• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new global potential energy surface of the ground state of SiH+2(X2A1)system and dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++H reaction

    2022-11-21 09:28:54YongZhang張勇XiugangGuo郭秀剛andHaigangYang楊海剛
    Chinese Physics B 2022年11期
    關(guān)鍵詞:張勇

    Yong Zhang(張勇) Xiugang Guo(郭秀剛) and Haigang Yang(楊海剛)

    1Department of Physics,Tonghua Normal University,Tonghua 134002,China

    2Weifang University of Science and Technology,Shouguang 262700,China

    A global potential energy surface(PES)of the ground state of SiH+2 system is built by using neural network method based on 18223 ab initio points. The topographic properties of PES are presented and compared with previous theoretical and experimental studies. The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data. In order to further verify the validity of the new PES,a test dynamics calculation of the Si++H2(v0=2,j0=0)→H+SiH+reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction. The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.

    Keywords: potential energy surface,integral cross section,rate constant,time-dependent wave packet

    1. Introduction

    The Si++ H2reaction as one of ion–molecule reactions was received relatively less attention when compared with other reactions, such as O++ H2and C++ H2.[1–4]However, the studies of the Si++ H2reaction and its reverse reaction are of great practical significance, because the SiH+ion is postulated as an intermediate specie in the manufacturing process of amorphous silicon films in chemical vapor deposition process.[5–7]Furthermore, the Si++H2reaction and its reverse reaction are of considerable interest in astrophysics and spectroscopy. For example, the SiH radical and SiH+ion have been observed in the Sun’s photosphere.[8,9]Therefore,the spectroscopic and dynamics information of SiH2and SiH+2systems are very important for the modeling of star atmospheres.

    Since Curtis and co-workers[10]reported the ?A2B1(Π)←?X2A1transition electronic spectrum of SiH+2ion by using laser photofragment spectroscopy in 1985, numbers of theoretical studies have been carried out. The ?X2A1and ?A2B1potential energy surfaces (PESs) of SiH+2ion in collinear geometries have been reported by Hirstet al.[11]in 1986. Later,Gonz′alezet al.[12]also presented a new PES inC∞vandC2vsymmetry and the Si++H2→SiH++H reaction was studied. The PESs of four lowest electronic states of the SiH+2system was constructed by Mort and co-workers[13,14]in 1994. The conical intersection between ground state and excited state has been found and the influence of conical intersection on the photodissociation dynamics has been discussed. In the same year,the three-dimensional potential energy functions of ?X2A1and ?A2B1states of the SiH+2system were reported by Baueret al.[15]and rovibronic spectrum of the SiH+2ion was calculated and compared with experimental values.In 2019,a new global PES for the ground state of the SiH+2system was constructed by Gaoet al.[16]with the many-body expansion method. In addition, the H + SiH+→Si++ H2reaction has been studied by using Chebyshev quantum wave packet method based on the new PES.The reaction probabilities,integral cross sections(ICSs)and the rate constants were reported in their work.Later, Zhaoet al.[17]recalculated the H+SiH+→Si++H2reaction based on Gao’s PES.[16]In their work,the Chebyshev quantum wave packet method is used and the full Coriolis coupling effect is considered.The reaction probabilities,ICSs and rate constants were reported and the results indicated that the Coriolis coupling has large effect on the final dynamical results.

    As discussed above, much less effort has been made in the construction of global PES and related dynamics calculation. The aim of present work is to construct a new global PES for the ground state of the SiH+2system.In order to verify the validity of the new PES,a test dynamics calculation of the Si++H2(v0=2,j0=0)→H+SiH+reaction will be carried out based on the new PES.In this paper,the methods used in theab initiocalculation,fitting processes and dynamics calculation are shown in Section 2. The topographical features of the PES are presented in Section 3 as well as the dynamical results. The conclusions are displayed in Section 4.

