• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of CFD Simulation for Ship Roll Damping

    2017-05-13 02:33:34BUShuxiaQIUGengyaoGUMinWUChengshengZENGKe
    船舶力學(xué) 2017年3期
    關(guān)鍵詞:穩(wěn)性科學(xué)研究阻尼

    BU Shu-xia,QIU Geng-yao,GU Min,WU Cheng-sheng,ZENG Ke

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Validation of CFD Simulation for Ship Roll Damping

    BU Shu-xia,QIU Geng-yao,GU Min,WU Cheng-sheng,ZENG Ke

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Ship roll damping is a key factor for predicting large amplitude roll motions,such as parametric roll and stability under dead ship condition.In this paper,the free roll motions of an international standard model ship 2792 for dead ship are simulated based on the unsteady RANS equation in calm water by two types of meshes,the sliding mesh and the overset mesh.The free roll decay curves of numerical simulations are compared with experimental results,and the roll damping coefficients are also compared with that in Ikeda’s simplified formula.The calculated free decay curves agree quite well with the free decay curves from the experiments,and the errors of roll damping coefficient calculated by CFD are smaller than that from Ikeda’s simplified formula,which validate that the unsteady RANS equation can be used to predict roll damping.

    Roll damping;RANS;free rolling;overset mesh;sliding mesh

    0 Introduction

    The large roll motions such as parametric roll and dead ship stability are one of critical risks for the safety when the ship sails in the sea,and the roll damping is essential to accurately predict these large roll motions.However,the accurate prediction of ship roll damping is very difficult,except for high cost experiments.Therefore,a numerical method for the prediction of large roll damping with high accuracy is desirable.

    In general,most of the calculation methods are based on the potential theory,and the most common method is Ikeda’s method[1-5].These formulas can be used quite well for the conventional ships,but the prediction results are sometimes conservative or underestimated for the unconventional ships[6-8].This is because the large roll damping is strongly nonlinear,which has relationships with fluid viscosity and flow characteristics,such as the flow separation and vortex shedding.So the empirical or semi-empirical formulas can not take the full consideration of different characteristics for different objects.Currently,the vulnerability criteria for parametric roll and dead ship stability are under development by International Maritime Organization(IMO)at second generation intact stability criteria,in which the roll damping coefficientswere proposed by using Ikeda’s simplified method.The calculated results of most traditional ships by Ikeda’s simplified method can fit experimental data quite well at the same order magnitude.However,if the size is outside the application range of Ikeda’s method,or for the large amplitude motions in some phenomena,the accuracy will be low,which limits the application scope of Ikeda’s method.

    In addition to Ikeda’s simplified method,the Correspondence Group on Intact Stability regarding second generation intact stability criteria also proposed that the roll damping could be calculated by roll decay/forced roll test or CFD simulation[9].Although the model tests can predict the roll damping very well,but it is costly and time-consuming and most of experimental data are limited to a certain frequency range and particular geometry,which is impossible for the large-scale expansion of the application[10-11].

    For the accurate calculation of roll damping,the influence of viscosity must be considered. The CFD numerical simulation can consider different objects and its characteristic,so it can be used to predict roll damping.Forced roll method and free roll decay method are two main methods for the calculation of the roll damping.

    In our previous studies[12],the forced roll motions of one 2D ship section based on the methods of orthogonal design and variance analysis were carried out,in which different calculation parameters for the roll damping are analyzed,and the free motions of one 3D containership were also carried out.

    The aim of this paper is to study the feasibility of CFD code for the prediction of the roll damping.The roll damping of one standard model 2792 which is an international standard model for dead ship stability is simulated based on the unsteady RANS equation in calm water by CFD code,and two methods for grid system are used during numerical simulations,one is sliding interface method and the other is dynamic overset grid method.

    In the sliding mesh technique,two mesh zones are used,and they are contacted by a‘mesh interface.’The inner zone which is close to the bodies is moving with bodies,and the outer zone translates with bodies,which leads to the relative rotation between the outer zone and the inner zone.Overset meshes,also known as overlapping meshes,are used to discretize a computational domain with several different meshes that overlap each other in an arbitrary manner.Overset mesh has a background region enclosing the entire solution domain and one or more smaller regions containing the bodies within the domain.Both methods are most useful in problems dealing with moving bodies.

