• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of CFD Simulation for Ship Roll Damping

    2017-05-13 02:33:34BUShuxiaQIUGengyaoGUMinWUChengshengZENGKe
    船舶力學(xué) 2017年3期
    關(guān)鍵詞:穩(wěn)性科學(xué)研究阻尼

    BU Shu-xia,QIU Geng-yao,GU Min,WU Cheng-sheng,ZENG Ke

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Validation of CFD Simulation for Ship Roll Damping

    BU Shu-xia,QIU Geng-yao,GU Min,WU Cheng-sheng,ZENG Ke

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Ship roll damping is a key factor for predicting large amplitude roll motions,such as parametric roll and stability under dead ship condition.In this paper,the free roll motions of an international standard model ship 2792 for dead ship are simulated based on the unsteady RANS equation in calm water by two types of meshes,the sliding mesh and the overset mesh.The free roll decay curves of numerical simulations are compared with experimental results,and the roll damping coefficients are also compared with that in Ikeda’s simplified formula.The calculated free decay curves agree quite well with the free decay curves from the experiments,and the errors of roll damping coefficient calculated by CFD are smaller than that from Ikeda’s simplified formula,which validate that the unsteady RANS equation can be used to predict roll damping.

    Roll damping;RANS;free rolling;overset mesh;sliding mesh

    0 Introduction

    The large roll motions such as parametric roll and dead ship stability are one of critical risks for the safety when the ship sails in the sea,and the roll damping is essential to accurately predict these large roll motions.However,the accurate prediction of ship roll damping is very difficult,except for high cost experiments.Therefore,a numerical method for the prediction of large roll damping with high accuracy is desirable.

    In general,most of the calculation methods are based on the potential theory,and the most common method is Ikeda’s method[1-5].These formulas can be used quite well for the conventional ships,but the prediction results are sometimes conservative or underestimated for the unconventional ships[6-8].This is because the large roll damping is strongly nonlinear,which has relationships with fluid viscosity and flow characteristics,such as the flow separation and vortex shedding.So the empirical or semi-empirical formulas can not take the full consideration of different characteristics for different objects.Currently,the vulnerability criteria for parametric roll and dead ship stability are under development by International Maritime Organization(IMO)at second generation intact stability criteria,in which the roll damping coefficientswere proposed by using Ikeda’s simplified method.The calculated results of most traditional ships by Ikeda’s simplified method can fit experimental data quite well at the same order magnitude.However,if the size is outside the application range of Ikeda’s method,or for the large amplitude motions in some phenomena,the accuracy will be low,which limits the application scope of Ikeda’s method.

    In addition to Ikeda’s simplified method,the Correspondence Group on Intact Stability regarding second generation intact stability criteria also proposed that the roll damping could be calculated by roll decay/forced roll test or CFD simulation[9].Although the model tests can predict the roll damping very well,but it is costly and time-consuming and most of experimental data are limited to a certain frequency range and particular geometry,which is impossible for the large-scale expansion of the application[10-11].

    For the accurate calculation of roll damping,the influence of viscosity must be considered. The CFD numerical simulation can consider different objects and its characteristic,so it can be used to predict roll damping.Forced roll method and free roll decay method are two main methods for the calculation of the roll damping.

    In our previous studies[12],the forced roll motions of one 2D ship section based on the methods of orthogonal design and variance analysis were carried out,in which different calculation parameters for the roll damping are analyzed,and the free motions of one 3D containership were also carried out.

    The aim of this paper is to study the feasibility of CFD code for the prediction of the roll damping.The roll damping of one standard model 2792 which is an international standard model for dead ship stability is simulated based on the unsteady RANS equation in calm water by CFD code,and two methods for grid system are used during numerical simulations,one is sliding interface method and the other is dynamic overset grid method.

    In the sliding mesh technique,two mesh zones are used,and they are contacted by a‘mesh interface.’The inner zone which is close to the bodies is moving with bodies,and the outer zone translates with bodies,which leads to the relative rotation between the outer zone and the inner zone.Overset meshes,also known as overlapping meshes,are used to discretize a computational domain with several different meshes that overlap each other in an arbitrary manner.Overset mesh has a background region enclosing the entire solution domain and one or more smaller regions containing the bodies within the domain.Both methods are most useful in problems dealing with moving bodies.