    2. Potential energy surface

    2.1. Ab initio calculations

    Theab initiocalculations are carried out with MOLPRO software package[18]and theCssymmetry is used for all configurations.In theab initiocalculation,the aug-cc-pVQZ basis set[19,20]for H atom and cc-pwCVQZ[21]basis set for Si atom and an internally contracted multi-reference configuration interaction (MRCI)[22]method is used. In detail, we first perform the state-averaged complete active space self-consistent field (SA-CASSCF)[23,24]calculations over three electronic states (two2A′and one2A′′) with equal weight. In addition,15 valence electrons of the SiH+2system were involved 13 active orbitals(11a′+2a′′). In detail,the 1s,2s,and 2p orbitals of Si+are closed which related to the 4a′and 1a′′. The active orbitals 7a′and 1a′′were mainly contributed by 1s orbital of H and 3s,3p orbitals of Si+,while the 2s orbital of H and 4s orbital of Si+occupied a relatively small weight. Then, the MRCI calculations were performed with the reference orbitals which provided by the SA-CASSCF calculation. Finally, a total of 21530ab initiopoints was calculated. In fitting process,theab initiopoints about 10 eV larger than the minimum potential energy were abandoned and 18223ab initiopoints were used to construct the PES. The Jacobi coordinates (RQ,RHH,α) were used to sample theab initiopoints.RQis the distance between Si+ion and the midpoint of H2molecule.RHHis the bond length of H2molecule andαis the angle betweenRQandRHH. In detail, 1.0 Bohr≤RQ≤25.0 Bohr,0.6 Bohr≤RHH≤25.0 Bohr,and 1°≤α ≤89°.

    2.2. PES fitting

    The permutation invariant polynomial neural network(PIP-NN)[25,26]method is adopted in this work, which is widely used in the PES construction such as BrH2,[27]KH2,[28]and LiH2[29]system. To avoid the discontinuities of the derivatives around the boundary, PIP method is used to transform the three bond lengths of the SiH+2system. In detail,G1=(PSiH+a+PSiH+b)/2,G2=PSiH+a·PSiH+b,G3=PHH,wherePSiH+a= exp(-0.2·RSiH+a),PSiH+b= exp(-0.2·RSiH+b),andPHH=exp(-0.2·RHH),respectively.In the fitting process,G1,G2,andG3are used as the input term and two hidden layers are used, each of which involves 15 neurons. The neural network expansion can be written as

    Over-fitting has always been a problem of neural network.To deal with this problem,the input data are randomly divided into three parts,namely,training part(90%),testing part(5%)and validation part(5%).The root means square error(RMSE)is used to test the accuracy of PES and it can be presented as

    2.3. Topographical features of the potential energy surface

    To test the accuracy of PES, the spectroscopic parameters of SiH+(X1Σ+) ion and H2(X1Σ+g) molecule obtained from the PES are compared with available theoretical[16]and experimental[30,31]values and the results are shown in Table 1.

    Table 1. The spectroscopic constants of the SiH+ (X1Σ+)and H2 (X1Σ+g)molecules.

    As shown in Table 1,the spectroscopic constants obtained from the PES are in good agreement with experimental data.For the SiH+(X1Σ+) ion, the bond length, harmonic vibrational frequency, and dissociation energy obtained from the PES deviate from the experimental values by 0.0017 Bohr,14.57 cm-1, and 0.015 eV, respectively. It is very clear that present values closer to the experimental data than the results reported by Gaoet al.[16]For the H2molecule,the bond length is same with experimental data, the harmonic vibrational frequency lower than the experimental data by about 2 cm-1,and the dissociation energy is lower than the experimental data by 0.02 eV.As a whole,present PES can give a good description for the two-body term.

    The major topographical features of the newly constructed PES are shown in Figs. 2(a) and 2(b), which correspond to the global minimum and vertically approaching geometries,respectively.It is very clear that present PES shows a smooth and correct behavior over the configuration space studied. Figure 2(a)shows the contour plot for the bending angle fixed at 119.73°. Clearly, only a deep potential well is observed and no potential barrier is found. In addition,Fig.2(a)shows a symmetrical behavior which can be attributed to the exchange symmetry of H atom. Figure 2(b)exhibits the contour plot for the Si+ion approach the H2molecule in theC2vsymmetry. Two potential wells are found which correspond to a local minimum and global minimum geometries, respectively. In addition,a potential barrier is also found.