    In this paper,the free decay curves as well as the roll damping coefficients calculated by both methods are compared with experimental results.Considering that the Ikeda’s simplified method is recommend for the evaluation of roll damping coefficients in the latest drafts for parametric roll at second generation intact stability[13],the results of roll damping coefficients are also compared with that from Ikeda’s simplified formula.

    1 Ship geometry and experiment

    The international standard model ship 2792 for dead ship stability with scale of 65.0 is adopted for the CFD computations.Main particulars of the standard model 2792 are given in Tab.1 and the body plans are shown in Fig.1.

    Typical models used to study roll decay are usually with bilge keels which take account of the contribution of bilge keels to roll damping. However,for simplicity,models without bilge keels in calm water were used in this paper. The free roll decay experiments for the ship 2792 are carried out at the towing tank of Wuhan University of Technology,as shown in Fig.1. The roll decay curves were measured by a MEMS(Micro Electro-Mechanical System)-based gyroscope placed on the ship model,and the initial roll angles are 10°,20°and 25°,respectively.

    Tab.1 Principal particulars of the 2792 model

    Fig.1 The ship 2792(Left:lines;Right:ship model in free roll decay test)

    2 Computation method

    2.1 Mathematical model and numerical method

    All computations are performed by solving unsteady RANS equation.RNG k-ε two-equation turbulence model is employed for the enclosure of the governing equations.The VOF method is adopted for the treatment of nonlinear free surface.The pressure-correction algorithm of SIMPLE type is used for the pressure-velocity coupling.Two methods are used during simulations,one method is the sliding mesh,and the other is the overset mesh.The enhanced wall function is adopted based on the previous studies[12].

    In simulations,the modes of roll,sway and heave are free and other modes are constrained. The type of body mesh and hull geometry are shown in Fig.2,and the solution domains are shown in Fig.3 and Fig.4,respectively.The boundary of the computational domain is composed of inlet boundary,outlet boundary,wall boundary(hull surface),and outer boundary.

    Fig.2 The hull meshes and geometry of the ship 2792

    Fig.3 Computational domains and meshes in the method of sliding mesh

    Fig.4 Computational domains and meshes in the method of overset mesh

    2.2 Analysis methods

    According to the latest drafts for the vulnerability criteria of parametric roll(Correspondence Group on Intact Stability,2015),if we introduce the equivalent linear damping coefficient B44φa(),the roll motion in calm water can be modelled as:

    where Ixx+Jxxis virtual moment of inertia in roll,W is ship weight,GM is initial metacentric height.Then:

    In Ikeda’s simplified formula,B44is normalized as follows:

    where B is ship breadth,▽is ship displacement volume and ρ is water density.

    In order to compare the results of roll damping coefficients between CFD and the Ikeda’s simplified method,the extinction curve should be expressed as the linear formula(4),which is the essential component of the roll damping.

    where Δφ is decrement of roll decay curve and φmis mean swing angle of roll decay curve.

    The linear fitting coefficient A can also be calculated as formula(5),for the conservation of energy.

    The results of 2α are compared for different methods,which can analyze the combined error of roll amplitude and roll period.The natural roll periods measured in model tests are used in the Ikeda’s simplified formula,taking into consideration that only the equivalent roll damping coefficient can be calculated by Ikeda’s simplified formula.

    3 The calculation results and analysis

    3.1 The grid analysis

    A simple grid analysis is given out for the dynamic overset grid method.The profile of the computational domain is shown in Fig.5.This computational domain is separated into two main regions,background region and overset region,and each region is further divided into several small zones.The mesh in overlap region is refined to guarantee the data exchange between overset region and background region.The waterline plane region is also refined to capture the free surface.

    Generally,the size for the background region and the overset region should be large enough to simulate actual situation.However, the size of the overset region should be as small as possible to reduce computation cost in the actual simulations.In this paper,two different widths of overset region are analyzed,one is 4B(S1)and another is 5B(S2).This is because the width is the main influential size when simulating free roll motion in calm water.The comparison results shown in Fig.6 show that the two curves are almost the same,which means that the width 4B is enough for the simulations.

    Fig.5 The profile of computational domain for the overset grid method

    Fig.6 Comparison results(Left:different widths of overset region;Right:different base sizes)

    Three cases for the grid convergence are also carried out to confirm the base size.In the first case shown as V1 in Fig.6,the base size for the background domain is equal to 0.08 m and the base size for the overset domain is equal to 0.04 m.In the second case shown as V2, the base size is decreased to 0.07 m for the background domain and 0.035 m for the overset domain.In the third case shown as V3,the base size is kept for the background domain and the base size for the overset domain is decreased to 0.03 m.The results show that the base size in the first case is small enough for the numerical simulations.

