• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of EMD filtering based on l2-norm in denoising FOG signal

    2017-06-05 14:20:15LIYuhuanYANGGongliuLIUYuanyuan
    中國慣性技術(shù)學報 2017年2期
    關(guān)鍵詞:概率密度函數(shù)范數(shù)陀螺

    LI Yu-huan, YANG Gong-liu, LIU Yuan-yuan

    (1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China;

    2. Science and Technology on Inertial Laboratory, Beijing 100191, China;

    3. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd, Beijing 100854, China)

    Application of EMD filtering based on l2-norm in denoising FOG signal

    LI Yu-huan1,2, YANG Gong-liu1,2, LIU Yuan-yuan3

    (1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China;

    2. Science and Technology on Inertial Laboratory, Beijing 100191, China;

    3. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd, Beijing 100854, China)

    To reduce the random noise and drift of fiber optic gyros (FOG), a novel Hurst-exponent-based signal filtering method is introduced, which combines the empirical mode decomposition (EMD) and the similarity measure between the probability density function (pdf) of the signal and the pdf of each mode. When H<0.5, the relevant modes are selected by using l2-norm, and the partial reconstruction with relevant modes is formed and used to filter the FOG’s noisy signals; When H≥0.5, EMD interval thresholding (EMD-IT) is introduced into the relevant modes to carry on filter processing, then the FOG’s noisy signals are filtered according to partial reconstruction approach. This method is called as mixed EMD-pdf & EMD-IT method. Simulation and real data test are carried out to evaluate the effectiveness of the proposed method. Other EMD denoising methods, such as correlation-based EMD reconstruction (EMD-cor), single pdf-based EMD reconstruction (EMD-pdf), are also investigated to provide a comparison with this method. Experiment results show that its performance is superior to those of the other EMD denoising methods.

    fiber optic gyroscope; empirical mode decomposition; l2-norm; random drift

    Fiber optic gyroscope (FOG), as a kind of inertial sensors, has been widely used in inertial navigation system (INS) because of its significant advantages[1-3]. However, the random drift is the most remarkable issue that contributes to the performance degradation in inertial sensors[4-5]. Among different ways to restrain the random drift, mathematical models and denoising methods are two main techniques realized by software technology reported in relevant literatures.

    Empirical mode decomposition (EMD), first introduced by Huang et al. in [6], has been used for analyzing the non-linear and non-stationary signal processes by adaptively decomposing any signal into oscillatory components called intrinsic mode functions (IMFs)[7-8], where wavelet filtering has been the dominant technique for many years[9]. As opposed to wavelet filtering, EMDadaptively expresses the signal as an expansion of basic functions directly derived from the signal itself[10]. Recently, many EMD-based denoisings have been provided to remove noises from observed data, which can be classified into two main categories, i.e. the whole reconstruction with filtered modes and the partial reconstruction with relevant modes.

    Boudraaet al. in [9] proposed a variety of different whole reconstruction signal denoising schemes. However, it is limited to signals with white Gaussian random noise. Later, Boudraaet al. proved that EMD-based partial reconstruction performs in an adaptive way in [11], but in some cases, CMSE criterion can be trapped in local minima. A correlation-based threshold is established to distinguish relevant modes in reference [12], and its disadvantage is sensitive to different signal-to-noise power ratios (SNR). Kopsinis and Mclanglin developed a series of novel EMD-based denoisings inspired by wavelet thresholding in [13], where EMD interval thresholding termed EMD-IT is provided, while the relevant modes were selected based on experience. Quet al. provided a novel EMD-based mode cell filtering (MCF) method in [14] and selected the relevant modes from experience. Komatyet al. in [15] put forward a similarity measure between the probability density function (pdf) of the input and that of each extracted mode to determine the relevant modes, and the best results are given by the geometric similarity measures, especiallyl2-norm measure. However, the position of the first local maximum is proved to move forward by simulation when Hurst exponent of fractional Gaussian noise (fGn) increases. According to the statistical characterristics of white Gaussian noise and the fGn through EMD, the energy of noise decays at a slower rate whenHis close to 1. Thus it is disastrous for the EMD partial reconstruction usingl2-norm measure to select relevant modes. To avoid these shortcomings, a novel EMD-based signal filtering is introduced in this paper which combines Hurst exponent andl2-norm measure. WhenH≥0.5, EMD-IT is added to further denoise each relevant modes called mixed EMD-pdf & EMD-IT method; then the same partial reconstruction is implemented asH<0.5. Numerical simulation and real data test were carried out to evaluate the effectiveness of this proposed method.

