卡二卡三卡精品| 一级,二级,三级黄色视频| av天堂久久9| 韩国高清视频一区二区三区| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 久久久久国产一级毛片高清牌| 欧美 亚洲 国产 日韩一| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 91麻豆av在线| www日本在线高清视频| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 国产精品一区二区精品视频观看| 一区福利在线观看| 国产亚洲精品久久久久5区| 国产一区二区在线观看av| 好男人视频免费观看在线| 波多野结衣av一区二区av| 亚洲av电影在线进入| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 国产精品国产三级国产专区5o| 2021少妇久久久久久久久久久| 纯流量卡能插随身wifi吗| 精品卡一卡二卡四卡免费| 久久久精品区二区三区| 国产在线视频一区二区| 18禁黄网站禁片午夜丰满| 黄色毛片三级朝国网站| 亚洲五月色婷婷综合| 国产亚洲欧美精品永久| 老司机深夜福利视频在线观看 | 男女边吃奶边做爰视频| 久热爱精品视频在线9| 19禁男女啪啪无遮挡网站| 香蕉国产在线看| 肉色欧美久久久久久久蜜桃| 十分钟在线观看高清视频www| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| 国产1区2区3区精品| 国产爽快片一区二区三区| 人体艺术视频欧美日本| 国产黄频视频在线观看| 蜜桃在线观看..| 久久久亚洲精品成人影院| 午夜老司机福利片| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区| 一区福利在线观看| 欧美日韩综合久久久久久| 操出白浆在线播放| 久久精品国产综合久久久| 日韩制服丝袜自拍偷拍| 亚洲av日韩精品久久久久久密 | 国产一区二区三区av在线| 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| 久久女婷五月综合色啪小说| 亚洲av男天堂| 咕卡用的链子| 一区二区日韩欧美中文字幕| 亚洲精品日韩在线中文字幕| 久久综合国产亚洲精品| 亚洲国产日韩一区二区| 亚洲三区欧美一区| 日韩精品免费视频一区二区三区| 久久99一区二区三区| 亚洲成国产人片在线观看| 好男人视频免费观看在线| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 七月丁香在线播放| 热99国产精品久久久久久7| 少妇精品久久久久久久| 人体艺术视频欧美日本| 99久久精品国产亚洲精品| 在线观看免费高清a一片| 另类精品久久| 看十八女毛片水多多多| 中文字幕人妻熟女乱码| 亚洲国产欧美网| 天天影视国产精品| 纵有疾风起免费观看全集完整版| 婷婷丁香在线五月| 下体分泌物呈黄色| 亚洲久久久国产精品| 亚洲伊人久久精品综合| 欧美精品啪啪一区二区三区 | 女人精品久久久久毛片| 最近手机中文字幕大全| 午夜免费观看性视频| 两性夫妻黄色片| 91精品国产国语对白视频| 精品国产一区二区三区四区第35| 色精品久久人妻99蜜桃| av国产精品久久久久影院| 蜜桃国产av成人99| 男女床上黄色一级片免费看| 中文欧美无线码| 高清不卡的av网站| 免费黄频网站在线观看国产| 国产福利在线免费观看视频| 夫妻午夜视频| 一边摸一边做爽爽视频免费| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 午夜日韩欧美国产| 国产xxxxx性猛交| 中文欧美无线码| 99国产精品99久久久久| 男人添女人高潮全过程视频| 久久九九热精品免费| 亚洲自偷自拍图片 自拍| 赤兔流量卡办理| av福利片在线| 五月天丁香电影| 九草在线视频观看| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区国产| 99re6热这里在线精品视频| 熟女少妇亚洲综合色aaa.| 飞空精品影院首页| 久久精品国产亚洲av高清一级| 我的亚洲天堂| 欧美av亚洲av综合av国产av| 亚洲欧美精品自产自拍| 啦啦啦在线观看免费高清www| 丰满饥渴人妻一区二区三| 国产免费现黄频在线看| 伦理电影免费视频| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 777米奇影视久久| 国产黄色视频一区二区在线观看| 尾随美女入室| 国产极品粉嫩免费观看在线| 2021少妇久久久久久久久久久| 一区福利在线观看| 国产色视频综合| 女人爽到高潮嗷嗷叫在线视频| 免费看不卡的av| 性少妇av在线| 激情视频va一区二区三区| 亚洲七黄色美女视频| 亚洲,一卡二卡三卡| 午夜福利一区二区在线看| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠躁躁| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| a级片在线免费高清观看视频| 国产激情久久老熟女| 亚洲伊人色综图| 在线观看免费日韩欧美大片| 国产片特级美女逼逼视频| 性高湖久久久久久久久免费观看| 欧美大码av| 日本欧美视频一区| 少妇人妻 视频| 秋霞在线观看毛片| 狠狠婷婷综合久久久久久88av| 亚洲精品av麻豆狂野| 80岁老熟妇乱子伦牲交| 性少妇av在线| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| 亚洲自偷自拍图片 自拍| 国产一区二区激情短视频 | 一级,二级,三级黄色视频| 大片免费播放器 马上看| 久久av网站| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看 | 99国产精品一区二区三区| 国产三级黄色录像| 日日夜夜操网爽| 国产精品九九99| 免费在线观看日本一区| 丝袜喷水一区| 一区福利在线观看| 国产精品偷伦视频观看了| 国产片特级美女逼逼视频| 纵有疾风起免费观看全集完整版| 午夜91福利影院| videosex国产| 日日爽夜夜爽网站| 成人午夜精彩视频在线观看| 免费看不卡的av| 高清av免费在线| av在线老鸭窝| 精品久久久久久电影网| 纯流量卡能插随身wifi吗| 久久性视频一级片| 久久国产精品影院| 满18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 欧美黄色片欧美黄色片| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 99热网站在线观看| 久久久久久人人人人人| 天天躁夜夜躁狠狠久久av| 日本欧美国产在线视频| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 男人添女人高潮全过程视频| 少妇的丰满在线观看| 男女午夜视频在线观看| 性少妇av在线| 久久精品国产a三级三级三级| 超碰成人久久| 国产有黄有色有爽视频| 又黄又粗又硬又大视频| 丝袜美腿诱惑在线| av国产久精品久网站免费入址| 色94色欧美一区二区| 国产av国产精品国产| 老汉色av国产亚洲站长工具| 久久国产精品人妻蜜桃| kizo精华| 欧美国产精品一级二级三级| 亚洲第一av免费看| 亚洲av男天堂| 精品亚洲成国产av| 亚洲欧洲国产日韩| 丝袜在线中文字幕| 两性夫妻黄色片| 精品国产超薄肉色丝袜足j| 免费高清在线观看视频在线观看| 狂野欧美激情性bbbbbb| 这个男人来自地球电影免费观看| 久久国产精品影院| 日韩av不卡免费在线播放| av不卡在线播放| 少妇裸体淫交视频免费看高清 | 国产日韩欧美在线精品| cao死你这个sao货| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 欧美日韩精品网址| 欧美日韩成人在线一区二区| 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 精品国产一区二区久久|