    3.2 The results of standard model 2792

    For the free roll decay motions of the ship model 2792,the initial roll angles 10°,20° and 25°are simulated respectively by two methods,as shown from Fig.7 to Fig.9,and the results of coefficient 2α are shown in Tab.2.

    The curves show that the periods and amplitudes calculated by the overset gird method agree better with the experimental data than that by the sliding mesh method.The results of roll damping coefficient 2α show that the accuracy of CFD code is higher than Ikeda’s simplified formula.

    Fig.7 Free decay curve for 2792-initial heel 10°(Left:overset mesh;Right:sliding mesh)

    Fig.8 Free decay curve for 2792-initial heel 20°(Left:overset mesh;Right:sliding mesh)

    Fig.9 Free decay curve for 2792-initial heel 25°(Left:overset mesh;Right:sliding mesh)

    During simulations,we found that the heave motion simulated by the sliding mesh method fluctuated remarkably when compared the results with that simulated by the overset mesh method,although the roll amplitudes almost the same,as shown in Fig.10.This is mainly be-cause the interface data exchange for sliding mesh is not smoothness between static and motion regions.

    Tab.2 Results of 2α calculated by different methods for the ship 2792

    Fig.10 Comparisons of free roll decay curve and heave curve between overset mesh and sliding mesh

    4 Conclusions

    As the comparisons for the free rolling motions of one standard model among two methods of numerical simulations,Ikeda’s simplified method and experiments,the following remarks are noted:

    (1)The free rolling based on unsteady RANS equations has the ability to predict the roll damping,at least for large roll amplitudes.

    (2)For the method of dynamic overset grid,the natural roll periods agree quite well with experimental results,but the roll amplitudes are slightly larger than experimental results.For the method of sliding interface grid,both the natural roll period and the roll amplitude are slightly larger than experimental results.

    (3)The roll damping coefficients calculated by CFD are better than that calculated by Ikeda’s simplified formula,which indicates that the free rolling based on unsteady RANS equation has the ability to predict the roll damping,at least for large roll amplitudes.

    (4)Based on current studies,the following combination of calculation parameters is recommend when simulating free roll decay motion,unsteady RANS equations combined with RNG k-ε two-equation turbulent model to solve flow field,VOF method to capture free surface,sliding interface technique or dynamic overset mesh technique to compute bodies motions,enhanced wall function to treat near-wall boundary layer.

    The bilge keels were not considered in our simulations.However,the bilge keel damping contributes a large portion to the total damping[14],so more works should be carried out in fu-ture to validate the feasibility of CFD for roll damping,and to improve the accuracy,especially for the unconventional ship with bilge keels.

    Acknowledgements

    The model tests for ship 2792 were conducted in Wuhan University of Technology,and the experimental data were provided by Prof.Mao Xiaofei from Wuhan University of Technology and Dr.Lu Jiang from China Ship Scientific Research Center.The research is supported by Ministry of Industry and Information Technology of China(No.[2016]26).The authors sincerely thank the above organization and individuals.

    [1]Ikeda Y,Himeno Y,Tanaka N.On eddy making component of roll damping force on naked hull[J].Journal of the Society of Naval Architects of Japan,1977a,162:59-69.

    [2]Ikeda Y,Komatsu K,Himeno Y,Tanaka N.On roll damping force of ship-effect of hull surface pressure created by bilge keels[J].Journal of the Society of Naval Architects of Japan,1977b,165:31-40.

    [3]Ikeda Y,Himeno Y,Tanaka N.Components of roll damping of ship at forward speed[J].Journal of the Society of Naval Architects of Japan,1978,143:113-125.

    [4]Ikeda Y,Katayama T.Roll damping prediction method for a high-speed planning craft[J].Proceedings of the 7th International Conference of Ships and Ocean Vehicles(STAB’2000),2000,2:532-541.

    [5]Ikeda Y.Prediction methods of roll damping of ships and their application to determine optimum stabilization devices[J]. Marine Technology,2004,41(2):89-93.

    [6]Japan.Interim verification and validation report on simplified roll damping[R].IMO SLF 54/INF 12,Annex 7,2011a.