    In this paper,the free decay curves as well as the roll damping coefficients calculated by both methods are compared with experimental results.Considering that the Ikeda’s simplified method is recommend for the evaluation of roll damping coefficients in the latest drafts for parametric roll at second generation intact stability[13],the results of roll damping coefficients are also compared with that from Ikeda’s simplified formula.

    1 Ship geometry and experiment

    The international standard model ship 2792 for dead ship stability with scale of 65.0 is adopted for the CFD computations.Main particulars of the standard model 2792 are given in Tab.1 and the body plans are shown in Fig.1.

    Typical models used to study roll decay are usually with bilge keels which take account of the contribution of bilge keels to roll damping. However,for simplicity,models without bilge keels in calm water were used in this paper. The free roll decay experiments for the ship 2792 are carried out at the towing tank of Wuhan University of Technology,as shown in Fig.1. The roll decay curves were measured by a MEMS(Micro Electro-Mechanical System)-based gyroscope placed on the ship model,and the initial roll angles are 10°,20°and 25°,respectively.

    Tab.1 Principal particulars of the 2792 model

    Fig.1 The ship 2792(Left:lines;Right:ship model in free roll decay test)

    2 Computation method

    2.1 Mathematical model and numerical method

    All computations are performed by solving unsteady RANS equation.RNG k-ε two-equation turbulence model is employed for the enclosure of the governing equations.The VOF method is adopted for the treatment of nonlinear free surface.The pressure-correction algorithm of SIMPLE type is used for the pressure-velocity coupling.Two methods are used during simulations,one method is the sliding mesh,and the other is the overset mesh.The enhanced wall function is adopted based on the previous studies[12].

    In simulations,the modes of roll,sway and heave are free and other modes are constrained. The type of body mesh and hull geometry are shown in Fig.2,and the solution domains are shown in Fig.3 and Fig.4,respectively.The boundary of the computational domain is composed of inlet boundary,outlet boundary,wall boundary(hull surface),and outer boundary.

    Fig.2 The hull meshes and geometry of the ship 2792

    Fig.3 Computational domains and meshes in the method of sliding mesh

    Fig.4 Computational domains and meshes in the method of overset mesh

    2.2 Analysis methods

    According to the latest drafts for the vulnerability criteria of parametric roll(Correspondence Group on Intact Stability,2015),if we introduce the equivalent linear damping coefficient B44φa(),the roll motion in calm water can be modelled as:

    where Ixx+Jxxis virtual moment of inertia in roll,W is ship weight,GM is initial metacentric height.Then:

    In Ikeda’s simplified formula,B44is normalized as follows:

    where B is ship breadth,▽is ship displacement volume and ρ is water density.

    In order to compare the results of roll damping coefficients between CFD and the Ikeda’s simplified method,the extinction curve should be expressed as the linear formula(4),which is the essential component of the roll damping.

    where Δφ is decrement of roll decay curve and φmis mean swing angle of roll decay curve.

    The linear fitting coefficient A can also be calculated as formula(5),for the conservation of energy.

    The results of 2α are compared for different methods,which can analyze the combined error of roll amplitude and roll period.The natural roll periods measured in model tests are used in the Ikeda’s simplified formula,taking into consideration that only the equivalent roll damping coefficient can be calculated by Ikeda’s simplified formula.

    3 The calculation results and analysis

    3.1 The grid analysis

    A simple grid analysis is given out for the dynamic overset grid method.The profile of the computational domain is shown in Fig.5.This computational domain is separated into two main regions,background region and overset region,and each region is further divided into several small zones.The mesh in overlap region is refined to guarantee the data exchange between overset region and background region.The waterline plane region is also refined to capture the free surface.

    Generally,the size for the background region and the overset region should be large enough to simulate actual situation.However, the size of the overset region should be as small as possible to reduce computation cost in the actual simulations.In this paper,two different widths of overset region are analyzed,one is 4B(S1)and another is 5B(S2).This is because the width is the main influential size when simulating free roll motion in calm water.The comparison results shown in Fig.6 show that the two curves are almost the same,which means that the width 4B is enough for the simulations.

    Fig.5 The profile of computational domain for the overset grid method

    Fig.6 Comparison results(Left:different widths of overset region;Right:different base sizes)

    Three cases for the grid convergence are also carried out to confirm the base size.In the first case shown as V1 in Fig.6,the base size for the background domain is equal to 0.08 m and the base size for the overset domain is equal to 0.04 m.In the second case shown as V2, the base size is decreased to 0.07 m for the background domain and 0.035 m for the overset domain.In the third case shown as V3,the base size is kept for the background domain and the base size for the overset domain is decreased to 0.03 m.The results show that the base size in the first case is small enough for the numerical simulations.

