• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiplicatively weighted Harary indexof some graph operations

    2017-05-18 02:23:03WENYanqingLIUBaoliangANMingqiang
    浙江大學學報(理學版) 2017年3期
    關鍵詞:張量積賦權天津

    WEN Yanqing, LIU Baoliang, AN Mingqiang

    (1.College of Mathematics and Computer Science, Shanxi Datong University, Datong 037009, Shanxi Province, China;2.College of Science, Tianjin University of Science and Technology, Tianjin 300457, China)

    Multiplicatively weighted Harary indexof some graph operations

    WEN Yanqing1, LIU Baoliang1, AN Mingqiang2*

    (1.College of Mathematics and Computer Science, Shanxi Datong University, Datong 037009, Shanxi Province, China;2.College of Science, Tianjin University of Science and Technology, Tianjin 300457, China)

    multiplicativelyweightedHararyindex;Hararyindex;tensorproduct;strongproduct;wreathproduct

    0 Introduction

    Allgraphsconsideredinthispaperarefiniteundirectedsimpleconnectedgraphs.LetG=(V(G),E(G)) be a graph with vertex setV(G) and edge setE(G). LetδG(v) be the degree of a vertexvinGanddG(u,v) be the distance between two verticesuandvinG. When the graph is clear from the context, we will omit the subscriptGfrom the notation. For other undefined terminology and notations from graph theory, the readers are referred to[1].

    A topological index is a number related to a graph invariant under graph isomorphism. Obviously, the number of vertices and edges of a given graphGare topological indices ofG. One of the oldest and well-studied distance-based topological index is the Wiener numberW(G), also termed as Wiener index in chemical or mathematical chemistry literature, which is defined as the sum of distances over all unordered vertex pairs inG[2], namely,

    ThisformulawasintroducedbyHOSOYA[3],althoughtheconcepthasbeenintroducedbylaterWIENER.However,theapproachbyWIENERisapplicableonlytoacyclicstructures,whilstHOSOYA’SmatrixdefinitionallowedtheWienerindextobeusedforanystructure.

    Anotherdistance-basedgraphinvariant,definedby[4-5]inafullyanalogousmannertoWienerindex,istheHararyindex,whichisequaltothesumofreciprocaldistancesoverallunorderedvertexpairsinG, that is,

    In1994,DOBRYNINetal[6]andGUTMAN[7]independentlyproposedavertex-degree-weightedversionofWienerindexcalleddegreedistanceorSchultzmoleculartopologicalindex,whichisdefinedforagraphGas

    Similarly,theGutmanindexisputforwardin[7]andcalledtheretheSchultzindexofthesecondkind,forwhichthenameGutmanindexhasalsosometimesbeenused[8].Itisdefinedas

    Theinterestedreadersmayconsult[9-11]forWienerindex, [5]forHararyindex, [12-13]fordegreedistanceand[14-15]forGutmanindex.

    AlthoughHararyindexisnotwellknowninthemathematicalchemistrycommunity,itarisesinthestudyofcomplexnetworks.Letndenote the number of vertices ofG. DividingH(G) byn(n-1), we obtain a normalization ofH(G), which is called the efficiency ofG[16]. The reciprocal value of the efficiency is called the performance ofG[17]. For a given network, both efficiency and performance afford a uniform way to express and quantify the small-world property. Since the strength of interactions between nodes in a network is seldom properly described by their topological distances, one needs to consider both the weighted versions of efficiency and performance.

    In order to close the gap between the two research communities by drawing their attention to a generalization of a concept, which gives more weight to the contributions of pairs of vertices of high degrees. Recently, ALIZADEH et al[18]introduced an invariant, named additively weighted Harary index, which is defined as

    Somebasicmathematicalpropertiesofthisindexwereestablished[18]andtheirbehaviorunderseveralstandardgraphproductswereinvestigatedthere.

    Itisknownthattheintuitiveideaofpairsofcloseatomscontributingmorethanthedistantonesisdifficulttocaptureintopologicalindices.Apossiblyusefulapproachcouldbeusedtoreplacetheadditiveweightingofpairsbythemultiplicativeone,thusgivingrisetoanewinvariant,namedmultiplicativelyweightedHararyindex[18]:

    Evidently,theadditively(resp.multiplicatively)weightedHararyindexisrelatedtotheHararyindexinthesamewayasthedegreedistance(resp.Gutmanindex)isrelatedtotheWienerindex.