    To make a comparison with available theoretical and experimental results,the spectroscopic parameters of theses stationary points are presented in Table 2 as well as the values obtained from previous theoretical and experimental studies.As shown in Table 2,the global minimum is located atRHH=4.8400 Bohr,RSiH+a= 2.8008 Bohr,RSiH+b= 2.8008 Bohr,andθ[HSiH]+=119.73°,which is in good agreement with experimental dataRHH= 4.8529 Bohr,RSiH+a= 2.8161 Bohr,RSiH+b=2.8161 Bohr, andθ[HSiH]+=119°. The recently reported PES by Gaoet al.[16]obtained similar results with ours,both of which are in good agreement with experimental data.For the harmonic vibrational frequency, theωsymandωasymare in good agreement with each other, except for theωbend.For the local minimum,present values are in good agreement with the values reported by Gaoet al.[16]for both geometric structures and harmonic vibrational frequencies. However,in the transition state,great discrepancies can be found between present values and the results obtained from Gaoet al.[16]

    Fig. 1. Equipotential contour plot (a) for the structure of global minimum value in which the angle ∠[HSiH]+ = 119.73°, contours are equally spaced by 0.4 eV, starting at -5.1 eV and (b) for the Si+ ion approach to H2 molecule in C2v symmetry,contours are equally spaced by 0.4 eV,starting at-5.1 eV.

    Table 2. The spectroscopic parameters of stationary points.

    In order to find the reason why present PES and Gao’s PES are so different in the transition state, Fig. 2 shows the potential energy curves of Si+ions close to the midpoint of H2underC2vsymmetry when the bond length of H2is fixed at 2.999 Bohr and 3.232 Bohr. To compare conveniently, theab initiovalues and the results obtained from Gao’s PES are also displayed in Fig.2. Clearly,there is a conical intersection between the ground state (12A′) and excited state (22A′) and present PES gives a correct description of the conical intersection. However, the potential energy curves obtained from Gao’s PES obviously cannot correctly describe the conical intersection. We suppose this may be attributed to the drawback of many-body expansion method.

    Fig.2. The potential energy curves for the Si+ion approach to the midpoint of H2 molecule at C2v symmetry along with the ab initio results and the values obtained from Gao’s PES[16] ((a)for RHH=2.999 Bohr,(b)for RHH=3.232 Bohr).

    Figure 3(a)shows the change of potential energy for the Si+ion moves around the H2molecule as the bond length of H2fixed at 1.401 Bohr. As seen in the figure, there is a potential well with depth of about 0.4 eV at the positionRQ=4 Bohr, andθ=90°. Figure 3(b) exhibits the H atom moving around SiH+ion asRSiH+=2.844 Bohr. Obviously,there is a shallow potential well and a deep potential well on the side of H atom and Si+ion,respectively. The deep well is located atRQ=3.8 Bohr,θ=40°with the depth about 2.7 eV and the shallow well is located atRQ=1.2 Bohr,θ=135°with the depth about 0.9 eV.

    Figure 4 displays the minimum energy paths of the PES at several selected angles. As seen in the figure, the energy of Si++ H2asymptote is set to be zero. It is very clear that the Si++H2→SiH++H reaction is highly endothermic and the endoergic energy is about 1.30 eV when zero-point energy is not considered. As seen in the figure, there is a shallow potential well and a deep potential well on both sides of the barrier at 30°. The potential well on the right side gradually disappears with the increases of angle. The barrier decreases at first,then disappears,and then gradually increases with the increasing of angle. In the present work, the spin–orbit coupling effect is not considered since it has a little influence on the endothermic energy of the Si++H2reaction.

    Fig. 3. (a) Color plot for the Si+ ion moves around the H2 molecule when the bond length of H2 is fixed at 1.401 Bohr. (b)Color plot for H atom moves around SiH+ ion when the SiH+ bond length fixed at the equilibrium geometry.

    Fig.4.The minimum energy paths of the new PES at different[SiHH]+angles.