    3.2 The results of standard model 2792

    For the free roll decay motions of the ship model 2792,the initial roll angles 10°,20° and 25°are simulated respectively by two methods,as shown from Fig.7 to Fig.9,and the results of coefficient 2α are shown in Tab.2.

    The curves show that the periods and amplitudes calculated by the overset gird method agree better with the experimental data than that by the sliding mesh method.The results of roll damping coefficient 2α show that the accuracy of CFD code is higher than Ikeda’s simplified formula.

    Fig.7 Free decay curve for 2792-initial heel 10°(Left:overset mesh;Right:sliding mesh)

    Fig.8 Free decay curve for 2792-initial heel 20°(Left:overset mesh;Right:sliding mesh)

    Fig.9 Free decay curve for 2792-initial heel 25°(Left:overset mesh;Right:sliding mesh)

    During simulations,we found that the heave motion simulated by the sliding mesh method fluctuated remarkably when compared the results with that simulated by the overset mesh method,although the roll amplitudes almost the same,as shown in Fig.10.This is mainly be-cause the interface data exchange for sliding mesh is not smoothness between static and motion regions.

    Tab.2 Results of 2α calculated by different methods for the ship 2792

    Fig.10 Comparisons of free roll decay curve and heave curve between overset mesh and sliding mesh

    4 Conclusions

    As the comparisons for the free rolling motions of one standard model among two methods of numerical simulations,Ikeda’s simplified method and experiments,the following remarks are noted:

    (1)The free rolling based on unsteady RANS equations has the ability to predict the roll damping,at least for large roll amplitudes.

    (2)For the method of dynamic overset grid,the natural roll periods agree quite well with experimental results,but the roll amplitudes are slightly larger than experimental results.For the method of sliding interface grid,both the natural roll period and the roll amplitude are slightly larger than experimental results.

    (3)The roll damping coefficients calculated by CFD are better than that calculated by Ikeda’s simplified formula,which indicates that the free rolling based on unsteady RANS equation has the ability to predict the roll damping,at least for large roll amplitudes.

    (4)Based on current studies,the following combination of calculation parameters is recommend when simulating free roll decay motion,unsteady RANS equations combined with RNG k-ε two-equation turbulent model to solve flow field,VOF method to capture free surface,sliding interface technique or dynamic overset mesh technique to compute bodies motions,enhanced wall function to treat near-wall boundary layer.

    The bilge keels were not considered in our simulations.However,the bilge keel damping contributes a large portion to the total damping[14],so more works should be carried out in fu-ture to validate the feasibility of CFD for roll damping,and to improve the accuracy,especially for the unconventional ship with bilge keels.

    Acknowledgements

    The model tests for ship 2792 were conducted in Wuhan University of Technology,and the experimental data were provided by Prof.Mao Xiaofei from Wuhan University of Technology and Dr.Lu Jiang from China Ship Scientific Research Center.The research is supported by Ministry of Industry and Information Technology of China(No.[2016]26).The authors sincerely thank the above organization and individuals.

    [1]Ikeda Y,Himeno Y,Tanaka N.On eddy making component of roll damping force on naked hull[J].Journal of the Society of Naval Architects of Japan,1977a,162:59-69.

    [2]Ikeda Y,Komatsu K,Himeno Y,Tanaka N.On roll damping force of ship-effect of hull surface pressure created by bilge keels[J].Journal of the Society of Naval Architects of Japan,1977b,165:31-40.

    [3]Ikeda Y,Himeno Y,Tanaka N.Components of roll damping of ship at forward speed[J].Journal of the Society of Naval Architects of Japan,1978,143:113-125.

    [4]Ikeda Y,Katayama T.Roll damping prediction method for a high-speed planning craft[J].Proceedings of the 7th International Conference of Ships and Ocean Vehicles(STAB’2000),2000,2:532-541.

    [5]Ikeda Y.Prediction methods of roll damping of ships and their application to determine optimum stabilization devices[J]. Marine Technology,2004,41(2):89-93.

    [6]Japan.Interim verification and validation report on simplified roll damping[R].IMO SLF 54/INF 12,Annex 7,2011a.

    [7]Japan.Additional validation data on simplified roll damping estimation for vulnerability criteria on parametric rolling[R]. IMO SLF 54/INF 12,Annex 11,2011b.