    Veryrecently,PATTABIRAMANetal[19]gavetheexactformulaefortheadditivelyweightedHararyindexoftensorproductG×Km0,m1,…,mr-1and the strong productGKm0,m1,…,mr-1, whereKm0,m1,…,mr-1is the complete multipartite graph with partite sets of sizesm0,m1,…,mr-1.

    In this paper, we continue this program to the multiplicatively weighted Harary index, and the exact formulae for the multiplicatively weighted Harary index of tensor productG×Kr, the strong productG□×Krand the wreath productG1°G2in terms of other graph invariants including additively weighted Harary index, Harary index, the first and the second Zagreb indices, and the first and the second Zagreb coindices, are obtained, whereKris the complete graph. Additionally, we apply our results to compute the multiplicatively weighted Harary index of open fence and closed fence graphs.

    The paper is organized as follows. In section 1, we give some necessary definitions. In section 2 to 4, we present our main results and give some corresponding examples, respectively.

    1 Preliminaries

    1.1 Some definitions

    For a given graphG, its first and second Zagreb indices are defined as follows:

    ThefirstZagrebindexcanbealsoexpressedasasumoveredgesofG,

    FortheproofofthisfactandmoreinformationonZagrebindices,weencouragetheinterestedreaderto[20].

    ThefirstandthesecondZagrebcoindicesofagraphGare defined as follows[21]:

    LetKn,CnandPndenote then-vertex complete graph, cycle and path, respectively. We callC3a triangle.

    1.2 Product graphs

    Now, we introduce three standard types of product graphs that we consider in this paper. For two simple graphsGandH, their tensor product denoted byG×H, has vertex setV(G)×V(H) in which (g1,h1) and (g2,h2) are adjacent wheneverg1g2is an edge inGandh1h2is an edge inH. Note that ifGandHare connected graphs, thenG×His connected only if at least one of the graph is nonbipartite. The strong product of graphsGandH, denoted byG□×H, is the graph with vertex setV(G)×V(H)={(u,v):u∈V(G),v∈V(H)} and (u,x)(v,y) is an edge whenever (i)u=vandxy∈E(H), or (ii)uv∈E(G) andx=y, or (iii)uv∈E(G) andxy∈E(H). Similarly, the wreath product (also known as the composition) of the graphsGandH, denoted byG°H, has vertex setV(G)×V(H) in which (g1,h1)(g2,h2) is an edge wheneverg1g2∈E(G), org1=g2andh1h2∈E(H). The tensor product of graphs has been extensively studied in relation to the areas such as graph colorings, graph recognition, decompositions of graphs, and design theory, see [22-26].

    For more information about graph products, please see monograph[25]. There is a growing corpus of literature concerned with the study of graph invariants of tensor product, Cartesian product and strong product[27-29].

    2 Multiplicatively weighted Hararyindex of tensor product of graphs

    LetGbe a connected graph withV(G)={v0,v1,…,vn-1} andV(Kr)={u1,u2,…,ur-1}. For convenience, letxijdenote the vertex (vi,uj) ofG×Kr. The following lemma, which follows easily from the properties and structure ofG×Kr, is used in the proof of our main result in this section.

    Lemma 1 LetGbe a connected graph onn≥2 vertices andxij,xkpbe any pair vertices of the graphG′=G×Kr, wherer≥3.

    (i)Ifvivk∈E(G), then

    dG′(xij,xkp)=

    (ii)Ifvivk?E(G), thendG′(xij,xkp)=dG(vi,vk).

    (iii)dG′(xij,xip)=2.

    Lemma 2 LetGbe a connected graph and letG′=G×Kr. Then the degree of a vertex (vi,uj) inG′ isδG′((vi,uj))=δG(vi)(r-1).

    Now, we present the exact formulae for the multiplicatively weighted Harary index ofG×Kr.

    Theorem 1 LetGbe a connected graph withn≥2 vertices andE2be the set of edges ofGwhich do not lie on any triangle of it. Then

    wherer≥3.

    Proof Let us denoteG′=G×Kr. Obviously,

    (1)

    whereA1toA3are the sums of the above terms, in order. In what follows, we computeA1toA3of (1), separately.

    (2)

    To do this, originally we calculate

    LetE1={uv∈E(G)|uvis on a triangle ofG} andE2=E(G)-E1.

    by lemmas 1 and 2,

    The above formula=

    sincedG(vi,vk)=1,ifvivk∈E1andvivk∈E2,

    (3)

    since each edgevivkofGis being counted twice in the sum, that is,vivkandvkvi.