    [7]Japan.Additional validation data on simplified roll damping estimation for vulnerability criteria on parametric rolling[R]. IMO SLF 54/INF 12,Annex 11,2011b.

    [8]Sweden.Evaluation of Ikeda’s simplified method for prediction of roll damping[R].IMO SLF 54/3/6,2011.

    [9]United States&Japan.Draft guidelines of direct stability assessment procedures as a part of the second generation intact stability criteria[R].IMO SDC1/INF.8,Annex 27,2014.

    [10]Bass D W,Haddara,M R.Non-linear models of ship roll damping[J].International Shipbuilding Progress,1988,35(401):5-24.

    [11]Blok J J,Aalbers A B.Roll damping due to lift effects on high speed monohulls[C].FAST`91,1991,2:1331-1349.

    [12]Gu Min,Lu Jiang,Bu Shuxia,Wu Chengsheng,QiuGengyao.Numerical simulation of the ship roll damping[C]//12th STAB,Glasgow UK,2015:341-348.

    [13]ISCG(the Correspondence Group on Intact Stability).Draft explanatory notes on the vulnerability of ships to the parametric roll stability failure mode[R].IMOSDC3/INF.10,Annex 17,2015.

    [14]Bassler C C,Reed A M.An analysis of the bilge keel roll damping component model[C]//10th STAB.St.Petersburg, Russia,2009:369-386.

    摘要:船舶橫搖阻尼是影響參數(shù)橫搖和癱船穩(wěn)性等大幅橫搖運(yùn)動(dòng)的關(guān)鍵參數(shù)。文中基于非定常RANS方程在靜水中對(duì)模型2792進(jìn)行了自由橫搖衰減的數(shù)值模擬,該模型是船舶第二代完整穩(wěn)性衡準(zhǔn)制定中癱船穩(wěn)性研究的國(guó)際標(biāo)準(zhǔn)船模,數(shù)值模擬中采用了兩種網(wǎng)格類型,一種是滑移網(wǎng)格,另一種重疊網(wǎng)格。計(jì)算結(jié)果表明,數(shù)值模擬的自由橫搖衰減曲線和模型試驗(yàn)結(jié)果吻合良好,另外CFD計(jì)算的橫搖阻尼與試驗(yàn)值的誤差小于Ikeda’s經(jīng)驗(yàn)公式計(jì)算的誤差,證明非定常RANS方程可用于預(yù)報(bào)橫搖阻尼。

    船舶橫搖阻尼的CFD數(shù)值模擬研究

    卜淑霞,邱耿耀,顧民,吳乘勝,曾柯
    (中國(guó)船舶科學(xué)研究中心,江蘇無錫214082)

    橫搖阻尼;RANS;自由橫搖衰減;重疊網(wǎng)格;滑移網(wǎng)格

    U661.32+1

    :A

    卜淑霞(1989-),女,中國(guó)船舶科學(xué)研究中心博士研究生,工程師;

    1007-7294(2017)03-0275-09

    U661.32+1

    :A

    10.3969/j.issn.1007-7294.2017.03.003

    邱耿耀(1985-),男,中國(guó)船舶科學(xué)研究中心高級(jí)工程師;

    顧民(1962-),男,中國(guó)船舶科學(xué)研究中心研究員,博士生導(dǎo)師;

    吳乘勝(1976-),男,中國(guó)船舶科學(xué)研究中心研究員;

    曾柯(1989-),男,中國(guó)船舶科學(xué)研究中心助理工程師。

    Received date:2016-12-29

    Foundation item:Supported by Ministry of Industry and Information Technology of China(No.[2016]26)

    Biography:BU Shu-xia(1989-),female,Ph.D.Candidate,E-mail:bushuxia702@126.com;

    QIU Geng-yao(1985-),male,engineer;

    Gu Min(1962-),male,researcher.