    1 Brief review of EMD

    A noisy signalx(t) is adaptively broken down intoLIMFs by EMD, termedh(i)(t) (1≤i≤L). Those basic building blocks are obtained through a sifting process according to the following steps[9]. A schematic of the inner and outer loops of the EMD is shown in Fig.1.

    Fig.1 Pictorial representation of empirical mode decomposition

    The extracted modes are nearly orthogonal to each other, which form a complete set because accumulating all modes with the residual can restore the decomposed signal. The signal can be expressed as follows:

    2 Principle of EMD-based denoising

    Consider a noiseless signaly(t) contaminated by an additive noisen(t):

    The denoising is to find an estimate(t) of the observed signalx(t). For EMD-based partial reconstructtion denoising,(t) is given by

    To identify the relevant modes of decomposed signal, the signal is first decomposed into several IMFs followed by an estimation of their pdfs using the kernel density estimator. The two pdfs, namedPandQ, can be seen as two sets of points. Thel2-norm is defined by

    From Eq.(4), we can see that thel2-norm is sensitive to the variation of the distance between two correspondding points. The similarity measure usingl2-norm is defined as follows:

    The “dist” stands for the distance between two pdfs measured by l2-norm. The first selected mode is the one when the distance starts decreasing after the first local maximum. The kthis identified by

    Fig.2 illustrates how this novel filtering works, where EMD-IT is applied to each relevant mode to further eliminate the effect of noises. Details on the EMD-IT are fully available in [13]. EMD-IT can effectively reduce the discontinuity. With respect to the threshold selection, the universal threshold is a popular candidate.

    3 Results and discussions

    To verify the effectiveness of this novel denoising method, the noisy signals considered in this section include simulation and real test signals.

    Fig.2 Illustration of novel filtering scheme using l2-norm

    3.1 E xperiment 1

    To illustrate the effectiveness of this proposed filtering, the EMD-cor and EMD-pdf methods are also investigated as comparisons in this paper. The code of EMD can serve as reference implementation.

    For the noisy “Doppler” signal with length 2048, three denoising methods can restore the denoised signal, as shown in the Fig.3. In Fig.3(1), EMD-pdf exhibits the same behavior with EMD-cor for the SNR=12.04 dB. In contrast, the mixed EMD-pdf & EMD-IT enhances the performance of denoising where the SNR is up to 13.34 dB. In Fig.3(2), the gains in SNRs are respectively up to 8.15 dB and 8.03 dB by EMD-cor and EMD-pdf, while the mixed method improves the SNR up to 9.65 dB.

    From the Fig.3, we can see that the mixed EMD-pdf & EMD-IT method has better results compared with other two methods. In this paper, we proposed this mixed method only used when H≥0.5.

    Fig.3 Results of filtered signals

    We have performed numerical simulations for the signals of “Blocks”, “Bumps”, “Heavysine”, and “ECG”, which were generated using Matlab software and the size is N=2048. We have adopted short (0

    Fig.4 Results of EMD-based filtering

    3.2 E xperiment 2

    Under the normal temperature (25℃), we make experiment testing for FOG drift signal. The sample period is 1 s, and the total number of samples is N=332 852. To avoid the variation of temperature in startup time, this paper selects the samples length of 4096 from 14 097~ 18 193 to assess the filtering, shown in Fig.5, such as EMD-cor, EMD-pdf, mixed EMD-pdf & EMD-IT. The H of the signal is 0.7880 estimated by the wfbmesti function in Matlab, which affirms the fact that the timecorrelation colored noise really exists in inertial sensors.

    Fig.5 FOG drift signal

    Based on the EMD-cor, the kthis 2 where the correlation coefficient between the input and its modes starts smaller than the prefixed threshold. In contrast, the kthis 4 using l2-norm, less relevant modes are selected as useful signal for partial reconstruction.