    3. Dynamics

    Based on the newly constructed PES, the dynamics calculations of the Si++ H2→SiH++ H reaction was carried out by using time-dependent wave packet method, which is widely used in the reaction scattering calculation, such as K+ H2,[28]and Li + H2.[29]As discussed above, the Si++H2→SiH++ H reaction is highly endothermic with the energy about 1.3 eV.We suppose the reaction probability of initial state (v0=0,j0=0) will be very small, which is similar with K+H2reaction.[28]Therefore,we chose(v0=2,j0=0)as the initial state. In the dynamical calculations, the convergence test should be carried out at first. In the present work,the convergence test is performed on the reaction probability ofJ=0. Finally, the optimal parameters are obtained and shown in Table 1. As shown in Fig. 4, there is a deep well on the reaction path,therefore it is very time consuming. For reducing the computational cost,the reaction probabilities for particularJ(e.g., 0, 10, 20, ..., 60) were computed and the others were obtained by using theJ-shifting method.[33]

    Table 3.Numerical parameters used in the TDWP calculations(atomic units unless otherwise stated).

    Figure 5 shows the ICSs of the title reaction in the collision energy range from 0 to 1.0 eV. As seen in the figure,a threshold about 0.19 eV is found which is consistent with Fig.4 as the zero-point energy and vibrational energy considered. In addition,some resonance structures are found on the ICS curve,and this can be attributed to the deep well on the reaction path which support numbers of quasi-bound and bound states. The ICSs increase with the increasing collision energy,which is similar with other endothermic reactions.

    Fig.5. The integral cross sections of the Si++H2 (v0 =2,j0 =0)→SiH++H reaction as a function of collision energy.

    The rate constants of the initial state(v0=2,j0=0)are presented in Fig. 6 in the temperature range from 333 K to 1000 K. As shown in the figure, the rate constant increases with roughly a factor about 20 with the increase of temperature. We suppose the rate constants of SiH+2system will be helpful for the modeling of star atmospheres.

    Fig.6. The rate constants of the Si++H2 (v0=2,j0=0)→SiH++H reaction in the temperature range up to 1000 K.

    4. Conclusions

    Based on 18223ab initiopoints, the global PES of the SiH+2system was constructed by using PIP-NN method. The properties of the new PES are discussed and compared in detail with previous theoretical and experimental data. The spectroscopic constants obtained from the new PES are in good agreement with experimental and previous theoretical results.In addition, present PES is in general better than previous ones, and especially the new PES gives a correct description in the region around the conical intersection. To verify the validity of the new PES,the dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++ H reaction is studied by using the TDWP method. The dynamics properties such as ICSs and rate constants are reported in this work. In conclusion,the new PES of the SiH+2system shows reasonable and accurate behavior over the configuration space studied.

    Acknowledgement

    Project was supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education,China(Grant No.JJKH20200482KJ).

