杜慧勇,周文瑾,李 民,劉建新,李鵬濤,徐 斌
?
發(fā)動(dòng)機(jī)冷卻水套穴蝕機(jī)理分析與試驗(yàn)
杜慧勇,周文瑾,李 民,劉建新,李鵬濤,徐 斌
(河南科技大學(xué)車輛與交通工程學(xué)院,洛陽(yáng) 471003)
為研究柴油機(jī)冷卻水套內(nèi)空化現(xiàn)象的產(chǎn)生機(jī)理,該文使用計(jì)算流體力學(xué)(CFD)方法研究施加壁面振動(dòng)的不同入口流速、不同流場(chǎng)溫度時(shí)冷卻水套內(nèi)部流體的流動(dòng)特性及空化特性,同時(shí)設(shè)計(jì)并搭建可施加壁面振動(dòng)的可視化空化試驗(yàn)臺(tái),對(duì)計(jì)算結(jié)果進(jìn)行了驗(yàn)證。研究結(jié)果表明:空化現(xiàn)象主要發(fā)生在圓弧壁最小間隙位置,并在下游區(qū)域發(fā)展壯大;冷卻水入口流速的增加會(huì)使得空化現(xiàn)象略有加強(qiáng),但并不明顯;當(dāng)冷卻水溫為50℃時(shí),空化現(xiàn)象較強(qiáng),當(dāng)水溫逐漸升高時(shí),空化現(xiàn)象反而減弱;當(dāng)圓弧壁面有振動(dòng)時(shí),空穴現(xiàn)象明顯加強(qiáng),并且其產(chǎn)生的空化效果明顯強(qiáng)于冷卻水溫及入口流速等因素的變化所產(chǎn)生的空化波動(dòng)。此研究的結(jié)果將有助于控制發(fā)動(dòng)機(jī)冷卻水套中空化現(xiàn)象的發(fā)生,并降低冷卻水套穴蝕的發(fā)生風(fēng)險(xiǎn)。
發(fā)動(dòng)機(jī);計(jì)算流體力學(xué);試驗(yàn);冷卻水套;空化;穴蝕
穴蝕是柴油機(jī)冷卻水套失效的重要原因之一[1-4]。柴油機(jī)的冷卻水套一旦發(fā)生穴蝕損壞,其穴蝕處壁面變薄甚至穿透,造成燃燒室氣密性下降,機(jī)油溫度和油耗升高,潤(rùn)滑性能下降,柴油機(jī)動(dòng)力性經(jīng)濟(jì)性嚴(yán)重下降,甚至產(chǎn)生拉缸等嚴(yán)重事件,嚴(yán)重影響柴油機(jī)的工作壽命,后期的檢修及更換新冷卻水套更會(huì)耗費(fèi)大量成本[5-8]。因此,深入研究冷卻水套穴蝕機(jī)理,分析冷卻水套穴蝕的影響因素,找出冷卻水套穴蝕的預(yù)防措施,具有重要的理論和實(shí)際意義[9-12]。
國(guó)內(nèi)外對(duì)冷卻水套穴蝕和冷卻水空化的機(jī)理進(jìn)行了許多研究。日本學(xué)者米沢徹等[13-14]研究了柴油機(jī)冷卻水套振動(dòng)空蝕的機(jī)理,認(rèn)為活塞敲擊冷卻水套致其振動(dòng)引起了冷卻水的壓力波動(dòng),從而導(dǎo)致空蝕的產(chǎn)生。Shuji等[15]通過(guò)空蝕速率與液體沖擊侵蝕速率的對(duì)比試驗(yàn),發(fā)現(xiàn)2種形式的侵蝕之間的相關(guān)性非常高。陳劍[16]綜合分析了冷卻水套空蝕的機(jī)械作用機(jī)制與電化學(xué)機(jī)制,認(rèn)為機(jī)械作用在空蝕過(guò)程中占主要地位。薛偉等[17]通過(guò)掃描電鏡對(duì)空蝕樣件的破壞過(guò)程進(jìn)行了觀察和研究,認(rèn)為空泡潰滅時(shí)的微射流造成了金屬表面的空蝕針孔,而空蝕破壞則是氣泡潰滅產(chǎn)生的微射流和沖擊波對(duì)金屬表面的累計(jì)損失過(guò)程。Chen等[18-19]通過(guò)氣泡崩潰過(guò)程模擬并解釋了凹坑形成的機(jī)理是高溫高壓及微射流沖擊作用。
杜慧勇等[20]已通過(guò)計(jì)算流體力學(xué)的方法(CFD)研究施加壁面振動(dòng)的冷卻水套在不同入口流速時(shí)的內(nèi)部流體空化特性。本文在此基礎(chǔ)上通過(guò)對(duì)柴油機(jī)冷卻水套在外界敲擊力作用下實(shí)際工作過(guò)程的研究建立冷卻水套試驗(yàn)?zāi)P?,設(shè)計(jì)并搭建可視化空化試驗(yàn)臺(tái),研究施加壁面振動(dòng)的冷卻水套在不同入口流速、流場(chǎng)溫度時(shí)的內(nèi)部流體空化特性,并分析壁面振動(dòng)、入口流速、流場(chǎng)溫度對(duì)冷卻水套內(nèi)部流動(dòng)的影響,找到冷卻水套穴蝕的主要原因,為減少冷卻水套穴蝕提供理論依據(jù)。