    Additionally, our proposed mixed EMD-pdf & EMD-IT method is applied on the selected relevant modes to further filter the noises. To illustrate the differrence between EMD-pdf and the mixed EMD-pdf & EMD-IT, the results of relevant modes with IMFs number 4 to 9 before and after denoising are shown in Fig.6, where red lines are the filtered signal, those relative smaller mode cells are considered noises and discarded.

    Fig.6 Relevant modes before and after EMD-IT denoising

    The denoising results using EMD-cor, EMD-pdf, mixed EMD-pdf & EMD-IT method are given in Fig.7.To verify the denoising performance, the most commonly used Allan variance for FOG noise analysis is employed as the criterion. As shown in Fig.8, the proposed method can effectively filter the noise, where the mixed method has lower slope as compared to EMD-cor and EMD-pdf.

    Fig.7 Results of EMD-based filtering

    Fig.8 Allan variance analysis before and after denoising

    4 C onclusion

    In this paper, a novel mixed EMD-pdf & EMD-IT method is proposed to filter noisy signals when H≥0.5 and a single EMD-pdf method is used when H<0.5, where the l2-norm is used to select relevant modes. However, the first local maximum obtained from l2-norm is sensitive to the form of noise. Thus, according to the value of H, the mixed or the single method is chosen for denoising. In addition, the threshold is estimated on the basis of the characteristics of fGn through EMD.

    To illustrate the effectiveness of this proposed method, we carried out numerical simulations with different SNR under each H level. This improved method exhibits an enhanced performance of denoising compared with EMD-cor and EMD-IT methods. Finally, this proposed method is applied to the real signal: FOG drift signal. From the Allan variance curves, we can see that the random error has been greatly decreased by the mixed EMD-pdf and EMD-IT method. Hence, the proposed FOG denoising algorithm has been proved to have potential applications in INS domain.

    [1] Liu Y Y, Yang G L, Li S Y. Application of BP-Bagging model in temperature compensation for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(2): 254-259.

    [2] Liu Y Y, Yang G L, Li S Y. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239.

    [3] Liu Y Y, Yang G L, Li S Y. Temperature compensation for fiber optic gyroscope based on dual model[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 131-136.

    [4] Liu Y Y, Yang G L, Li M, et al. Variational mode decomposition denoising combined the detrended fluctuation analysis[J], Signal Processing, 2016, 125: 349-364.

    [5] Yang G L, Liu Y Y, Li M, et al. AMA- and RWE-based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J]. Sensors, 2015, 15: 26940-26960.

    [6] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London, Series A, 1998, 454(3): 903-995.

    [7] Zhang S Y, Liu Y Y, Yang G L. EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C]//Proceedings of the 34th Chinese Control Conference. 2015: 4081-4086.

    [8] Huang M, Liu Y Y, Yang G L, et al. An innovation based DFA and EMD method for denoising fiber optic gyroscope drift signal[C]//Proceedings of the 3rd International Conference on Information Science and Control Engineering. 2016: 1262-1266.

    [9] Yang G L, Liu Y Y, Wang Y Y, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95-109.

    [10] Tsakalozos N, Drakakis K, Rickard S. A formal study of the nonlinearity and consistency of the empirical mode decomposition[J]. Signal Proceesing, 2012, 92(9): 1961-1969.

    [11] Boudraa A O, Cexus J C. EMD-based signal fi ltering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2196-2202.

    [12] Ayenu-Prah A, Attoh-Okine N. A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition[J]. Advance in Adaptive Data Analysis, 2010, 2(1): 1-24.

    [13] Kopsinis Y, Mclanglin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1351-1362.

    [14] Qu C S, Yu H, Xu H L, et al. Random signal de-noising based on empirical mode decomposition for laser gyro[J]. Infrared and Laser Engineering, 2009, 38(5): 859-863.

    [15] Komaty A, Boudraa A O, Augier B, D. et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (1): 27-34.