    猜你喜歡
    張勇
    Photon blockade in a cavity–atom optomechanical system
    跟曾國(guó)藩學(xué)修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    傅山的“四寧四毋”
    做人與處世(2022年4期)2022-05-26 04:43:14
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    同題異學(xué)(1)
    Code switching for college students on campus
    国产淫片久久久久久久久| 国产探花极品一区二区| 一本一本综合久久| 亚洲精品影视一区二区三区av| 免费观看无遮挡的男女| 少妇猛男粗大的猛烈进出视频 | 色尼玛亚洲综合影院| 久久久欧美国产精品| 纵有疾风起免费观看全集完整版 | 51国产日韩欧美| 久久精品国产鲁丝片午夜精品| 亚洲av中文字字幕乱码综合| 国产极品天堂在线| 亚洲熟妇中文字幕五十中出| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99 | 日韩欧美一区视频在线观看 | 亚洲经典国产精华液单| 亚洲乱码一区二区免费版| 国产成人福利小说| 一级黄片播放器| 日韩一区二区视频免费看| 国产av码专区亚洲av| 少妇丰满av| 18禁在线播放成人免费| 婷婷色av中文字幕| 色5月婷婷丁香| 亚洲精品视频女| 爱豆传媒免费全集在线观看| 大香蕉97超碰在线| 成年女人在线观看亚洲视频 | 美女黄网站色视频| 国产亚洲av嫩草精品影院| 色尼玛亚洲综合影院| 久久久久久久久久久免费av| 亚洲怡红院男人天堂| 国产高清有码在线观看视频| 欧美成人午夜免费资源| 三级经典国产精品| 一级毛片 在线播放| 欧美成人一区二区免费高清观看| 国产 一区 欧美 日韩| 亚洲成人av在线免费| 少妇被粗大猛烈的视频| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 国产精品1区2区在线观看.| 久久精品久久久久久噜噜老黄| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| www.av在线官网国产| 97人妻精品一区二区三区麻豆| 国产精品精品国产色婷婷| 韩国av在线不卡| 免费av观看视频| 边亲边吃奶的免费视频| 美女xxoo啪啪120秒动态图| 麻豆精品久久久久久蜜桃| 久久亚洲国产成人精品v| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| 亚洲人成网站在线播| 免费看美女性在线毛片视频| 亚洲图色成人| 99久国产av精品| 极品教师在线视频| 成人一区二区视频在线观看| 美女被艹到高潮喷水动态| 亚洲性久久影院| 人妻一区二区av| 精品一区二区三卡| 99久久精品一区二区三区| 欧美潮喷喷水| 啦啦啦韩国在线观看视频| 国产精品美女特级片免费视频播放器| 在线免费十八禁| 亚洲精品国产av成人精品| 建设人人有责人人尽责人人享有的 | 欧美不卡视频在线免费观看| 亚洲伊人久久精品综合| 久久久久网色| 青春草视频在线免费观看| 天堂中文最新版在线下载 | or卡值多少钱| 久热久热在线精品观看| 网址你懂的国产日韩在线| 人妻制服诱惑在线中文字幕| 男女视频在线观看网站免费| 亚洲精品久久午夜乱码| 美女内射精品一级片tv| 国产精品熟女久久久久浪| 久久人人爽人人片av| 国产一级毛片在线| 黄色欧美视频在线观看| 国产精品蜜桃在线观看| 亚洲国产精品国产精品| 99热这里只有是精品50| 国产av在哪里看| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 国内精品一区二区在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产美女午夜福利| 亚洲,欧美,日韩| 国产 一区精品| 欧美激情在线99| 丝瓜视频免费看黄片| 精品国产露脸久久av麻豆 | videossex国产| 真实男女啪啪啪动态图| 国内精品美女久久久久久| 亚州av有码| 国产淫片久久久久久久久| 午夜免费男女啪啪视频观看| 美女主播在线视频| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 国产一区二区在线观看日韩| 午夜免费激情av| 可以在线观看毛片的网站| 亚洲av中文av极速乱| 听说在线观看完整版免费高清| 国产v大片淫在线免费观看| 国产精品一区二区三区四区免费观看| 国产成人91sexporn| 午夜免费激情av| 秋霞伦理黄片| 看非洲黑人一级黄片| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 边亲边吃奶的免费视频| 欧美激情在线99| 