1.1 冷卻水套及其穴蝕
缸徑100 mm,壁面狹隙厚度10 mm,高度為120 mm的某濰柴4100發(fā)動(dòng)機(jī)冷卻水套的簡(jiǎn)化圖如圖1所示。根據(jù)前人進(jìn)行的冷卻水套穴蝕試驗(yàn)結(jié)果[21]和實(shí)際使用中對(duì)柴油機(jī)冷卻水套穴蝕位置的實(shí)際統(tǒng)計(jì)觀測(cè),冷卻水套穴蝕通常會(huì)出現(xiàn)在與活塞銷垂直平面上的活塞敲擊側(cè)面附近,呈蜂窩狀帶狀沿柱面分布,主推側(cè)面及次推側(cè)面較為嚴(yán)重[22-25](如圖2所示),圖2[26]柴油機(jī)冷卻水套活塞敲擊兩側(cè)面的穴蝕圖。即圖2為圖1中冷卻水入口及出口所在面的實(shí)際穴蝕圖,對(duì)比圖1、圖2可明顯發(fā)現(xiàn)圖中穴蝕部分穴蝕孔的排列位置與冷卻水流向有關(guān)[27-28]。
1.2 冷卻水套近振動(dòng)壁面三維模型構(gòu)建
1.2.1 模型構(gòu)建
本文主要研究施加壁面振動(dòng)條件下,入口流速、流場(chǎng)溫度不同時(shí)冷卻水套內(nèi)部流體流動(dòng)特性及空化特性。而壁面振動(dòng)產(chǎn)生空化的原因是壁面振動(dòng)產(chǎn)生的冷卻水?dāng)_動(dòng)使近壁面處的壓力場(chǎng)出現(xiàn)突變[29],所以建立模型的關(guān)鍵要保證振動(dòng)壁面的振動(dòng)速度變化與實(shí)際相一致,且試驗(yàn)所用等比例簡(jiǎn)化模型與冷卻水套內(nèi)部流體實(shí)際運(yùn)動(dòng)具有相似性。取某濰柴4100型發(fā)動(dòng)機(jī)近振動(dòng)壁面狹隙處的部分冷卻水套作研究對(duì)象,為簡(jiǎn)化模型,突出振動(dòng)壁面對(duì)空化的影響,去掉不必要的結(jié)構(gòu),本文只保留主推側(cè)面部分冷卻水套,對(duì)近振動(dòng)壁面冷卻水套進(jìn)行三維建模,設(shè)置圓弧振動(dòng)壁面半徑50 mm,壁面狹隙間距10 mm,如圖3所示[20],用正六面體結(jié)構(gòu)網(wǎng)格進(jìn)行劃分,最終獲得整個(gè)計(jì)算域的網(wǎng)格數(shù)量為15 288。
圖1 柴油機(jī)冷卻水套模型
圖2 柴油機(jī)冷卻水套穴蝕
注:EFGH壁面為圓弧振動(dòng)壁面,ABCD壁面為冷卻水流入面,IJKL壁面為冷卻水流出面,其余壁面簡(jiǎn)化為長(zhǎng)方體壁面以簡(jiǎn)化計(jì)算模型。
1.2.2 動(dòng)網(wǎng)格設(shè)置
在活塞往復(fù)運(yùn)動(dòng)過(guò)程中,活塞側(cè)面及裙部會(huì)對(duì)冷卻水套內(nèi)壁面形成側(cè)推力。當(dāng)活塞運(yùn)動(dòng)至做功沖程,越過(guò)上止點(diǎn)(top dead center)并在其附近時(shí),活塞側(cè)推力變向,此時(shí)活塞側(cè)推力的變化最為劇烈,形成活塞對(duì)冷卻水套的在主推側(cè)壁面的敲擊力,在該力作用下冷卻水套振動(dòng),且壁面振幅呈衰減形式[30-31]。本試驗(yàn)所用振動(dòng)壁面構(gòu)件為壓緊后曲率半徑為50mm的金屬薄片。使用北京東方振動(dòng)和噪聲技術(shù)研究所(Coinv)振動(dòng)信號(hào)采集分析儀(INV1861A應(yīng)變調(diào)理器與INV3060S網(wǎng)絡(luò)分布式采集儀)對(duì)試驗(yàn)中的模擬振動(dòng)壁面構(gòu)件的單次敲擊振動(dòng)形變數(shù)據(jù)進(jìn)行采集分析,得到的試驗(yàn)所用振動(dòng)壁面構(gòu)件的振動(dòng)形變趨勢(shì)曲線(如圖4),計(jì)算出振動(dòng)壁面構(gòu)件的實(shí)際振動(dòng)速度變化,再根據(jù)實(shí)際敲擊振動(dòng)過(guò)程中冷卻水套振動(dòng)頻率[32],以及冷卻水套的剛度等實(shí)際參數(shù),對(duì)冷卻水套實(shí)際振動(dòng)頻率為20 kHz時(shí)的振動(dòng)特性進(jìn)行研究,計(jì)算冷卻水套壁面振動(dòng)位移隨時(shí)間的變化,根據(jù)試驗(yàn)與計(jì)算結(jié)果:其波峰值最大是0.081 mm,波谷值最小是-0.031 mm。