    1005-6734(2017)02-0244-05

    基于l2范數(shù)的EMD濾波方法在光纖陀螺信號中的應(yīng)用

    李宇寰1,2,楊功流1,2,劉元元3

    (1. 北京航空航天大學 儀器科學與光電工程學院,北京 100191;2. 慣性技術(shù)國防重點實驗室,北京 100191;3. 北京航天時代光電科技有限公司,北京 100854)

    光纖陀螺的隨機漂移限制了慣性導航系統(tǒng)的精度,如何減小它是一項非常艱巨的任務(wù)。結(jié)合經(jīng)驗模態(tài)分解(EMD)和信號與模態(tài)之間的概率密度函數(shù),提出了一種新型的依賴Hurst指數(shù)的信號濾波方法。當H<0.5時,利用l2范數(shù)選擇出相關(guān)模態(tài),累加并形成的部分重構(gòu)方法來對光纖陀螺的信號進行濾波;當H≥0.5時,間隔閾值的經(jīng)驗模態(tài)(EMD-IT)被引入對相關(guān)模態(tài)進行濾波,之后按照部分重構(gòu)的方法對光纖陀螺的信號進行濾波;稱為混合的EMD-pdf和EMD-IT。與其它的濾波方法進行對比,如基于相關(guān)函數(shù)的EMD部分重構(gòu)(EMD-cor),基于概率密度函數(shù)的EMD部分重構(gòu)(EMD-pdf),仿真信號和實際數(shù)據(jù)結(jié)果表明,該混合模型的優(yōu)越性,有效減小了光纖陀螺的隨機誤差。

    光纖陀螺;經(jīng)驗模態(tài)分解;l2范數(shù);隨機漂移

    V241.5

    A

    2017-01-04;

    2017-03-24

    國家自然科學基金(61340044,11202010);中央高校基本科研業(yè)務(wù)費專項資金資助項目(YWF-10-01-B30)