高清在线视频一区二区三区| 男的添女的下面高潮视频| 乱人视频在线观看| 亚洲不卡免费看| 天堂中文最新版在线下载 | 啦啦啦中文免费视频观看日本| 丝瓜视频免费看黄片| 一级毛片黄色毛片免费观看视频| 日韩强制内射视频| 九九爱精品视频在线观看| 亚洲第一区二区三区不卡| 国产精品日韩av在线免费观看| 亚洲精品成人av观看孕妇| 99re6热这里在线精品视频| 亚洲伊人久久精品综合| 亚洲成人久久爱视频| 天堂av国产一区二区熟女人妻| 亚洲激情五月婷婷啪啪| 欧美激情在线99| 尤物成人国产欧美一区二区三区| 国产永久视频网站| 久久精品久久精品一区二区三区| av在线老鸭窝| 只有这里有精品99| 久久97久久精品| 熟妇人妻不卡中文字幕| 我的老师免费观看完整版| 国产成人福利小说| 国产精品蜜桃在线观看| 欧美xxⅹ黑人| 免费大片18禁| 观看免费一级毛片| 国产爱豆传媒在线观看| 啦啦啦中文免费视频观看日本| 亚洲不卡免费看| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线| 欧美变态另类bdsm刘玥| 久久国产乱子免费精品| 午夜老司机福利剧场| 国产日韩欧美在线精品| 国产亚洲5aaaaa淫片| 亚洲精品久久午夜乱码| 亚洲在线观看片| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 尤物成人国产欧美一区二区三区| 亚洲真实伦在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 免费大片18禁| 国产成人精品一,二区| 午夜福利网站1000一区二区三区| 一级二级三级毛片免费看| 亚洲av电影不卡..在线观看| 国产女主播在线喷水免费视频网站 | 好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 五月伊人婷婷丁香| 亚洲欧美中文字幕日韩二区| 国产精品一区二区在线观看99 | 男女那种视频在线观看| 少妇被粗大猛烈的视频| 久久久久性生活片| 国产av码专区亚洲av| 嫩草影院精品99| 久久精品国产亚洲av天美| ponron亚洲| 欧美zozozo另类| 99热这里只有是精品50| 亚洲av成人精品一二三区| 国产高清三级在线| 日韩欧美 国产精品| 日日干狠狠操夜夜爽| 联通29元200g的流量卡| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 成人无遮挡网站| 亚洲精品一二三| 久久久久久久久大av| 最近的中文字幕免费完整| 伦理电影大哥的女人| 亚洲欧洲日产国产| 国产在视频线在精品| ponron亚洲| 嫩草影院入口| 熟妇人妻久久中文字幕3abv| 亚洲av福利一区| 亚洲av不卡在线观看| 91久久精品电影网| 插阴视频在线观看视频| 少妇熟女aⅴ在线视频| 一级片'在线观看视频| 国产精品久久久久久久久免| 免费观看av网站的网址| 欧美zozozo另类| 国产又色又爽无遮挡免| 亚洲av成人av| 别揉我奶头 嗯啊视频| 男人舔奶头视频| 成人无遮挡网站| 色5月婷婷丁香| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 街头女战士在线观看网站| 亚洲最大成人手机在线| 国产激情偷乱视频一区二区| 国产高潮美女av| 我的老师免费观看完整版| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 丝袜美腿在线中文| 国产v大片淫在线免费观看| 亚洲在久久综合| 日本午夜av视频| 欧美激情在线99| 精品久久久久久成人av| 女人久久www免费人成看片| 久久久成人免费电影| 好男人在线观看高清免费视频| 色综合色国产| 日韩成人av中文字幕在线观看| 免费人成在线观看视频色| 久久99热这里只有精品18| 国产视频内射| 亚洲精品自拍成人| 亚洲最大成人手机在线| 久久久久久久久久人人人人人人| 少妇猛男粗大的猛烈进出视频 | 国产黄色免费在线视频| 午夜爱爱视频在线播放| 三级国产精品欧美在线观看| 久久国内精品自在自线图片| 最近中文字幕2019免费版| 亚洲最大成人av| 国产精品麻豆人妻色哟哟久久 | 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 人妻系列 视频| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 99久久九九国产精品国产免费| 亚洲av电影在线观看一区二区三区 | 秋霞伦理黄片| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 男人和女人高潮做爰伦理| 少妇的逼水好多| 亚洲欧美一区二区三区黑人 | 99热全是精品| 久久亚洲国产成人精品v| 自拍偷自拍亚洲精品老妇| 一级毛片久久久久久久久女| 99久久人妻综合| 午夜福利高清视频| 美女内射精品一级片tv| 