設(shè)置曲軸轉(zhuǎn)動(dòng)1°所用時(shí)間(7e-5s)作為度量振動(dòng)衰減位移函數(shù)曲線的橫坐標(biāo)的單位,模擬曲線如圖5所示,與杜慧勇等的計(jì)算結(jié)果一致[20],活塞敲擊時(shí)振動(dòng)出現(xiàn)在上止點(diǎn)后4°附近,在6°曲軸轉(zhuǎn)角時(shí)衰減振動(dòng)結(jié)束,并根據(jù)此設(shè)置動(dòng)網(wǎng)格。
圖4 振動(dòng)壁面構(gòu)件的振動(dòng)形變趨勢(shì)曲線
圖5 振動(dòng)衰減曲線
將冷卻水套出現(xiàn)穴蝕的振動(dòng)壁面處的振動(dòng)特性及其附近冷卻水的流場(chǎng)特性進(jìn)行耦合分析,模擬計(jì)算分析近壁面振動(dòng)影響(壁面振動(dòng)時(shí)衰減振動(dòng)頻率為20 kHz,振幅為81m)下流場(chǎng)的空化特性,并對(duì)比分析了壁面振動(dòng)影響下的不同入口流速,不同流場(chǎng)溫度時(shí)的冷卻水套內(nèi)流體空化特性[14]。模擬空化云圖中靠近紅色區(qū)域?yàn)闅庀?,靠近藍(lán)色區(qū)域?yàn)橐合唷?/p>
2.1 壁面振動(dòng)條件下的空化情況對(duì)比
圖6為冷卻水入口流速2 m/s,流場(chǎng)溫度70 ℃時(shí),施加振動(dòng)條件和不施加壁面振動(dòng)條件下某些時(shí)刻的近振動(dòng)壁面處流體流場(chǎng)區(qū)域的模擬空化云圖。由圖6可看到,振動(dòng)壁面受到振動(dòng)激勵(lì)后,空化區(qū)域逐漸出現(xiàn),在此時(shí)刻前流場(chǎng)不受振動(dòng)擾動(dòng),流體內(nèi)部壓力較穩(wěn)定,不會(huì)突降至飽和蒸汽壓,因此不會(huì)有空化區(qū)域出現(xiàn)。受到振動(dòng)激勵(lì)后,流場(chǎng)壓力場(chǎng)受壁面振動(dòng)擾動(dòng)而降至液體飽和蒸汽壓,空化區(qū)域形成并隨時(shí)間增大。
注:冷卻水入口流速2 m×s-1,流場(chǎng)溫度70 ℃
2.2 入口流速對(duì)冷卻水流場(chǎng)空化的影響
圖7為施加振動(dòng)條件下,流場(chǎng)溫度70 ℃,入口流速?gòu)?到5 m/s變化的不同入口流速條件下某個(gè)時(shí)刻(5.004e-4s)的模擬空化云圖。由圖7可知:雖然空化區(qū)域面積隨著流速增加而增大[20],但增大幅度并不明顯,可忽略不計(jì)。
注:施加壁面振動(dòng)條件下,流場(chǎng)溫度70 ℃,冷卻水入口流速分別為0.5、2、3.5、5 m×s-1,5.004e- 4s時(shí)的模擬空化云圖
2.3 溫度對(duì)冷卻水流場(chǎng)空化的影響
圖8給出流場(chǎng)入口流速為2 m/s條件下,流場(chǎng)溫度分別為50、60、70和80 ℃的某個(gè)時(shí)刻(5.004e-4s)的模擬空化云圖。由圖8可知:在同一條件下,低溫度下如50 ℃左右的空化區(qū)域面積更大[20],即冷卻水在溫度較低時(shí)(在50 ℃左右),流場(chǎng)更容易出現(xiàn)空化區(qū)域。
注:施加壁面振動(dòng)條件下,冷卻水入口流速2 m×s-1,流場(chǎng)溫度分別為50、60、70、80 ℃,5.004e-4s時(shí)的模擬空化云圖
3.1 可視化試驗(yàn)臺(tái)設(shè)計(jì)布置