    李宇寰(1978—),男,博士研究生、陸軍參謀,從事慣性技術(shù)研究。E-mail: lyhzl1112@163.com

    聯(lián) 系 人:楊功流(1967—),男,教授,博士生導師。E-mail: bhu17-yang@139.com

    10.13695/j.cnki.12-1222/o3.2017.02.020

    猜你喜歡
    概率密度函數(shù)范數(shù)陀螺
    冪分布的有效估計*
    做個紙陀螺
    玩陀螺
    學生天地(2019年6期)2019-03-07 01:10:46
    陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
    軍事文摘(2018年24期)2018-12-26 00:58:18
    我最喜歡的陀螺
    快樂語文(2018年36期)2018-03-12 00:56:02
    已知f(x)如何求F(x)
    當代旅游(2018年8期)2018-02-19 08:04:22
    基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
    矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
    一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
    基于概率密度函數(shù)的控制系統(tǒng)性能評價
    看黄色毛片网站| 精品少妇黑人巨大在线播放| 精品亚洲乱码少妇综合久久| av线在线观看网站| 天堂网av新在线| 嘟嘟电影网在线观看| 91久久精品国产一区二区成人| 国产精品久久久久久av不卡| 99久久精品国产国产毛片| 51国产日韩欧美| 亚洲不卡免费看| 一级毛片aaaaaa免费看小| 精品久久久久久久人妻蜜臀av| 亚洲最大成人中文| 国内精品美女久久久久久| 精品一区二区三区人妻视频| 永久网站在线| 国产爱豆传媒在线观看| 亚洲欧美日韩无卡精品| 亚洲综合色惰| 2018国产大陆天天弄谢| 亚洲欧美日韩卡通动漫| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 能在线免费看毛片的网站| 夫妻午夜视频| 国产亚洲91精品色在线| 亚洲av男天堂| 婷婷六月久久综合丁香| 欧美bdsm另类| av在线蜜桃| 午夜免费男女啪啪视频观看| 亚洲精华国产精华液的使用体验| 国产伦理片在线播放av一区| 亚洲色图av天堂| 久久久久久久久久久免费av| 人妻制服诱惑在线中文字幕| 日本熟妇午夜| 日韩在线高清观看一区二区三区| 美女被艹到高潮喷水动态| 精品久久久久久久人妻蜜臀av| 国产高清三级在线| 十八禁国产超污无遮挡网站| 国产激情偷乱视频一区二区| 国产在线一区二区三区精| 亚洲av中文字字幕乱码综合| 国产精品综合久久久久久久免费| 2018国产大陆天天弄谢| 青春草国产在线视频| 精品久久久久久久人妻蜜臀av| 亚洲成人中文字幕在线播放| 熟妇人妻久久中文字幕3abv| 欧美日韩精品成人综合77777| 搡老妇女老女人老熟妇| 丝瓜视频免费看黄片| 国产精品.久久久| 日韩中字成人| 欧美成人一区二区免费高清观看| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久人人人人人人| 亚洲18禁久久av| 男人和女人高潮做爰伦理| 亚洲av成人精品一区久久| 一级毛片黄色毛片免费观看视频| 舔av片在线| 99热全是精品| 伊人久久精品亚洲午夜| 国产成人91sexporn| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| av在线观看视频网站免费| 成人漫画全彩无遮挡| 天堂俺去俺来也www色官网 | 欧美区成人在线视频| 免费av毛片视频| 国语对白做爰xxxⅹ性视频网站| 天堂影院成人在线观看| 欧美三级亚洲精品| 日韩强制内射视频| 亚洲精品国产av蜜桃| 搞女人的毛片| 国产午夜福利久久久久久| av网站免费在线观看视频 | 97人妻精品一区二区三区麻豆| av国产免费在线观看| 日韩av在线免费看完整版不卡| 国产成人精品久久久久久| 日韩一本色道免费dvd| 亚洲av中文av极速乱| 国产黄频视频在线观看| 欧美日韩精品成人综合77777| 久久这里只有精品中国| 我的女老师完整版在线观看| 久久人人爽人人爽人人片va| 国产亚洲午夜精品一区二区久久 | 国产中年淑女户外野战色| 欧美高清成人免费视频www| 日产精品乱码卡一卡2卡三| 乱人视频在线观看| 免费黄网站久久成人精品| 大话2 男鬼变身卡| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 国产老妇伦熟女老妇高清| 简卡轻食公司| 直男gayav资源| 可以在线观看毛片的网站| 精品少妇黑人巨大在线播放| 成人亚洲精品av一区二区| 小蜜桃在线观看免费完整版高清| 