    Now summing (3) overj=0,1,…,r-1, we have

    (4)

    2r(r-1)3HM(G), by lemmas 1 and 2.

    (5)

    Combining(2), (4) and (5) with (1), we obtain

    By theorem 1, we have the following corollaries.

    Combiningtheaboveknownresultsandcorollaries1and2,immediately,wecanobtaintheexplicitmultiplicativelyweightedHararyindexofthefollowinggraphs:

    Example 1

    (c)Forn≥2,r=3,HM(Cn×Kr)=3r(5r3-13r2+11r-3).

    3 Multiplicatively weighted Hararyindex of strong product of graphs

    In this section, we obtain the multiplicatively weighted Harary index ofG□×Kr. LetGbe a connected graph withV(G)={v0,v1,…,vn-1} andV(Kr)={u1,u2,…,ur-1}. For convenience, letxijdenote the vertex (vi,uj) ofG□×Kr. Firstly, we give the following lemma, which follows directly from the properties and structure ofG□×Kr, is used in the proof of our main result in this section.

    Lemma 3 LetGbe a connected graph and letG′=G□×Kr. Then

    (i)For any pair of verticesxij,xkp∈V(G′),dG′(xij,xip)=1 anddG′(xij,xkp)=dG(vi,vk).

    (ii)The degree of a vertex (vi,uj) inG′ isδG′((vi,uj))=rδG(vi)+(r-1).

    Theorem 2 LetGbe a connected graph withnvertices andmedges. Then

    Proof Let us denoteG′=GKr. Obviously,

    (6)

    whereA1,A2andA3are the sums of the above terms, in order.

    In what follows, we calculateA1,A2andA3of (6), separately.

    2r(r-1)δG(vi))=

    r3(r-1)M1(G)+nr(r-1)3+

    4mr2(r-1)2,by lemma 3.

    (7)

    2r3HM(G)+2r2(r-1)HA(G)+

    2r(r-1)2H(G).

    (8)

    2r3(r-1)HM(G)+2r2(r-1)2HA(G)+

    2r(r-1)3H(G).

    (9)

    Combining (7)~(9) with (6), we get

    Asanapplication,wepresentformulaeformultiplicativelyweightedHararyindexofopenandclosedfences,Pn□×K2andCn□×K2.

    4 Multiplicatively weighted Hararyindex of wreath product of graphs

    In this section, we give the multiplicatively weighted Harary index ofG1°G2. LetG1andG2be two connected graphs withV(G1)={v0,v1,…,vn1-1} andV(G2)={u0,u1,…,un2-1}. For convenience, letxijdenote the vertex (vi,uj) ofG1°G2. The following lemma, which follows easily from the properties and structure ofG1°G2, is used in the proof of our main result in this section.

    Lemma 4 LetG1andG2be two connected graphs and letG′=G1°G2. Then the degree of a vertex (vi,uj) inG′ isδG′((vi,uj))=n2δG1(vi)+δG2(uj).

    Theorem 3 LetG1andG2be two connected graphs. The number of vertices and edges of graphGiis denoted byniandeirespectively fori=1,2. Then we have

    H(G1)(M1(G2)+2M2(G2)+

    Proof Let us denoteG′=G1°G2. Obviously,

    (10)

    whereA1toA3are the sums of the above terms, in order.

    In what follows, we computeA1,A2,A3of (10), separately.

    since each row induces a copy ofG2and

    dG′(xij,xip)=1 ifujup∈E(G2) and

    dG′(xij,xip)=2 ifujup?E(G2).

    (11)

    since the distance between a pair of vertices in a column is the same as the distance between the corresponding vertices of other column.

    (12)

    sincedG′(xij,xkp)=dG1(vi,vk) for alliandk, and further the distance between the corresponding vertices of the layers is counted inA2,

    (13)

    Combining (11)~(13) with (10), we get the desired result.

    This completes the proof.

    Using theorem 2, we have the following corollary.

    Corollary 3 LetG1be a connected graph andG2be a connectedk-regular graph. The number of vertices and edges of graphGiis denoted byniandeirespectively fori=1,2. Then, we have

    2e2)HA(G1)+H(G1)(M1(G2)+

    [1] BONDY J A, MURTY U S R. Graph Theory with Applications, Macmillan[M]. London: Elsevier, 1976.

    [2] WIENER H. Structural determination of paraffin boiling point[J]. J Amer Chem Soc,1947,69:17-20.

    [3] HOSOYA H. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bull Chem Soc Jpn,1971,44:2332-2339.