試驗(yàn)所用的穴蝕可視化試驗(yàn)臺(tái)設(shè)計(jì)布置如圖9,整套試驗(yàn)系統(tǒng)各個(gè)部件之間由直徑為DN40的橡膠管連接,試驗(yàn)采用壓緊塊部件固定的金屬薄片(彎曲的半徑為50 mm,與可視壁面距離為10 mm)來(lái)模擬振動(dòng)壁面,使用可視化視窗組件,來(lái)建立模擬近振動(dòng)壁面處冷卻水套振動(dòng)空化致冷卻水套穴蝕的系統(tǒng),可近似觀察到柴油機(jī)工作中冷卻水套受活塞主敲擊振動(dòng)時(shí)振動(dòng)壁面處空化穴蝕的情況。其中激振器對(duì)壁面施加敲擊力,模擬活塞敲擊冷卻水套,空化試驗(yàn)視窗組件主要模擬冷卻水套受活塞主敲擊振動(dòng)時(shí)振動(dòng)壁面處冷卻水套空化穴蝕的情況并進(jìn)行觀察,GX-8型高速攝像機(jī)可對(duì)試驗(yàn)中的空化現(xiàn)象進(jìn)行實(shí)時(shí)記錄,恒溫系統(tǒng)使冷卻水保持試驗(yàn)所需的恒定溫度。
1. 潛水泵2. 橡膠管3. 分流三通4. 控制球閥一5. 控制球閥二6. 轉(zhuǎn)子流量計(jì)7. 溫度計(jì)8. 入口壓力表9. 激振器10. 空化試驗(yàn)視窗組件11. 光源系統(tǒng)12. 出口壓力表13. 控制球閥三14. 高速攝影儀15. 電腦16. 恒溫裝置17. 冷卻水箱
3.2 壁面振動(dòng)對(duì)空化的影響
由圖7可知入口流速對(duì)冷卻水套內(nèi)部空化區(qū)域的產(chǎn)生影響不大,所以為方便試驗(yàn)中取入口流速約為0.45 m/s。如圖10給出冷卻水70 ℃,循環(huán)流量2 000 L/h(入口流速約為0.45 m/s)時(shí)施加振動(dòng)條件和不施加壁面振動(dòng)條件下的近振動(dòng)壁面處流體流場(chǎng)區(qū)域的空化試驗(yàn)圖。試驗(yàn)從開(kāi)始產(chǎn)生氣泡開(kāi)始計(jì)時(shí),圖中F箭頭指代方向?yàn)檎駝?dòng)壁面受力方向,閃白點(diǎn)處為氣泡群。
如圖10可以觀察到,不施加壁面振動(dòng)條件時(shí)在流場(chǎng)流動(dòng)很穩(wěn)定,施加敲擊振動(dòng)激勵(lì)后,觀察到視窗組件內(nèi)壓緊塊壁面處出現(xiàn)部分氣泡,并聚集在狹隙下游圓弧壁面處。由試驗(yàn)結(jié)果可以看出其與模擬結(jié)果(如圖6)一致,都是在狹隙下游側(cè)壁面處穴蝕更為嚴(yán)重。這是因?yàn)闆](méi)有施加振動(dòng)條件時(shí),近振動(dòng)壁面處幾乎不會(huì)出現(xiàn)空化區(qū)域,因?yàn)闆](méi)有擾動(dòng),穩(wěn)定的流場(chǎng)區(qū)域其壓力場(chǎng)將處于相對(duì)穩(wěn)定的狀態(tài),近壁面流體區(qū)域壓力不會(huì)突降到液體飽和蒸汽壓之下,因此不會(huì)出現(xiàn)大量的空化氣泡形成空化區(qū)域。施加振動(dòng)時(shí)由于擾動(dòng)的影響,近壁面處的壓力場(chǎng)將出現(xiàn)突變,大量空化氣泡群將沿著振動(dòng)壁面出現(xiàn)形成空化區(qū)域,同時(shí)隨著時(shí)間推移,空化氣泡群將在狹隙下游圓弧壁面處聚集,形成空化區(qū)域,沿流體流動(dòng)方向向出口發(fā)展,并在此區(qū)域空泡大量潰滅,對(duì)后圓弧壁面進(jìn)行高溫高壓微射流和壓力波的沖擊,最終造成冷卻水套在此區(qū)域的穴蝕。因此冷卻水套壁面振動(dòng)是冷卻水套穴蝕的主要因素,減小冷卻水套振動(dòng)振幅時(shí)可以有效減少穴蝕產(chǎn)生。
注:F為振動(dòng)壁面所受力,箭頭方向?yàn)镕作用力方向。冷卻水入口流速2 m×s-1,流場(chǎng)溫度70 ℃時(shí)的空化試驗(yàn)圖。冷卻水入口流速2 m×s-1,流場(chǎng)溫度70 ℃的空化試驗(yàn)圖。
3.3 入口流速對(duì)空化的影響
如圖11給出其他條件相同,循環(huán)流量分別為2 000、2 500、3 000 L/h(即0.45、0.57、0.68 m/s)時(shí),施加振動(dòng)條件的近振動(dòng)壁面處空化區(qū)域在同一時(shí)刻的空化試驗(yàn)圖,圖中隨著冷卻水流速增加,振動(dòng)壁面處空化區(qū)域面積增大幅度并不明顯,此結(jié)果與模擬結(jié)果(如圖7)一致。這是由于流速增大時(shí)流場(chǎng)內(nèi)壓力場(chǎng)趨于減小,同時(shí)由于振動(dòng)壁面的諧振擾動(dòng),使得流場(chǎng)內(nèi)壓力更容易降低至飽和蒸汽壓,從而出現(xiàn)更大面積的空化區(qū)域。所以冷卻水入口流速對(duì)冷卻水套穴蝕影響較小,在試驗(yàn)范圍內(nèi)可忽略。