一级毛片黄色毛片免费观看视频| 国产精品一及| 毛片一级片免费看久久久久| 2021少妇久久久久久久久久久| 国产精品美女特级片免费视频播放器| 精品久久久久久久久av| 国产av不卡久久| av在线播放精品| 一个人免费在线观看电影| 插阴视频在线观看视频| 简卡轻食公司| 亚洲人成网站在线播| 成年女人在线观看亚洲视频 | 国产午夜福利久久久久久| 久久精品国产自在天天线| 国产女主播在线喷水免费视频网站 | 国产午夜精品久久久久久一区二区三区| 久久久久久久久久人人人人人人| 色综合色国产| 岛国毛片在线播放| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 国产片特级美女逼逼视频| 建设人人有责人人尽责人人享有的 | 欧美性感艳星| 蜜臀久久99精品久久宅男| 秋霞伦理黄片| 日韩av不卡免费在线播放| 2021天堂中文幕一二区在线观| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 99久国产av精品| 看免费成人av毛片| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 亚洲精品456在线播放app| 成人欧美大片| 亚洲精品aⅴ在线观看| 97在线视频观看| 午夜爱爱视频在线播放| 免费黄频网站在线观看国产| 永久网站在线| 2018国产大陆天天弄谢| 久99久视频精品免费| 国产欧美日韩精品一区二区| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 一区二区三区乱码不卡18| 伊人久久国产一区二区| 伦理电影大哥的女人| 日韩伦理黄色片| 一个人观看的视频www高清免费观看| 亚洲精品国产av蜜桃| 久久久久免费精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲综合色惰| a级毛片免费高清观看在线播放| 国产精品一区二区三区四区久久| 一级a做视频免费观看| 欧美一区二区亚洲| 国产亚洲av嫩草精品影院| 91在线精品国自产拍蜜月| 能在线免费看毛片的网站| 最后的刺客免费高清国语| 美女高潮的动态| 亚洲美女搞黄在线观看| 成人漫画全彩无遮挡| 禁无遮挡网站| 亚洲成人一二三区av| 丝袜喷水一区| 亚洲性久久影院| 亚洲第一区二区三区不卡| 中文欧美无线码| 亚洲一级一片aⅴ在线观看| 美女xxoo啪啪120秒动态图| 97超视频在线观看视频| 久久97久久精品| 精品欧美国产一区二区三| 久久久久久久国产电影| 国产精品一区二区在线观看99 | 国产片特级美女逼逼视频| 国产精品99久久久久久久久| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 视频中文字幕在线观看| 国产探花在线观看一区二区| 亚洲国产av新网站| 色视频www国产| 人体艺术视频欧美日本| 亚洲精品久久午夜乱码| 国产欧美日韩精品一区二区| 免费电影在线观看免费观看| 亚洲国产成人一精品久久久| 日产精品乱码卡一卡2卡三| 丰满少妇做爰视频| 国产淫语在线视频| 久久精品国产亚洲av天美| 欧美xxⅹ黑人| 免费大片黄手机在线观看| 欧美xxⅹ黑人| 亚洲激情五月婷婷啪啪| 国产亚洲91精品色在线| 亚洲精品成人av观看孕妇| 99热这里只有是精品50| 欧美人与善性xxx| 日韩av不卡免费在线播放| 亚洲欧美精品专区久久| 狂野欧美激情性xxxx在线观看| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 精品久久国产蜜桃| 国产单亲对白刺激| 神马国产精品三级电影在线观看| 好男人在线观看高清免费视频| 免费看光身美女| 天堂√8在线中文| 中文字幕亚洲精品专区| 免费看a级黄色片| 午夜免费激情av| 欧美+日韩+精品| 国产精品一区二区三区四区久久| 一级av片app| 啦啦啦韩国在线观看视频| 男人和女人高潮做爰伦理| 99久久人妻综合| 80岁老熟妇乱子伦牲交| 久久久久久九九精品二区国产| 亚洲自偷自拍三级| 婷婷色综合www| 日韩一区二区三区影片| 日本三级黄在线观看| 伊人久久精品亚洲午夜| 日韩一区二区视频免费看| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 精品一区二区三卡| 99久久中文字幕三级久久日本| 成年免费大片在线观看| av网站免费在线观看视频 | 中文资源天堂在线| 国产一区二区亚洲精品在线观看| 亚洲人成网站高清观看| 七月丁香在线播放| 国产久久久一区二区三区| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久com| 成人高潮视频无遮挡免费网站| 国产成人福利小说| 精品久久久噜噜| 热99在线观看视频| 色视频www国产| 边亲边吃奶的免费视频| 国产亚洲精品久久久com| 欧美激情久久久久久爽电影| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 麻豆国产97在线/欧美| 天堂影院成人在线观看| 亚洲国产av新网站| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 久久久久九九精品影院| .