久久久久久久久中文| 高清日韩中文字幕在线| 国产美女午夜福利| 国产av码专区亚洲av| 一级a做视频免费观看| 亚洲美女搞黄在线观看| 大陆偷拍与自拍| 搡老乐熟女国产| 极品少妇高潮喷水抽搐| 国产精品福利在线免费观看| 美女cb高潮喷水在线观看| 在线播放无遮挡| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 亚洲精品自拍成人| av卡一久久| 80岁老熟妇乱子伦牲交| 日韩中字成人| 成年人午夜在线观看视频 | 亚洲av成人精品一二三区| 少妇熟女欧美另类| 欧美区成人在线视频| 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 国内少妇人妻偷人精品xxx网站| 综合色av麻豆| 99久久人妻综合| 亚洲精品亚洲一区二区| 一二三四中文在线观看免费高清| 欧美97在线视频| 哪个播放器可以免费观看大片| 亚洲精品日本国产第一区| 久久精品熟女亚洲av麻豆精品 | 激情五月婷婷亚洲| 尤物成人国产欧美一区二区三区| 久久久亚洲精品成人影院| 舔av片在线| 建设人人有责人人尽责人人享有的 | 一级毛片黄色毛片免费观看视频| 天堂√8在线中文| 男人爽女人下面视频在线观看| 伦精品一区二区三区| 日日撸夜夜添| 三级毛片av免费| www.av在线官网国产| 亚洲av成人av| 秋霞伦理黄片| 淫秽高清视频在线观看| 久久久欧美国产精品| 欧美另类一区| 久久久久久久久中文| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 国产精品福利在线免费观看| 国产单亲对白刺激| 91av网一区二区| 超碰97精品在线观看| 蜜臀久久99精品久久宅男| 在线免费观看不下载黄p国产| 国产爱豆传媒在线观看| 国产美女午夜福利| 国产av在哪里看| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 精品人妻熟女av久视频| 汤姆久久久久久久影院中文字幕 | 成年女人看的毛片在线观看| 亚洲精品国产av成人精品| 国产熟女欧美一区二区| 国内精品宾馆在线| 欧美精品一区二区大全| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 亚洲欧美一区二区三区国产| 国产乱人视频| 国产亚洲一区二区精品| 五月伊人婷婷丁香| 99久久人妻综合| 久久久成人免费电影| 伊人久久国产一区二区| 国产欧美另类精品又又久久亚洲欧美| 成人一区二区视频在线观看| 国产亚洲最大av| 日韩在线高清观看一区二区三区| 欧美性感艳星| 黄色配什么色好看| 国产精品久久视频播放| 国产高清不卡午夜福利| 毛片女人毛片| 亚洲精品aⅴ在线观看| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| 日韩精品青青久久久久久| 麻豆成人av视频| 寂寞人妻少妇视频99o| 国产综合精华液| 免费黄网站久久成人精品| 1000部很黄的大片| 日本av手机在线免费观看| 亚洲图色成人| 一区二区三区高清视频在线| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 婷婷六月久久综合丁香| 亚洲最大成人av| 国产成人福利小说| 亚洲成人久久爱视频| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| 久久久精品欧美日韩精品| 欧美高清性xxxxhd video| 两个人的视频大全免费| 日韩av在线大香蕉| 尾随美女入室| 在线免费观看的www视频| 中文字幕亚洲精品专区| 亚洲精品视频女| 在线 av 中文字幕| 最近中文字幕2019免费版| 国产亚洲精品久久久com| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 男女啪啪激烈高潮av片| 蜜桃亚洲精品一区二区三区| www.色视频.com| 国产成人精品一,二区| 黑人高潮一二区| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 久久久久免费精品人妻一区二区| 一区二区三区四区激情视频| 精品国产露脸久久av麻豆 | 免费人成在线观看视频色| 亚洲国产av新网站| 午夜福利在线观看吧| 日本wwww免费看| 好男人在线观看高清免费视频| 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| 欧美一区二区亚洲| 国产高清三级在线| 哪个播放器可以免费观看大片| 国产成人aa在线观看| 全区人妻精品视频| 国产成人a∨麻豆精品| 高清视频免费观看一区二区 | 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 亚洲精品第二区| 美女大奶头视频| 久久精品国产鲁丝片午夜精品| 777米奇影视久久| 精品久久久久久久人妻蜜臀av| 