3.4 冷卻水溫度對(duì)空化的影響
圖12給出循環(huán)流量2 000 L/h時(shí),50、70 ℃冷卻水施加振動(dòng)后的近振動(dòng)壁面處流體流場(chǎng)區(qū)域的空化試驗(yàn)圖。從試驗(yàn)現(xiàn)象來(lái)看,50 ℃低溫時(shí)近壁面處的空化現(xiàn)象比70 ℃時(shí)明顯,與模擬結(jié)果(如圖8所示)一致。這是由于溫度會(huì)影響氣體在冷卻水中溶解度的變化,在溫度較高時(shí)冷卻水的氣化壓強(qiáng)越高,氣泡相對(duì)不易產(chǎn)生,所以冷卻水套穴蝕情況有所減輕。所以在低溫時(shí)冷卻水套比較容易出現(xiàn)穴蝕。
a. 2 000 L×h-1b. 2 500 L×h-1 c. 3 000 L×h-1
a. 50 ℃, 2.5e-4sb. 50 ℃, 5.0e-4s c. 70 ℃, 2.5e-4sd. 70 ℃, 5.0e-4s
1)冷卻水套壁面振動(dòng)是冷卻水套穴蝕的關(guān)鍵因素,壁面振動(dòng)對(duì)冷卻水流場(chǎng)的擾動(dòng)影響,導(dǎo)致大量空化氣泡出現(xiàn)并形成空化區(qū)域,所以減小冷卻水套振動(dòng)振幅是減少穴蝕產(chǎn)生的有效方法。
2)冷卻水入口流速的增加會(huì)使得空化現(xiàn)象略有加強(qiáng),但并不明顯(試驗(yàn)中隨著冷卻水入口流速增加空化區(qū)域幾乎沒(méi)有變化);當(dāng)冷卻水溫為50 ℃時(shí),空化現(xiàn)象最強(qiáng),當(dāng)水溫逐漸升高時(shí),空化現(xiàn)象反而減弱,其冷卻水套壁面振動(dòng)產(chǎn)生的空化效果明顯強(qiáng)于冷卻水溫及入口流速等因素變化所產(chǎn)生的空化波動(dòng)。
3)空化現(xiàn)象主要發(fā)生在圓弧壁最小間隙位置,并在下游區(qū)域發(fā)展長(zhǎng)大,所以冷卻水套狹隙下游圓弧壁面處穴蝕較為嚴(yán)重。
[1] 王澤民,陶曉明,王明泉,等. 柴油機(jī)缸套穴蝕成因分析和提高抗穴蝕能力的措施[J]. 內(nèi)燃機(jī),2004(2):43-45,47. Wang Zemin, Tao Xiaoming, Wang Mingquan, et al. Analysis of cavitation reasons of cylinder-bushing and measures for improving anti-cavitation ability[J]. Internal Combustion Engines, 2004(2): 43-45, 47. (in Chinese with English abstract)
[2] 胡斌,羅昕.柴油機(jī)濕式汽缸套穴蝕的原因分析及預(yù)防措施[J].農(nóng)機(jī)化研究,2006(7):208-210. Hu Bin, Luo Xin. Analysis of reason on the wet-type cylinder liner corrosive pitting of the diesel engine and its preventive measurements[J]. Journal of Agricultural Mechanization Research, 2006(7): 208-210. (in Chinese with English abstract)
[3] 劉彥輝. 柴油機(jī)缸套穴蝕問(wèn)題探討[J]. 腐蝕與防護(hù),2011(6):490-493.Liu Yanhui. Discussion of diesel engine cylinder cavitation[J]. Corrosion and Protection, 2011(6): 490-493. (in Chinese with English abstract)
[4] 管金發(fā),鄧松圣,張攀鋒,等. 空化特性研究進(jìn)展[J]. 科學(xué)技術(shù)與工程, 2011(27):6674-6680. Guan Jinfa, Deng Songsheng, Zhang Panfeng. et al. Research progress of cavitation characteristics[J]. Sicence Technology and Engineering, 2011(27): 6674-6680. (in Chinese with English abstract)