国产精品久久| 久久精品夜色国产| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 搞女人的毛片| 国产综合精华液| 日韩一区二区视频免费看| 国产精品一及| 日韩欧美国产在线观看| 亚洲怡红院男人天堂| 18+在线观看网站| 午夜老司机福利剧场| 99re6热这里在线精品视频| 色综合站精品国产| 国产激情偷乱视频一区二区| 国产亚洲91精品色在线| 精品久久久噜噜| 亚洲精品视频女| 亚洲国产欧美在线一区| 欧美区成人在线视频| 国产不卡一卡二| 综合色丁香网| 久久久久性生活片| 久久久久久久久中文| 亚洲精品自拍成人| 久久久久久伊人网av| 欧美3d第一页| 久久久久久久久久成人| 伦理电影大哥的女人| 久久精品国产自在天天线| 日本av手机在线免费观看| 国产激情偷乱视频一区二区| 亚洲国产欧美在线一区| 精品久久久噜噜| 国产有黄有色有爽视频| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放| 亚洲精品久久午夜乱码| 少妇熟女aⅴ在线视频| 国产精品熟女久久久久浪| 夫妻性生交免费视频一级片| 69人妻影院| 人妻一区二区av| 夫妻午夜视频| 小蜜桃在线观看免费完整版高清| 欧美另类一区| 亚洲av中文字字幕乱码综合| 色综合站精品国产| 18+在线观看网站| 国产亚洲午夜精品一区二区久久 | 一级爰片在线观看| 久久久久久久久久久免费av| 国产在线一区二区三区精| 亚洲色图av天堂| 久久99热这里只有精品18| 观看美女的网站| 老司机影院成人| 国产大屁股一区二区在线视频| 色综合色国产| 久久久久精品久久久久真实原创| 日本免费a在线| 晚上一个人看的免费电影| 国产精品99久久久久久久久| 亚洲自拍偷在线| 日韩欧美精品免费久久| 青春草视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久国产网址| 女人十人毛片免费观看3o分钟| 欧美人与善性xxx| av在线天堂中文字幕| 久久这里有精品视频免费| 久久久国产一区二区| 夜夜爽夜夜爽视频| 国产黄a三级三级三级人| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 男女那种视频在线观看| 国产成年人精品一区二区| av在线老鸭窝| 一边亲一边摸免费视频| 久久这里有精品视频免费| 精品久久国产蜜桃| 亚洲欧美成人精品一区二区| 免费大片18禁| 成人高潮视频无遮挡免费网站| 啦啦啦中文免费视频观看日本| 日韩国内少妇激情av| 嫩草影院精品99| 午夜免费男女啪啪视频观看| 中国国产av一级| 欧美高清成人免费视频www| 色综合站精品国产| 人妻一区二区av| 超碰av人人做人人爽久久| 91狼人影院| 综合色丁香网| www.av在线官网国产| 精品久久久久久久久av| 色尼玛亚洲综合影院| 只有这里有精品99| 男人舔奶头视频| 国产精品日韩av在线免费观看| 国产精品久久久久久久久免| 永久网站在线| 亚洲最大成人av| 婷婷色av中文字幕| 国产精品.久久久| 天堂√8在线中文| 又爽又黄无遮挡网站| 91aial.com中文字幕在线观看| 天堂俺去俺来也www色官网 | 日日摸夜夜添夜夜爱| 白带黄色成豆腐渣| 午夜免费激情av| 中文字幕人妻熟人妻熟丝袜美| 亚洲伊人久久精品综合| 最近最新中文字幕大全电影3| 亚洲av免费在线观看| 国产色婷婷99| 综合色av麻豆| 日韩,欧美,国产一区二区三区| 69av精品久久久久久| 精品国产三级普通话版| 又爽又黄a免费视频| 我的女老师完整版在线观看| 午夜精品一区二区三区免费看| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国内精品一区二区在线观看| av卡一久久| 久久久久久久久久人人人人人人| 老司机影院成人| 日韩一本色道免费dvd| 国产视频内射| 美女大奶头视频| 九九爱精品视频在线观看| 日日撸夜夜添| 成人欧美大片| 视频中文字幕在线观看| .国产精品久久| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 最近的中文字幕免费完整| 亚洲乱码一区二区免费版| 久久久久久久大尺度免费视频| 日韩精品有码人妻一区| 国产精品麻豆人妻色哟哟久久 | 亚洲欧美日韩东京热| 一个人观看的视频www高清免费观看| 777米奇影视久久| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 人人妻人人澡人人爽人人夜夜 | www.av在线官网国产| 国模一区二区三区四区视频| 纵有疾风起免费观看全集完整版 | 国产高潮美女av| 日韩一区二区三区影片| 久久精品久久久久久噜噜老黄| 日韩欧美国产在线观看| 亚洲国产欧美人成| 日韩国内少妇激情av| 