    [8]Sweden.Evaluation of Ikeda’s simplified method for prediction of roll damping[R].IMO SLF 54/3/6,2011.

    [9]United States&Japan.Draft guidelines of direct stability assessment procedures as a part of the second generation intact stability criteria[R].IMO SDC1/INF.8,Annex 27,2014.

    [10]Bass D W,Haddara,M R.Non-linear models of ship roll damping[J].International Shipbuilding Progress,1988,35(401):5-24.

    [11]Blok J J,Aalbers A B.Roll damping due to lift effects on high speed monohulls[C].FAST`91,1991,2:1331-1349.

    [12]Gu Min,Lu Jiang,Bu Shuxia,Wu Chengsheng,QiuGengyao.Numerical simulation of the ship roll damping[C]//12th STAB,Glasgow UK,2015:341-348.

    [13]ISCG(the Correspondence Group on Intact Stability).Draft explanatory notes on the vulnerability of ships to the parametric roll stability failure mode[R].IMOSDC3/INF.10,Annex 17,2015.

    [14]Bassler C C,Reed A M.An analysis of the bilge keel roll damping component model[C]//10th STAB.St.Petersburg, Russia,2009:369-386.

    摘要:船舶橫搖阻尼是影響參數(shù)橫搖和癱船穩(wěn)性等大幅橫搖運(yùn)動(dòng)的關(guān)鍵參數(shù)。文中基于非定常RANS方程在靜水中對(duì)模型2792進(jìn)行了自由橫搖衰減的數(shù)值模擬,該模型是船舶第二代完整穩(wěn)性衡準(zhǔn)制定中癱船穩(wěn)性研究的國(guó)際標(biāo)準(zhǔn)船模,數(shù)值模擬中采用了兩種網(wǎng)格類型,一種是滑移網(wǎng)格,另一種重疊網(wǎng)格。計(jì)算結(jié)果表明,數(shù)值模擬的自由橫搖衰減曲線和模型試驗(yàn)結(jié)果吻合良好,另外CFD計(jì)算的橫搖阻尼與試驗(yàn)值的誤差小于Ikeda’s經(jīng)驗(yàn)公式計(jì)算的誤差,證明非定常RANS方程可用于預(yù)報(bào)橫搖阻尼。

    船舶橫搖阻尼的CFD數(shù)值模擬研究

    卜淑霞,邱耿耀,顧民,吳乘勝,曾柯
    (中國(guó)船舶科學(xué)研究中心,江蘇無錫214082)

    橫搖阻尼;RANS;自由橫搖衰減;重疊網(wǎng)格;滑移網(wǎng)格

    U661.32+1

    :A

    卜淑霞(1989-),女,中國(guó)船舶科學(xué)研究中心博士研究生,工程師;

    1007-7294(2017)03-0275-09

    U661.32+1

    :A

    10.3969/j.issn.1007-7294.2017.03.003

    邱耿耀(1985-),男,中國(guó)船舶科學(xué)研究中心高級(jí)工程師;

    顧民(1962-),男,中國(guó)船舶科學(xué)研究中心研究員,博士生導(dǎo)師;

    吳乘勝(1976-),男,中國(guó)船舶科學(xué)研究中心研究員;

    曾柯(1989-),男,中國(guó)船舶科學(xué)研究中心助理工程師。

    Received date:2016-12-29

    Foundation item:Supported by Ministry of Industry and Information Technology of China(No.[2016]26)

    Biography:BU Shu-xia(1989-),female,Ph.D.Candidate,E-mail:bushuxia702@126.com;

    QIU Geng-yao(1985-),male,engineer;

    Gu Min(1962-),male,researcher.