[5] Petracchi G. Investigations of cavitation corrosion[J]. Metallurgia Italiana, 1949, 41: 1-6.
[6] Bazanini G, Bressan J D. Preliminary experience with a new compact disk apparatus for cavitation erosion studies[J]. Wear. 2007, 263(1/6): 251-257.
[7] Kornfeld. M, Suvarov. L. On the destructive action of cavitation [J]. Journal of Applied Physics, 1944, 15: 495-506.
[8] 杜川,徐萬(wàn)里,汪家道,等. 空蝕初生期破壞程度的表征方法[J]. 潤(rùn)滑與密封, 2011(3):16-19. Du Chuan, Xu Wanli, Wang Jiadao. et al. A characterazition method for cavitation erosion incubation period[J]. Lubrication Engineering, 2011(3): 16-19. (in Chinese with English abstract)
[9] 劉凱,杜潤(rùn),柯堅(jiān),等. 氣蝕的CFD評(píng)價(jià)方法[J]. 液壓氣動(dòng)與密封, 2011(5):32-35. Liu Kai, Du Ruen, Ke Jian. et al. Evalution method of cavitation erosion with CFD[J]. Hydraulics Pneumatics and Seals, 2011(5): 32-35. (in Chinese with English abstract)
[10] 董洪全,馮慧華,董彪,等. 移動(dòng)載荷作用下的氣缸套動(dòng)態(tài)特性建模與穴蝕傾向分析[J]. 內(nèi)燃機(jī)學(xué)報(bào),2013(5):467-472. Dong Hongquan, Feng Huihua, Dong Biao, et al. Dynamic modeling and cavitation tendency analysis of cylinder liner considering the effects of moving loads[J]. Transactions of Csice, 2013(5): 467-472. (in Chinese with English abstract)
[11] 黃新明. 如何提高船用柴油機(jī)氣缸套的抗穴蝕能力[J]. 內(nèi)燃機(jī),2006(1):51-52. Huang Xinming. How to raise the ability of resisting cave corrosion on marine diesel cylinder sleeve[J]. Internal Combustion Engines, 2006(1): 51-52. (in Chinese with English abstract)
[12] 寧海強(qiáng). 高頻振動(dòng)對(duì)柴油機(jī)濕式氣缸套穴蝕的影響[J]. 船海工程, 2008,37(3):59-61. Ning Haiqiang. Study of the impact of high-frequency vibration on the cavitation of engine wet cylinder liner[J]. Ship and Ocean Engineering, 2008, 37(3): 59-61. (in Chinese with English abstract)
[13] 米沢徹. 柴油機(jī)氣缸套穴蝕分析[J]. 國(guó)外內(nèi)燃機(jī)車, 1992(267):7-14.