    猜你喜歡
    穩(wěn)性科學(xué)研究阻尼
    歡迎訂閱《林業(yè)科學(xué)研究》
    船舶穩(wěn)性控制系統(tǒng)研究
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    N維不可壓無阻尼Oldroyd-B模型的最優(yōu)衰減
    關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
    具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
    紡織科學(xué)研究
    具阻尼項(xiàng)的Boussinesq型方程的長(zhǎng)時(shí)間行為
    絞吸式挖泥船的穩(wěn)性計(jì)算
    廣東造船(2015年6期)2015-02-27 10:52:45
    欧美在线一区亚洲| 欧美日本视频| 国产aⅴ精品一区二区三区波| 久久久久久久久中文| 三级男女做爰猛烈吃奶摸视频| 亚洲精品一区av在线观看| 男女床上黄色一级片免费看| 好男人在线观看高清免费视频| 婷婷丁香在线五月| 久久久久免费精品人妻一区二区| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 久久九九热精品免费| 直男gayav资源| 天天一区二区日本电影三级| 亚洲美女黄片视频| 极品教师在线免费播放| 国产单亲对白刺激| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久亚洲 | 欧美成人性av电影在线观看| 精品日产1卡2卡| 久久久久免费精品人妻一区二区| 一级a爱片免费观看的视频| 国产国拍精品亚洲av在线观看| www.www免费av| 国产久久久一区二区三区| 看黄色毛片网站| 中文字幕高清在线视频| 欧美精品国产亚洲| 国产av不卡久久| 噜噜噜噜噜久久久久久91| 成人午夜高清在线视频| 亚洲五月天丁香| 中国美女看黄片| 一级作爱视频免费观看| 欧美日韩福利视频一区二区| 女人被狂操c到高潮| 99精品久久久久人妻精品| 无人区码免费观看不卡| 久久精品国产亚洲av天美| 国产精品一区二区免费欧美| 亚洲人成网站高清观看| 中文字幕av在线有码专区| 熟妇人妻久久中文字幕3abv| 好男人电影高清在线观看| 国产乱人伦免费视频| ponron亚洲| 欧美在线黄色| 亚洲熟妇中文字幕五十中出| 色哟哟·www| 岛国在线免费视频观看| 久久6这里有精品| 最近最新免费中文字幕在线| 国产真实乱freesex| 国产69精品久久久久777片| 怎么达到女性高潮| 国产精品1区2区在线观看.| 国产免费一级a男人的天堂| 搡老岳熟女国产| 深夜精品福利| 亚洲国产欧洲综合997久久,| 99riav亚洲国产免费| 在线看三级毛片| 国产高清三级在线| 国产熟女xx| h日本视频在线播放| 国产男靠女视频免费网站| 又粗又爽又猛毛片免费看| 欧美日本亚洲视频在线播放| 五月玫瑰六月丁香| av在线天堂中文字幕| 一区二区三区四区激情视频 | 少妇裸体淫交视频免费看高清| 一区二区三区四区激情视频 | 69av精品久久久久久| 国内精品久久久久久久电影| 免费看日本二区| 国内久久婷婷六月综合欲色啪| 久久久久久久久久成人| 三级国产精品欧美在线观看| 99久久久亚洲精品蜜臀av| 少妇被粗大猛烈的视频| 日本精品一区二区三区蜜桃| 91在线精品国自产拍蜜月| 日韩高清综合在线| 一卡2卡三卡四卡精品乱码亚洲| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 久久国产精品人妻蜜桃| 国产精品1区2区在线观看.| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 特大巨黑吊av在线直播| 亚洲最大成人中文| 国产一区二区在线观看日韩| 91在线精品国自产拍蜜月| 欧美成人免费av一区二区三区| 国产成+人综合+亚洲专区| 身体一侧抽搐| 欧美+亚洲+日韩+国产| www日本黄色视频网| 在线免费观看的www视频| 亚洲精品粉嫩美女一区| 一个人免费在线观看电影| 99久久无色码亚洲精品果冻| 精品无人区乱码1区二区| 精品午夜福利视频在线观看一区| 国产欧美日韩精品一区二区| 欧美乱色亚洲激情| 大型黄色视频在线免费观看| 亚州av有码| 免费搜索国产男女视频| 能在线免费观看的黄片| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 别揉我奶头 嗯啊视频| 亚洲最大成人中文| 亚洲精品日韩av片在线观看| 国产一区二区激情短视频| 日韩av在线大香蕉| 无人区码免费观看不卡| 午夜激情福利司机影院| aaaaa片日本免费| 99久久精品国产亚洲精品| 精品久久久久久成人av| 免费观看精品视频网站| 国产乱人伦免费视频| 身体一侧抽搐| 日韩成人在线观看一区二区三区| 国产成年人精品一区二区| 91久久精品国产一区二区成人| 亚洲欧美激情综合另类| 国产大屁股一区二区在线视频| 