    [4] IVANCIUC O, BALABAN T S, BALABAN A T. Reciprocal distance matrix, related local vertex invariants and topological indices[J]. J Math Chem,1993(12):309-318.

    [6] DOBRYNIN A A, KOCHETOVA A A. Degree distance of a graph: A degree analogue of the Wiener index[J]. J Chem Inf Comput Sci,1994,34:1082-1086.

    [7] GUTMAN I. Selected properties of the Schultz molecular topogical index[J]. J Chem Inf Comput Sci,1994,34:1087-1089.

    [8] TODESCHINI R, CONSONNI V. Handbook of Molecular Descriptors[M]. Weinheim:Wiley-VCH,2000.

    [9] DOBRYNIN A A, ENTRINGER R, GUTMAN I. Wiener index of trees: Theory and applications[J]. Acta Appl Math,2001,66:211-249.

    [10] GUTMAN I. A property of the Wiener number and its modifications[J]. Indian J Chem A,1997,36:128-132.

    [11] GUTMAN I, RADA J, ARAUJO O. The Wiener index of starlike trees and a related partial order[J]. Match Commun Math Comput Chem,2000,42:145-154.

    [13] TOMESCU I. Ordering connected graphs having small degree distances[J]. Discrete Appl Math,2010,158:1714-1717.

    [14] FENG L, LIU W. The maximal Gutman index of bicyclic graphs[J]. MATCH Commun Math Comput Chem, 2011,66:699-708.

    [15] MUKWEMBI S. On the upper bound of Gutman index of graphs[J]. MATCH Commun Math Comput Chem,2012,68:343-348.

    [16] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Phys Rev Lett,2001,87:198701.

    [17] MARCHIORI M, LATORA V. Harmony in the small-world[J]. Physica A, 2000,285:539-546.

    [18] ALIZADEH Y, IRANMANESH A, DOT. Additively weighted Harary index of some composite graphs[J]. Discrete Math, 2013,313:26-34.

    [19] PATTABIRAMAN K, VIJAYARAGAVAN M. Reciprocal degree distance of product graphs[J]. Discrete Appl Math, 2014,179:201-213.

    [22] ALON N, LUBETZKY E. Independent set in tensor graph powers[J]. J Graph Theory, 2007,54:73-87.

    [23] ASSAF A M. Modified group divisible designs[J]. Ars Combin, 1990,29:13-20.

    [25] IMRICH W, KLAV?AR S. Product Graphs: Structure and Recognition[M]. New York, John Wiley and Sons,2000.

    [26] MAMUT A, VUMAR E. Vertex vulnerability parameters of Kronecker products of complete graphs[J]. Inform Process Lett,2008,106:258-262.

    [27] HOJI M, LUO Z, VUMAR E. Wiener and vertex PI indices of Kronecker products of graphs[J]. Discrete Appl Math,2010,158:1848-1855.

    [28] KHALIFEH M H, YOUSERI-AZARI H, ASHRAFI A R. Vertex and edge PI indices of Cartesian product of graphs[J]. Discrete Appl Math,2008,156:1780-789.

    [29] PATTABIRAMAN K, PAULRAJA P. On some topological indices of the tensor product of graphs[J]. Discrete Appl Math,2012,160:267-279.

    倍乘賦權Harary指標;Harary指標; 張量積; 強積; 圈積

    O

    A

    1008-9497(2017)03-253-09

    Foundation item:Supported by the Doctoral Scientific Research Foundation of Shanxi Datong University (2015-B-06).

    10.3785/j.issn.1008-9497.2017.03.001

    Received date:October 16,2015.

    About the author:WEN Yanqing(1980-),ORCID:http://orcid.org/0000-0002-9573-7245,female, doctoral student, lecture, the field of interest are reliability and graph theory, E-mail:oryqwen@163.com.

    *Corresponding author, ORCID:http://orcid.org/0000-0002-1105-750X,E-mail:anmq@tust.edu.cn.