[14] 米沢徹,前田廣,王伯福,等. 抑制柴油機(jī)氣缸套的振動(dòng)防止氣缸套穴蝕[J]. 國(guó)外內(nèi)燃機(jī)車, 1988(333):44-49.
[15] Shuji Hattori, Makoto Takinami. Comparison of cavitation erosion rate with liquid impingement erosion rate [J]. Wear, 2010(269): 310-316.
[16] 陳劍. 柴油機(jī)缸套穴蝕產(chǎn)生的機(jī)理[J]. 上海師范大學(xué)學(xué)報(bào):自然科學(xué)版, 2000,29(1):63-69. Chen Jian. Mechanism and causes of the emergence of the corroded-holes on the external surface of the cylinder of the diesel engine[J]. Journal of Shanghai Normal University; Natural Sciences, 2000, 29(1): 63-69. (in Chinese with English abstract)
[17] 薛偉,陳昭運(yùn). 空蝕破壞的微觀過(guò)程研究[J]. 機(jī)械工程材料, 2005,29(2):59-62. Xue Wei, Chen Zhaoyun. The micro cours of the cavitation erosion[J]. Materials For Mechanical Engineering, 2005, 29(2): 59-62. (in Chinese with English abstract)
[18] Chen Haosheng, Li Yongjian, Chen Darong. et al. Experimental and numerical investigations on development of cavitation erosion pits on solid surface[J]. Tribology Letters, 2007(26): 153-159.
[19] Chen Haosheng, Li Yongjian, Chen Darong . et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear, 2008(265): 692-698.
[20] 杜慧勇,李鵬濤,李民,等. 壁面振動(dòng)致氣缸套空蝕現(xiàn)象模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2016(12):1065-1069. Du Huiyong, Li Pengtao, Li Min, et al. Simulating cavitation erosion of cylinder liner caused by wall vibration[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016(12): 1065-1069. (in Chinese with English abstract)
[21] 彭存達(dá),李健. 船用柴油機(jī)氣缸套穴蝕成因與防治[J]. 船舶, 2006(5):33-34. Peng Cunda, Li Jian. Formation cause and prevention of corrosion in pit form in cylinder jacket of marine diesel engine[J]. Ship and Boat, 2006(5): 33-34. (in Chinese with English abstract)
[22] Matsumoto Y. Influence of homogeneous condensation inside a small gas bubble on its pressure response[J]. Journal of fluids engineering, 1985, 107(2): 28l-286.
[23] REA Arndt. Cavitation in fluid machinery and hydraulic structures[J]. Annual Review of Fluid Mechanics, 1981, 13: 273-328.
[24] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75-116.
[25] Brujan E A, Ikeda T, Matsumoto Y. On the pressure of cavitation bubbles[J]. Experimental Therma1 and Fluid Science, 2008, 32(5): 1188-1191.
[26] 銀增輝,李民,杜慧勇, 等. 基于線陣相機(jī)的柱面外表面全景自動(dòng)采集系統(tǒng): CN102589465A [P]. 2012-07-18.
[27] Iwai Y, Li S. Cavitation erosion in waters having different surface tensions[J]. Wear, 2003, 254(1-2): 1-9.
[28] 隋江華,賈明莆,孫豐雷. 柴油機(jī)氣缸套穴蝕的成因以及預(yù)防措施[J]. 船舶工程,2009(增刊1):45-47,62. Sui Jianghua, Jia Mingpu, Sun Fenglei. Diesel engine cylinder liner cavitation causes and preventive measures[J]. Ship Engineering, 2009(Supp.1): 45-47, 62. (in Chinese with English abstract)
[29] Dular M, Stoffel B, Irok B. Development of a cavitation erosion model[J]. Wear, 2006, 261(5/6): 642-655.
[30] Li Xiaolei, Liu Jianmin, Qiao Xinyong. et al. The influencing factors research of piston slap vibration from diesel[J]. Machinery Design & Manufacture, 2013(5): 197-200.