少妇裸体淫交视频免费看高清| 国产黄片美女视频| av女优亚洲男人天堂| 自拍偷自拍亚洲精品老妇| 精品久久久久久成人av| 国产高清国产精品国产三级 | av在线老鸭窝| 狂野欧美激情性xxxx在线观看| 久久鲁丝午夜福利片| 亚洲国产最新在线播放| 亚洲精品aⅴ在线观看| 国产精品一二三区在线看| 婷婷色综合大香蕉| 观看免费一级毛片| 亚洲精品国产成人久久av| 久久鲁丝午夜福利片| 久久久久九九精品影院| 日韩av在线免费看完整版不卡| 久热久热在线精品观看| 免费电影在线观看免费观看| 国产在线男女| 国产免费视频播放在线视频 | 女人被狂操c到高潮| 精品国产三级普通话版| 国产精品麻豆人妻色哟哟久久 | 一个人看的www免费观看视频| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av天美| 国产av不卡久久| 亚洲精华国产精华液的使用体验| 国产一区二区亚洲精品在线观看| 99热全是精品| 亚洲三级黄色毛片| 男人舔女人下体高潮全视频| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 春色校园在线视频观看| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡人人爽人人夜夜 | 亚洲精品影视一区二区三区av| 黄色配什么色好看| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 偷拍熟女少妇极品色| 久久久久免费精品人妻一区二区| 噜噜噜噜噜久久久久久91| 日本熟妇午夜| 好男人在线观看高清免费视频| 国产精品无大码| 午夜久久久久精精品| 国产视频首页在线观看| 波野结衣二区三区在线| 午夜爱爱视频在线播放| 欧美bdsm另类| 成人欧美大片| 亚洲欧美日韩卡通动漫| 两个人的视频大全免费| 欧美 日韩 精品 国产| 国产精品人妻久久久影院| 91精品一卡2卡3卡4卡| 亚洲精品影视一区二区三区av| 爱豆传媒免费全集在线观看| 中文字幕av在线有码专区| 在线观看免费高清a一片| 边亲边吃奶的免费视频| 中文字幕亚洲精品专区| 亚洲内射少妇av| 九草在线视频观看| 国产片特级美女逼逼视频| 中文欧美无线码| 国产综合懂色| 偷拍熟女少妇极品色| 熟女电影av网| 成人鲁丝片一二三区免费| 国产精品国产三级国产av玫瑰| 国产成人午夜福利电影在线观看| 一区二区三区免费毛片| 亚洲精品亚洲一区二区| 伊人久久国产一区二区| 我要看日韩黄色一级片| 你懂的网址亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 日日撸夜夜添| 麻豆成人av视频| 大香蕉97超碰在线| 日本午夜av视频| 青春草视频在线免费观看| av在线播放精品| 国产高潮美女av| 成年av动漫网址| 成人特级av手机在线观看| .国产精品久久| 久久人人爽人人片av| 亚洲av男天堂| 国产伦一二天堂av在线观看| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 国产色婷婷99| 少妇猛男粗大的猛烈进出视频 | 中国国产av一级| 最近中文字幕2019免费版| 成年免费大片在线观看| 亚洲一级一片aⅴ在线观看| 中文资源天堂在线| 99久国产av精品国产电影| 精华霜和精华液先用哪个| 日韩电影二区| 嫩草影院入口| 亚洲真实伦在线观看| 又黄又爽又刺激的免费视频.| 视频中文字幕在线观看| 寂寞人妻少妇视频99o| 中文字幕亚洲精品专区| 久久久精品94久久精品| av福利片在线观看| 久久精品久久久久久久性| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美日韩东京热| 成人性生交大片免费视频hd| 久久99热这里只有精品18| 亚洲无线观看免费| 亚洲四区av| 欧美bdsm另类| 亚洲精华国产精华液的使用体验| 日本一二三区视频观看| 国产一区二区在线观看日韩| 久久久久久久久中文| 最近手机中文字幕大全| 亚洲国产精品sss在线观看| 大又大粗又爽又黄少妇毛片口| 男女视频在线观看网站免费| 亚洲真实伦在线观看| 黄色欧美视频在线观看| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 亚洲在线自拍视频| 亚洲aⅴ乱码一区二区在线播放| 午夜日本视频在线| 十八禁国产超污无遮挡网站| 免费观看无遮挡的男女| 亚洲精品久久久久久婷婷小说| 99热这里只有是精品50| 国产免费视频播放在线视频 | 久久久久久久久久久丰满| 嫩草影院精品99| 三级国产精品欧美在线观看| 久久精品国产亚洲av天美| 亚洲av一区综合| 国产永久视频网站| 国产亚洲av片在线观看秒播厂 | 中文字幕av在线有码专区| 午夜福利视频1000在线观看| 在线观看一区二区三区| 欧美日本视频| 五月天丁香电影| 亚洲综合色惰| 国内精品一区二区在线观看| 韩国av在线不卡| 天堂√8在线中文|