    溫艷清1, 劉寶亮1, 安明強2(1.山西大同大學 數(shù)學與計算機科學學院, 山西 大同 037009; 2. 天津科技大學 理學院,天津 300457)

    若干運算圖的倍乘賦權Harary指標.浙江大學學報(理學版),2016,44(3):253-260,280

    猜你喜歡
    張量積賦權天津
    如果天津有“畫”說
    藝術啟蒙(2022年9期)2022-10-08 01:33:06
    論鄉(xiāng)村治理的有效賦權——以A縣扶貧項目為例
    中國西部(2022年2期)2022-05-23 13:28:20
    企業(yè)數(shù)據(jù)賦權保護的反思與求解
    南大法學(2021年6期)2021-04-19 12:27:30
    四種半張量積及其代數(shù)關系
    Gorenstein投射模的張量積
    試論新媒體賦權
    活力(2019年15期)2019-09-25 07:22:12
    天津卷
    學生天地(2019年30期)2019-08-25 08:53:22
    《天津之眼》
    基于改進AHP熵博弈賦權的輸變電工程評價
    測控技術(2018年6期)2018-11-25 09:50:24
    天津
    汽車與安全(2016年5期)2016-12-01 05:21:56
    免费一级毛片在线播放高清视频| av专区在线播放| 成人欧美大片| 欧美不卡视频在线免费观看| 亚洲av五月六月丁香网| 国产视频一区二区在线看| 成人国产一区最新在线观看| 亚洲av.av天堂| 女人十人毛片免费观看3o分钟| 国产视频内射| 黄色配什么色好看| 少妇被粗大猛烈的视频| 色综合站精品国产| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看| av视频在线观看入口| av专区在线播放| 亚洲 欧美 日韩 在线 免费| 日韩欧美一区二区三区在线观看| 久久久久国内视频| 久久人妻av系列| 免费在线观看日本一区| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 九色国产91popny在线| 嫩草影院入口| 99视频精品全部免费 在线| 极品教师在线视频| 一区二区三区四区激情视频 | 日韩成人在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 18禁在线播放成人免费| 国产精品久久久久久亚洲av鲁大| 99精品在免费线老司机午夜| 午夜激情欧美在线| 亚洲最大成人av| 99国产极品粉嫩在线观看| 韩国av一区二区三区四区| 国产v大片淫在线免费观看| 最新在线观看一区二区三区| 国产高清有码在线观看视频| 久久亚洲精品不卡| 在线观看免费视频日本深夜| 中文字幕av在线有码专区| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩福利视频一区二区| 欧美成人性av电影在线观看| 超碰av人人做人人爽久久| 国产黄a三级三级三级人| 男人舔女人下体高潮全视频| 99久久久亚洲精品蜜臀av| 国产毛片a区久久久久| 天堂av国产一区二区熟女人妻| 麻豆av噜噜一区二区三区| 中国美女看黄片| 乱人视频在线观看| 精品午夜福利在线看| 国产不卡一卡二| 嫩草影视91久久| 黄色配什么色好看| 丁香六月欧美| 级片在线观看| 很黄的视频免费| 亚洲人成电影免费在线| 日韩欧美精品免费久久 | 成人鲁丝片一二三区免费| 久久天躁狠狠躁夜夜2o2o| 性色av乱码一区二区三区2| 国产精品爽爽va在线观看网站| 久久精品国产清高在天天线| 国产精品免费一区二区三区在线| 日韩中字成人| 亚洲成人精品中文字幕电影| 国内少妇人妻偷人精品xxx网站| 在线观看舔阴道视频| 9191精品国产免费久久| 精品人妻一区二区三区麻豆 | 国产探花在线观看一区二区| 久久国产精品人妻蜜桃| 色综合欧美亚洲国产小说| 熟女人妻精品中文字幕| 国产精品久久视频播放| 国产高清有码在线观看视频| 露出奶头的视频| 美女高潮喷水抽搐中文字幕| 国产一区二区在线观看日韩| 日本五十路高清| 一区二区三区高清视频在线| 亚洲中文字幕日韩| 久久久久久久久久成人| 午夜视频国产福利| 18+在线观看网站| 亚洲在线自拍视频| www.熟女人妻精品国产| 成人鲁丝片一二三区免费| 国产精品永久免费网站| 国产欧美日韩精品一区二区| 老司机深夜福利视频在线观看| 国产黄片美女视频| 亚洲成人久久性| www日本黄色视频网| 成年女人永久免费观看视频| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美激情综合另类| 在线播放国产精品三级| 啦啦啦观看免费观看视频高清| 久久久久久久久中文| 欧美不卡视频在线免费观看| 国产一级毛片七仙女欲春2| 97碰自拍视频| 草草在线视频免费看| 最近中文字幕高清免费大全6 | 色哟哟哟哟哟哟| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 我要看日韩黄色一级片| 一个人免费在线观看电影| 丝袜美腿在线中文| 日韩 亚洲 欧美在线| 亚洲人成网站在线播| 日韩大尺度精品在线看网址| 久久久久久久久中文| 网址你懂的国产日韩在线| 