日日摸夜夜添夜夜添av毛片 | 永久网站在线| 国产精品一及| 日本 欧美在线| 午夜激情欧美在线| 国产亚洲欧美98| 精品久久久久久久久久久久久| 亚洲一区二区三区不卡视频| 国产亚洲精品综合一区在线观看| 日本熟妇午夜| 亚洲精品一区av在线观看| 国产黄a三级三级三级人| 成人无遮挡网站| 99热6这里只有精品| 啦啦啦观看免费观看视频高清| 少妇高潮的动态图| 国产男靠女视频免费网站| 高清日韩中文字幕在线| 国产精品日韩av在线免费观看| а√天堂www在线а√下载| 一级作爱视频免费观看| 老女人水多毛片| 久久久久免费精品人妻一区二区| 神马国产精品三级电影在线观看| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 国产精品av视频在线免费观看| 免费观看的影片在线观看| 看黄色毛片网站| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久久久免 | 啦啦啦观看免费观看视频高清| 亚洲国产精品合色在线| 日韩人妻高清精品专区| 国产av不卡久久| 成人性生交大片免费视频hd| 日本一本二区三区精品| 人妻制服诱惑在线中文字幕| 女同久久另类99精品国产91| 国产老妇女一区| 国产午夜精品久久久久久一区二区三区 | 久久这里只有精品中国| 午夜精品久久久久久毛片777| 国产精品亚洲美女久久久| 久久久久久久久大av| 午夜精品久久久久久毛片777| 色5月婷婷丁香| 一进一出好大好爽视频| 一级av片app| 国产精品亚洲一级av第二区| 午夜福利免费观看在线| 又黄又爽又刺激的免费视频.| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜亚洲精品久久| 欧美日韩国产亚洲二区| 国产成人福利小说| 99久久成人亚洲精品观看| 嫩草影视91久久| 久久久久久久精品吃奶| 9191精品国产免费久久| 久久人人爽人人爽人人片va | 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 看十八女毛片水多多多| 一个人免费在线观看的高清视频| 久久伊人香网站| 国产三级中文精品| 给我免费播放毛片高清在线观看| 黄色配什么色好看| or卡值多少钱| 国内精品久久久久精免费| 美女大奶头视频| 亚洲成av人片免费观看| 亚洲午夜理论影院| 少妇的逼好多水| 久久草成人影院| 身体一侧抽搐| 日韩欧美精品免费久久 | 老鸭窝网址在线观看| 午夜视频国产福利| 精品乱码久久久久久99久播| 欧美高清性xxxxhd video| 成人av一区二区三区在线看| 久久久久九九精品影院| 成人国产综合亚洲| av在线天堂中文字幕| 又黄又爽又刺激的免费视频.| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 国产极品精品免费视频能看的| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| avwww免费| bbb黄色大片| 在线a可以看的网站| 舔av片在线| 国产 一区 欧美 日韩| 自拍偷自拍亚洲精品老妇| 国产精华一区二区三区| av福利片在线观看| 女人十人毛片免费观看3o分钟| 国产av麻豆久久久久久久| 久久这里只有精品中国| 特大巨黑吊av在线直播| 亚洲 国产 在线| 亚洲精华国产精华精| 91九色精品人成在线观看| 日本精品一区二区三区蜜桃| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 免费观看的影片在线观看| 欧美精品啪啪一区二区三区| 超碰av人人做人人爽久久| 日韩大尺度精品在线看网址| 国产精品一及| 直男gayav资源| 国产午夜精品久久久久久一区二区三区 | 中文字幕av成人在线电影| 午夜福利在线观看吧| 91狼人影院| 精品午夜福利在线看| 欧美成人免费av一区二区三区| 久久精品人妻少妇| 欧美成狂野欧美在线观看| 免费无遮挡裸体视频| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 日韩中字成人| 亚洲欧美激情综合另类| 日韩人妻高清精品专区| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 精品午夜福利视频在线观看一区| 波多野结衣高清无吗| 毛片女人毛片| 国产精品亚洲一级av第二区| 久久午夜福利片| 国产精品不卡视频一区二区 | 成人永久免费在线观看视频| 乱人视频在线观看| 18+在线观看网站| 色吧在线观看| 精品久久久久久久久久久久久| 搡老岳熟女国产| 在线免费观看不下载黄p国产 | 国产欧美日韩精品亚洲av| 直男gayav资源| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 中文字幕av成人在线电影| 国产精华一区二区三区| 国产精品久久久久久久电影| 性色avwww在线观看| 国内精品一区二区在线观看| 69人妻影院| 黄片小视频在线播放| 最近最新免费中文字幕在线| 欧美黑人巨大hd| 亚洲无线在线观看| 午夜福利成人在线免费观看| 不卡一级毛片| 听说在线观看完整版免费高清| 国产v大片淫在线免费观看| 欧美日韩瑟瑟在线播放| 亚洲av免费在线观看| 欧美成人性av电影在线观看| 可以在线观看毛片的网站| 久久国产乱子免费精品| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清| 精品久久久久久久久亚洲 | 亚洲七黄色美女视频| 99热这里只有是精品50| 村上凉子中文字幕在线| 亚洲成av人片免费观看| 好看av亚洲va欧美ⅴa在| www.