[31] Zhou Y K, He J G, Hammitt F G. Cavitation erosion of cast iron diesel engine liners[J]. Wear, 1982, 76: 329-335.
[32] 李曉磊,劉建敏,喬新勇,等. 柴油機(jī)活塞敲擊及其振動(dòng)響應(yīng)機(jī)理研究[J]. 車用發(fā)動(dòng)機(jī),2014(1):32-37. Li Xiaolei, Liu Jianmin, Qiao Xinyong. et al. Piston slap and its vibration response mechanism of diesel engine[J]. Vehicle Engine, 2014(1): 32-37. (in Chinese with English abstract)
Analysis and experiment on cavitation mechanism in cooling water jacket of diesel engine
Du Huiyong, Zhou Wenjin, Li Min, Liu Jianxin, Li Pengtao, Xu Bin
(471003,)
Light weight and high power become the trend of the development of diesel engine. At the same time, the liner cavitation erosion of engine cylinder becomes one of the important restrictions of engine reliability and life. A lot of research has been made and the results show that cooling water jacket cavitation erosion theories widely accepted are: A high frequency vibration of cooling water jacket leads to the cavitation and the cavitation bubbles breaking produces a shock wave and micro-jet, which have the mechanical action to cooling water jacket and lead to the occurrence of cavitation erosion. Therefore, the study of the flow characteristics of the cooling water jacket near the vibrating wall is an effective way to understand the spatial and temporal distribution of cavitation. In this paper, the computational fluid dynamics (CFD) simulation method was used to investigate the forming mechanism of cavitation in engine cooling jacket. By analyzing the cooling water jacket of the diesel engine, taking the part of cooling water jacket in the minimum space of the flow channel near the vibration wall as the research object, a three-dimentional model ofdiesel cooling water jacket was built. Then according to the calculation and analysis of the vibration wall components’ single knock experiment, the moving mesh was set. Then the characteristics of flow and cavitation under various inlet velocity and fluid temperature with and without wall vibration were simulated. The cavitation characteristics were compared and analyzed under the conditions of different inlet velocity and different flow field temperature with the influence of cylinder wall vibration,and the numerical theory of cooling water jacket cavitation erosion was improved, which also guided the cooling water jacket cavitation erosion experiment of the vibration. According to the simulation results, a wall vibration cavitation erosion visualization bench was designed and built, the related experimental verification was proceeded in the visual experiment platform, and the credibility of the simulation calculation was confirmed.The simulation results were validated by the experiments on this optical rig. The outcome of the study indicated that cavitation occurred in the minimum space of the flow channel, and grew up in the downstream. Higher velocity of inlet flow (from 2 000 to 3 000 liters per hour) caused stronger cavitation near the vibration wall of the cooling water flow field, but it was not significant, so the significant change was not observed in the cavitation images under the condition of different inlet flow velocity. On the contrary, higher temperature of inlet flow (above 50 ℃) caused weaker cavitation, and the strongest cavitation occurred at the temperature of 50 ℃. An obvious cavitation phenomenon appeared when the wall which fluid flowed by was vibrated in a very high frequency, and this change of cavitation was much stronger than those caused by various inlet flow velocity and fluid temperature. So the author thought that cooling water jacket vibration was the more important factor than cooling water flow velocity and temperature that caused cavitation. This study will be helpful in controlling the occurrence of cavitation in cooling water jacket and lowering the cavitation erosion risk of cooling water jacket.
engines; computational fluid dynamics; experiments; cooling water jacket; cavitation; cavitation erosion
10.11975/j.issn.1002-6819.2017.08.010
TK421+.1
A
1002-6819(2017)-08-0076-06
2016-08-11
2017-03-22
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0700700)
杜慧勇,男,河南洛陽(yáng)人,教授,博士,主要從事內(nèi)燃機(jī)CFD方面研究。洛陽(yáng) 河南科技大學(xué)車輛與交通工程學(xué)院,471003。Email:dhy@mail.haust.edu.cn
杜慧勇,周文瑾,李 民,劉建新,李鵬濤,徐 斌.發(fā)動(dòng)機(jī)冷卻水套穴蝕機(jī)理分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):76-81. doi:10.11975/j.issn.1002-6819.2017.08.010 http://www.tcsae.org
Du Huiyong, Zhou Wenjin, Li Min, Liu Jianxin, Li Pengtao, Xu Bin. Analysis and experiment on cavitation mechanism in cooling water jacket of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 76-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.010 http://www.tcsae.org