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 日韩欧美三级三区| 欧美成人a在线观看| av女优亚洲男人天堂| 成人亚洲精品av一区二区| 国产色婷婷99| 日本熟妇午夜| 国产极品精品免费视频能看的| 中文字幕av成人在线电影| 精品久久久久久久久亚洲 | 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 欧美xxxx黑人xx丫x性爽| 亚洲人成伊人成综合网2020| 亚洲avbb在线观看| 精品久久久久久久久久免费视频| 91九色精品人成在线观看| 亚洲人成网站在线播放欧美日韩| 自拍偷自拍亚洲精品老妇| 国产私拍福利视频在线观看| 亚洲无线在线观看| 色精品久久人妻99蜜桃| 99在线视频只有这里精品首页| aaaaa片日本免费| 中文字幕人妻熟人妻熟丝袜美| 一本综合久久免费| 国产美女午夜福利| 国产成人freesex在线| 美女脱内裤让男人舔精品视频| 亚洲精品乱码久久久久久按摩| 亚洲伊人久久精品综合| 免费大片18禁| 亚洲人与动物交配视频| 亚洲精品乱码久久久v下载方式| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 日韩人妻高清精品专区| 99热网站在线观看| 青青草视频在线视频观看| 亚洲人与动物交配视频| 免费黄网站久久成人精品| 久久这里有精品视频免费| 网址你懂的国产日韩在线| 日韩人妻高清精品专区| 免费av毛片视频| 国产av国产精品国产| 日本爱情动作片www.在线观看| 天美传媒精品一区二区| 99九九线精品视频在线观看视频| 18禁在线无遮挡免费观看视频| 国产人妻一区二区三区在| 又爽又黄无遮挡网站| 成人综合一区亚洲| 精品酒店卫生间| 亚洲精品自拍成人| 成人国产av品久久久| 美女xxoo啪啪120秒动态图| 欧美xxxx黑人xx丫x性爽| 青春草国产在线视频| 乱码一卡2卡4卡精品| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 免费av毛片视频| 亚洲av一区综合| 大香蕉97超碰在线| av女优亚洲男人天堂| 色婷婷久久久亚洲欧美| 婷婷色av中文字幕| 美女被艹到高潮喷水动态| 国产精品一区二区在线观看99| 日韩av在线免费看完整版不卡| 国产精品一及| 我要看日韩黄色一级片| 午夜老司机福利剧场| 久久99热6这里只有精品| 精品一区二区三卡| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 国产精品爽爽va在线观看网站| 99久国产av精品国产电影| 欧美成人精品欧美一级黄| 黄色欧美视频在线观看| 你懂的网址亚洲精品在线观看| 美女主播在线视频| 激情 狠狠 欧美| 最近2019中文字幕mv第一页| 日本一本二区三区精品| 国产探花极品一区二区| 肉色欧美久久久久久久蜜桃 | 日韩 亚洲 欧美在线| 男女那种视频在线观看| 国产白丝娇喘喷水9色精品| 国产 一区精品| a级毛片免费高清观看在线播放| 99久国产av精品国产电影| 免费黄频网站在线观看国产| 欧美人与善性xxx| 国产精品成人在线| 午夜激情久久久久久久| 亚洲综合精品二区| 精品99又大又爽又粗少妇毛片| 人人妻人人爽人人添夜夜欢视频 | 国产精品女同一区二区软件| 国产黄色视频一区二区在线观看| 青春草视频在线免费观看| 天堂中文最新版在线下载 | 午夜老司机福利剧场| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩东京热| 国产 一区精品| 久久99热这里只频精品6学生| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 在线观看三级黄色| 国模一区二区三区四区视频| 欧美极品一区二区三区四区| 免费大片黄手机在线观看| 亚洲精品,欧美精品| 麻豆国产97在线/欧美| 下体分泌物呈黄色| 夜夜爽夜夜爽视频| 午夜福利在线观看免费完整高清在| 亚州av有码| 一区二区三区乱码不卡18| 丝瓜视频免费看黄片| 黄色日韩在线| 亚洲av男天堂| 国产成人免费无遮挡视频| 日本黄色片子视频| 亚洲人成网站在线观看播放| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 日韩亚洲欧美综合| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 一区二区av电影网| videossex国产| 亚洲美女搞黄在线观看| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 超碰97精品在线观看| 黄色配什么色好看| 五月伊人婷婷丁香| 免费观看性生交大片5| 女的被弄到高潮叫床怎么办| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 午夜免费鲁丝| 国产一级毛片在线| 国产毛片在线视频| 成人黄色视频免费在线看| 在线观看免费高清a一片| 久久久久久久久久久丰满| 久久女婷五月综合色啪小说 | 69av精品久久久久久| 久久精品久久久久久久性| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区免费观看| 