日本一二三区视频观看| 国产美女午夜福利| 国产午夜精品久久久久久一区二区三区| 特大巨黑吊av在线直播| 国产成人91sexporn| 夜夜爽夜夜爽视频| 欧美一区二区亚洲| 老司机影院毛片| 日韩亚洲欧美综合| 亚洲乱码一区二区免费版| 精品久久久久久成人av| 国产成年人精品一区二区| 精品久久久久久久人妻蜜臀av| 视频中文字幕在线观看| 大陆偷拍与自拍| 久久久色成人| 街头女战士在线观看网站| 99久国产av精品| 国产成人91sexporn| 国产亚洲最大av| 精品少妇黑人巨大在线播放| 国语对白做爰xxxⅹ性视频网站| 日韩欧美 国产精品| 成人av在线播放网站| 亚洲乱码一区二区免费版| 亚洲不卡免费看| 亚洲av福利一区| 亚洲国产日韩欧美精品在线观看| 欧美激情在线99| 免费观看在线日韩| 天堂俺去俺来也www色官网 | 国内精品宾馆在线| 国产精品福利在线免费观看| av线在线观看网站| 国产亚洲午夜精品一区二区久久 | 99re6热这里在线精品视频| 免费观看在线日韩| 欧美bdsm另类| 麻豆成人午夜福利视频| 日本-黄色视频高清免费观看| 久久午夜福利片| 亚洲成色77777| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 中国国产av一级| 欧美日本视频| 舔av片在线| 中国美白少妇内射xxxbb| 中国国产av一级| 尾随美女入室| 国产精品精品国产色婷婷| 中文资源天堂在线| 乱人视频在线观看| 精品久久久久久久人妻蜜臀av| 亚洲欧洲日产国产| 成人午夜精彩视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品一二三| 好男人视频免费观看在线| 午夜福利高清视频| 精品久久久久久成人av| 麻豆国产97在线/欧美| 人妻制服诱惑在线中文字幕| 五月天丁香电影| 亚洲国产精品sss在线观看| 波野结衣二区三区在线| 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| 亚洲在线自拍视频| 99九九线精品视频在线观看视频| 老司机影院毛片| 午夜激情欧美在线| 日本wwww免费看| 美女被艹到高潮喷水动态| 日日干狠狠操夜夜爽| 身体一侧抽搐| 晚上一个人看的免费电影| xxx大片免费视频| 国产伦在线观看视频一区| 国产在视频线精品| 只有这里有精品99| 十八禁国产超污无遮挡网站| 亚洲av一区综合| av.在线天堂| 青春草国产在线视频| 日日撸夜夜添| 亚洲性久久影院| 美女cb高潮喷水在线观看| 久久99精品国语久久久| 老师上课跳d突然被开到最大视频| 搡老乐熟女国产| 成人亚洲欧美一区二区av| 久久人人爽人人片av| 精品久久久久久电影网| 亚洲欧美成人精品一区二区| 亚洲综合精品二区| 国产精品福利在线免费观看| 国产一区有黄有色的免费视频 | 人体艺术视频欧美日本| 韩国av在线不卡| 啦啦啦啦在线视频资源| 亚洲av男天堂| 久久久久免费精品人妻一区二区| 性色avwww在线观看| 国产精品福利在线免费观看| 一级爰片在线观看| 最近中文字幕高清免费大全6| 三级国产精品欧美在线观看| 免费人成在线观看视频色| 欧美zozozo另类| ponron亚洲| 久久精品国产亚洲av天美| 狂野欧美激情性xxxx在线观看| 精品不卡国产一区二区三区| 成年免费大片在线观看| 亚洲18禁久久av| 九草在线视频观看| 日韩 亚洲 欧美在线| 菩萨蛮人人尽说江南好唐韦庄| 在线播放无遮挡| 久久国内精品自在自线图片| 久久国产乱子免费精品| 免费人成在线观看视频色| 成年av动漫网址| 欧美另类一区| 国产av码专区亚洲av| 婷婷色av中文字幕| 九色成人免费人妻av| 人人妻人人澡人人爽人人夜夜 | 少妇高潮的动态图| 欧美日韩国产mv在线观看视频 | h日本视频在线播放| 性插视频无遮挡在线免费观看| 精品少妇黑人巨大在线播放| 日本免费a在线| 欧美+日韩+精品| 一个人免费在线观看电影| 亚洲无线观看免费| 校园人妻丝袜中文字幕| 成年版毛片免费区| 日韩欧美精品免费久久| 天堂中文最新版在线下载 | 日韩av免费高清视频| 欧美高清成人免费视频www| 日日干狠狠操夜夜爽| 人体艺术视频欧美日本| 简卡轻食公司| 91aial.com中文字幕在线观看| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久影院| 又粗又硬又长又爽又黄的视频| 国产精品人妻久久久久久| 两个人视频免费观看高清| 精品国产露脸久久av麻豆 | 国产又色又爽无遮挡免| 在线观看美女被高潮喷水网站| www.av在线官网国产| 美女cb高潮喷水在线观看| 亚洲精品自拍成人| 99久国产av精品| 国产成人91sexporn| 免费观看精品视频网站| 久久久精品94久久精品| 色5月婷婷丁香| 美女内射精品一级片tv| 1000部很黄的大片| 亚洲av不卡在线观看| 亚洲国产欧美在线一区| 天天一区二区日本电影三级| 午夜精品在线福利| av免费观看日本| 亚洲丝袜综合中文字幕| 国产精品精品国产色婷婷|