色视频.com| 亚洲欧美日韩高清专用| 国产毛片a区久久久久| 免费高清视频大片| 久久草成人影院| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| 国产成人欧美在线观看| 成人av一区二区三区在线看| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 男人舔女人下体高潮全视频| 毛片女人毛片| 久久精品国产亚洲av涩爱 | 偷拍熟女少妇极品色| 国产精品电影一区二区三区| 亚洲精品粉嫩美女一区| 国产在线男女| 亚洲av电影在线进入| 丁香六月欧美| 淫秽高清视频在线观看| 看黄色毛片网站| 色综合站精品国产| 99久久99久久久精品蜜桃| 欧美一区二区国产精品久久精品| 欧美高清成人免费视频www| 床上黄色一级片| 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 啦啦啦观看免费观看视频高清| 深夜精品福利| 欧美潮喷喷水| 90打野战视频偷拍视频| 9191精品国产免费久久| 日韩欧美免费精品| 国产午夜精品论理片| 中文字幕熟女人妻在线| 好看av亚洲va欧美ⅴa在| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 美女xxoo啪啪120秒动态图 | 成年人黄色毛片网站| 一区二区三区激情视频| 午夜免费激情av| 日韩中文字幕欧美一区二区| 性色avwww在线观看| 欧美区成人在线视频| 18美女黄网站色大片免费观看| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 亚洲中文字幕一区二区三区有码在线看| 青草久久国产| 国产爱豆传媒在线观看| 国产成人aa在线观看| 老熟妇仑乱视频hdxx| 精品人妻熟女av久视频| 日本五十路高清| 很黄的视频免费| 婷婷精品国产亚洲av在线| 很黄的视频免费| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 婷婷丁香在线五月| 久久久成人免费电影| 亚洲精品乱码久久久v下载方式| 国产精品av视频在线免费观看| 色尼玛亚洲综合影院| 欧美午夜高清在线| 怎么达到女性高潮| a级毛片a级免费在线| 午夜免费男女啪啪视频观看 | 十八禁网站免费在线| 99精品在免费线老司机午夜| 亚洲狠狠婷婷综合久久图片| 免费看光身美女| 日韩av在线大香蕉| 亚洲,欧美,日韩| 九色成人免费人妻av| 国产欧美日韩一区二区三| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 国产三级中文精品| 成人特级av手机在线观看| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| or卡值多少钱| 99热精品在线国产| 久久婷婷人人爽人人干人人爱| 美女 人体艺术 gogo| 亚洲专区国产一区二区| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 日本与韩国留学比较| 久久性视频一级片| 少妇熟女aⅴ在线视频| 国产黄a三级三级三级人| 欧美国产日韩亚洲一区| 人人妻人人澡欧美一区二区| 麻豆国产av国片精品| 免费无遮挡裸体视频| 日韩欧美免费精品| 欧美日本视频| 免费人成视频x8x8入口观看| 欧美区成人在线视频| 精品欧美国产一区二区三| 一进一出抽搐gif免费好疼| 日韩 亚洲 欧美在线| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 久久精品国产自在天天线| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 国产在线男女| 国产高清有码在线观看视频| 熟女电影av网| 久99久视频精品免费| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 国产精品久久久久久精品电影| 久久人妻av系列| 九色成人免费人妻av| 日日摸夜夜添夜夜添av毛片 | 精品欧美国产一区二区三| 亚洲 国产 在线| 女人被狂操c到高潮| 热99在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女视频黄频| 午夜精品一区二区三区免费看| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱色亚洲激情| 