午夜福利在线在线| 亚洲精品成人久久久久久| 激情五月婷婷亚洲| 国产精品久久久久久精品古装| 国产精品99久久久久久久久| 亚洲天堂av无毛| 女人十人毛片免费观看3o分钟| 国产 精品1| 最后的刺客免费高清国语| 男女边吃奶边做爰视频| 人人妻人人澡人人爽人人夜夜| 婷婷色av中文字幕| 亚洲一级一片aⅴ在线观看| 深爱激情五月婷婷| 成人鲁丝片一二三区免费| 日韩,欧美,国产一区二区三区| 精品久久久久久久久亚洲| 亚洲精品影视一区二区三区av| videos熟女内射| 欧美xxⅹ黑人| 国产av不卡久久| 99热6这里只有精品| 日韩欧美精品v在线| 别揉我奶头 嗯啊视频| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件| 国产免费一区二区三区四区乱码| 国产一区有黄有色的免费视频| 纵有疾风起免费观看全集完整版| 久久久精品欧美日韩精品| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 男女边吃奶边做爰视频| 香蕉精品网在线| 亚洲成色77777| 亚洲精品乱久久久久久| 亚洲四区av| 国产成人午夜福利电影在线观看| 久久国产乱子免费精品| 久久久久九九精品影院| 日韩视频在线欧美| 2022亚洲国产成人精品| 观看美女的网站| 建设人人有责人人尽责人人享有的 | av专区在线播放| 亚洲av欧美aⅴ国产| 亚洲精品国产成人久久av| 欧美成人午夜免费资源| 22中文网久久字幕| 嫩草影院新地址| 午夜精品一区二区三区免费看| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| 大码成人一级视频| 51国产日韩欧美| 九草在线视频观看| 国产成年人精品一区二区| 国产精品99久久99久久久不卡 | 国产v大片淫在线免费观看| 伦理电影大哥的女人| 成人国产av品久久久| 亚洲精品乱码久久久v下载方式| .国产精品久久| 大码成人一级视频| 国产淫片久久久久久久久| 97超碰精品成人国产| 日韩中字成人| 欧美成人a在线观看| 精品一区二区三卡| 久久热精品热| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 最近中文字幕2019免费版| 日韩av免费高清视频| 久久久久国产精品人妻一区二区| 在线播放无遮挡| 少妇丰满av| 国产老妇伦熟女老妇高清| 欧美老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 一级毛片我不卡| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 久久久久精品性色| 亚洲性久久影院| 免费播放大片免费观看视频在线观看| 婷婷色综合www| 中国美白少妇内射xxxbb| 欧美日韩精品成人综合77777| 久久久久网色| 一个人看视频在线观看www免费| av免费在线看不卡| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 岛国毛片在线播放| 亚洲av免费在线观看| 99热6这里只有精品| 国产精品.久久久| 麻豆国产97在线/欧美| 国产91av在线免费观看| 久久精品国产亚洲av涩爱| 久久99蜜桃精品久久| 在线观看免费高清a一片| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 麻豆国产97在线/欧美| 中文字幕免费在线视频6| 久久久亚洲精品成人影院| 久久久精品欧美日韩精品| 日韩电影二区| 日日撸夜夜添| 又爽又黄无遮挡网站| 亚洲欧美精品自产自拍| 精品久久久久久久末码| 国产成人一区二区在线| 欧美精品国产亚洲| 日本三级黄在线观看| av免费观看日本| 乱系列少妇在线播放| 国产精品不卡视频一区二区| 欧美bdsm另类| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 亚洲内射少妇av| 久久久久久久久久久丰满| 日产精品乱码卡一卡2卡三| 国产精品伦人一区二区| 看免费成人av毛片| 国产一区亚洲一区在线观看| 国产v大片淫在线免费观看| 日韩av不卡免费在线播放| 日韩免费高清中文字幕av| 18+在线观看网站| 爱豆传媒免费全集在线观看| 如何舔出高潮| 男人舔奶头视频| 久久久久九九精品影院| 不卡视频在线观看欧美| 欧美国产精品一级二级三级 | 国产男人的电影天堂91| 久热久热在线精品观看| 国产爱豆传媒在线观看| 午夜福利视频精品| 中文资源天堂在线| 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 色综合色国产| 91久久精品国产一区二区三区| 成人美女网站在线观看视频| eeuss影院久久| 一级黄片播放器| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频 | 国产黄a三级三级三级人| 直男gayav资源| 2021天堂中文幕一二区在线观| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 亚洲精品国产av蜜桃| 成年女人看的毛片在线观看| 精品少妇久久久久久888优播| 天堂网av新在线| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 天堂中文最新版在线下载 | 热re99久久精品国产66热6| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 免费看不卡的av| 少妇人妻 视频| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 少妇 在线观看| 国内精品美女久久久久久| 亚洲国产最新在线播放| 免费看光身美女| 久久ye,这里只有精品| 又黄又爽又刺激的免费视频.| 亚洲天堂av无毛| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇av免费看| 天天躁日日操中文字幕| 国产精品99久久久久久久久| 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 色吧在线观看| 亚洲国产成人一精品久久久| 在线观看av片永久免费下载| 五月天丁香电影| 国产黄片美女视频| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 少妇人妻久久综合中文| 免费看av在线观看网站| 国产永久视频网站| 97热精品久久久久久| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 国产精品麻豆人妻色哟哟久久| 成人国产麻豆网| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 亚洲四区av| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 波多野结衣巨乳人妻| 各种免费的搞黄视频| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 久久国内精品自在自线图片| 国产精品.久久久| 久久久久久久午夜电影| 精品视频人人做人人爽| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o| 中文字幕av成人在线电影| av国产久精品久网站免费入址| 伊人久久精品亚洲午夜| 听说在线观看完整版免费高清| 国产在线男女| 国产亚洲午夜精品一区二区久久 | 久久精品国产自在天天线| 国产亚洲一区二区精品| 日日啪夜夜撸| 少妇熟女欧美另类| freevideosex欧美| 欧美3d第一页| 街头女战士在线观看网站| 国产精品熟女久久久久浪| 少妇高潮的动态图| 免费观看性生交大片5| 特级一级黄色大片| 18禁在线播放成人免费| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 在线观看一区二区三区激情| 一级毛片 在线播放| 国产日韩欧美亚洲二区| 亚洲成人精品中文字幕电影| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 男的添女的下面高潮视频| 亚洲精品国产av成人精品| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 久久这里有精品视频免费| 国产男女内射视频| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 内地一区二区视频在线| eeuss影院久久| 极品教师在线视频| 午夜福利在线在线| 99热这里只有是精品在线观看| 亚洲自拍偷在线| 热re99久久精品国产66热6| 国产亚洲5aaaaa淫片| 成人鲁丝片一二三区免费| 亚洲精品日韩av片在线观看| 成人二区视频| 精华霜和精华液先用哪个| 亚洲久久久久久中文字幕| 成人国产麻豆网| 伊人久久国产一区二区| 高清日韩中文字幕在线| tube8黄色片| 国产成人免费观看mmmm| 丝袜喷水一区| 午夜激情久久久久久久| 久久久精品免费免费高清| 狂野欧美激情性xxxx在线观看| 欧美高清成人免费视频www| 国产精品女同一区二区软件| 久久精品国产亚洲av涩爱| 日本爱情动作片www.在线观看| 成人免费观看视频高清| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 日日啪夜夜撸| 少妇熟女欧美另类| 国产精品成人在线| 免费看日本二区| 一区二区av电影网| 老女人水多毛片| 在线观看三级黄色| a级一级毛片免费在线观看| 狂野欧美激情性xxxx在线观看| 麻豆成人av视频| 色播亚洲综合网| 久久女婷五月综合色啪小说 | 日本三级黄在线观看| 高清日韩中文字幕在线| 一级爰片在线观看| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理| 欧美性猛交╳xxx乱大交人| 岛国毛片在线播放| 午夜老司机福利剧场| 1000部很黄的大片| 久久久久性生活片| 精华霜和精华液先用哪个| av在线app专区| 大码成人一级视频| 日日摸夜夜添夜夜添av毛片| av在线播放精品| 99精国产麻豆久久婷婷| 国产黄色视频一区二区在线观看| 亚洲天堂av无毛| 直男gayav资源| 国产黄a三级三级三级人| 熟女av电影| 国精品久久久久久国模美| 国产男女超爽视频在线观看| 男人和女人高潮做爰伦理| 亚洲激情五月婷婷啪啪|