成人无遮挡网站| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 日本五十路高清| 亚洲人成伊人成综合网2020| 91午夜精品亚洲一区二区三区 | 欧美绝顶高潮抽搐喷水| 国产精品女同一区二区软件 | 国产精品伦人一区二区| 日本与韩国留学比较| 欧美3d第一页| 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| 嫩草影视91久久| 日本撒尿小便嘘嘘汇集6| 一区二区三区高清视频在线| 国产欧美日韩精品亚洲av| 国产激情偷乱视频一区二区| 久久久久久大精品| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 97超视频在线观看视频| 亚洲av不卡在线观看| 99国产极品粉嫩在线观看| 国内精品久久久久久久电影| 在线观看av片永久免费下载| 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 中国美女看黄片| 久久国产精品影院| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 亚洲七黄色美女视频| 天天一区二区日本电影三级| 搡老妇女老女人老熟妇| 一个人看视频在线观看www免费| 一级毛片久久久久久久久女| 在线观看舔阴道视频| 嫩草影院精品99| 国产亚洲精品综合一区在线观看| 露出奶头的视频| netflix在线观看网站| 国产精品爽爽va在线观看网站| 中文字幕高清在线视频| 90打野战视频偷拍视频| 色综合婷婷激情| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看| 综合色av麻豆| 人人妻人人看人人澡| 丰满乱子伦码专区| 欧美高清成人免费视频www| 中文字幕熟女人妻在线| 搡老熟女国产l中国老女人| 国产精品女同一区二区软件 | 成人特级黄色片久久久久久久| 97热精品久久久久久| 精品不卡国产一区二区三区| 午夜老司机福利剧场| 亚洲成人免费电影在线观看| 久久性视频一级片| 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 中文字幕av成人在线电影| 中文字幕精品亚洲无线码一区| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 白带黄色成豆腐渣| 精品久久久久久久末码| 变态另类成人亚洲欧美熟女| 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| 亚洲欧美日韩高清专用| 国产极品精品免费视频能看的| 精品欧美国产一区二区三| 大型黄色视频在线免费观看| 最新在线观看一区二区三区| 成人三级黄色视频| 欧美日韩亚洲国产一区二区在线观看| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 欧美日韩综合久久久久久 | 免费看美女性在线毛片视频| 婷婷亚洲欧美| 成人无遮挡网站| 日本黄大片高清| 真人一进一出gif抽搐免费| 老熟妇仑乱视频hdxx| 日韩有码中文字幕| 神马国产精品三级电影在线观看| 首页视频小说图片口味搜索| 欧美bdsm另类| 级片在线观看| 长腿黑丝高跟| 中文字幕高清在线视频| 超碰av人人做人人爽久久| 又黄又爽又免费观看的视频| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 国产精华一区二区三区| ponron亚洲| 欧美3d第一页| 国内揄拍国产精品人妻在线| 国产aⅴ精品一区二区三区波| 变态另类丝袜制服| 国产熟女xx| 一个人观看的视频www高清免费观看| 在线观看免费视频日本深夜| 久9热在线精品视频| 亚洲精品在线观看二区| 久久草成人影院| www.色视频.com| 成人一区二区视频在线观看| 亚洲狠狠婷婷综合久久图片| 免费看光身美女| 中国美女看黄片| 成人国产一区最新在线观看| 国产aⅴ精品一区二区三区波| 嫩草影院新地址| 久久热精品热| 国产av一区在线观看免费| 国产精品精品国产色婷婷| 亚洲第一区二区三区不卡| 成人亚洲精品av一区二区| 露出奶头的视频| 国产极品精品免费视频能看的| 欧美极品一区二区三区四区| 国产一区二区亚洲精品在线观看| 女同久久另类99精品国产91| 亚洲精品456在线播放app | 三级毛片av免费| 97超视频在线观看视频| 国产精品国产高清国产av| x7x7x7水蜜桃| 波多野结衣高清作品| 国产精品98久久久久久宅男小说| 日本黄色片子视频| 国产国拍精品亚洲av在线观看| 变态另类成人亚洲欧美熟女| 热99re8久久精品国产| 午夜福利欧美成人| 又黄又爽又刺激的免费视频.| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 麻豆成人午夜福利视频| 深夜a级毛片| 久久久久久久亚洲中文字幕 | 亚洲无线观看免费| 国产伦人伦偷精品视频| 久久国产精品影院|