    猜你喜歡
    穩(wěn)性科學(xué)研究阻尼
    歡迎訂閱《林業(yè)科學(xué)研究》
    船舶穩(wěn)性控制系統(tǒng)研究
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    N維不可壓無阻尼Oldroyd-B模型的最優(yōu)衰減
    關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
    具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
    紡織科學(xué)研究
    具阻尼項(xiàng)的Boussinesq型方程的長(zhǎng)時(shí)間行為
    絞吸式挖泥船的穩(wěn)性計(jì)算
    廣東造船(2015年6期)2015-02-27 10:52:45
    欧美精品一区二区大全| 91狼人影院| 亚洲精品,欧美精品| 91狼人影院| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看| 毛片一级片免费看久久久久| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 欧美日韩综合久久久久久| 欧美区成人在线视频| 亚洲无线观看免费| 女人久久www免费人成看片| 99久久人妻综合| 日韩视频在线欧美| 三级国产精品片| 亚洲熟妇中文字幕五十中出| 真实男女啪啪啪动态图| 丝袜喷水一区| 好男人在线观看高清免费视频| 舔av片在线| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品电影| 国产亚洲最大av| 在线观看免费高清a一片| 美女高潮的动态| 18+在线观看网站| 男的添女的下面高潮视频| 黑人高潮一二区| av国产久精品久网站免费入址| 亚洲av电影不卡..在线观看| 伊人久久精品亚洲午夜| 久久久久精品久久久久真实原创| 欧美成人a在线观看| 国产精品伦人一区二区| 久久久久久久久久久免费av| 国产伦精品一区二区三区视频9| 一区二区三区四区激情视频| 久久久久久久久久久丰满| 伦理电影大哥的女人| 五月伊人婷婷丁香| 午夜福利在线观看吧| 精品久久久精品久久久| av在线老鸭窝| 插逼视频在线观看| 中文精品一卡2卡3卡4更新| 久久久久九九精品影院| 大又大粗又爽又黄少妇毛片口| 国产一级毛片七仙女欲春2| 爱豆传媒免费全集在线观看| 日本爱情动作片www.在线观看| av又黄又爽大尺度在线免费看| 免费观看的影片在线观看| 少妇的逼好多水| 欧美bdsm另类| 久久久久精品久久久久真实原创| 久久久久久久久大av| 国产黄频视频在线观看| kizo精华| 日韩电影二区| 老师上课跳d突然被开到最大视频| 欧美zozozo另类| 欧美成人a在线观看| 亚洲人与动物交配视频| 成年av动漫网址| 秋霞伦理黄片| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 春色校园在线视频观看| 午夜免费观看性视频| 国产乱人视频| 欧美另类一区| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 天天躁夜夜躁狠狠久久av| 亚洲av男天堂| 我的女老师完整版在线观看| 欧美日韩综合久久久久久| 一级毛片aaaaaa免费看小| 午夜免费观看性视频| 在线a可以看的网站| 国产白丝娇喘喷水9色精品| 日韩,欧美,国产一区二区三区| 国产午夜精品一二区理论片| 麻豆成人av视频| 亚洲最大成人中文| 日韩国内少妇激情av| 亚洲欧美精品自产自拍| 欧美bdsm另类| 成人漫画全彩无遮挡| 日本欧美国产在线视频| 免费少妇av软件| 亚洲欧美精品自产自拍| 综合色av麻豆| 日本黄色片子视频| 大又大粗又爽又黄少妇毛片口| 波多野结衣巨乳人妻| av线在线观看网站| 韩国高清视频一区二区三区| 国产久久久一区二区三区| 免费av观看视频| 日韩欧美一区视频在线观看 | 欧美极品一区二区三区四区| 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 国产一区二区三区av在线| 国国产精品蜜臀av免费| 午夜老司机福利剧场| 麻豆av噜噜一区二区三区| 成人亚洲精品av一区二区| 国产免费又黄又爽又色| 国产伦在线观看视频一区| 白带黄色成豆腐渣| 97超碰精品成人国产| 亚洲图色成人| 欧美成人精品欧美一级黄| 国产精品女同一区二区软件| 最近最新中文字幕免费大全7| 男女边吃奶边做爰视频| 男插女下体视频免费在线播放| 高清在线视频一区二区三区| 色网站视频免费| 26uuu在线亚洲综合色| 精品久久久久久久久av| 日韩av免费高清视频| 七月丁香在线播放| 嫩草影院精品99| 成人性生交大片免费视频hd| 99久久人妻综合| 天天一区二区日本电影三级| 男人舔奶头视频| 日韩中字成人| 一级毛片电影观看| 两个人视频免费观看高清| 天美传媒精品一区二区| 麻豆国产97在线/欧美| 国产成人精品婷婷| 一个人免费在线观看电影| 熟女人妻精品中文字幕| 亚洲美女搞黄在线观看| 国产成人a区在线观看| 免费少妇av软件| av天堂中文字幕网| eeuss影院久久| 在线观看美女被高潮喷水网站| 非洲黑人性xxxx精品又粗又长| 欧美潮喷喷水| 亚洲国产高清在线一区二区三| 日韩不卡一区二区三区视频在线| av在线播放精品| 成人鲁丝片一二三区免费| 波多野结衣巨乳人妻| 22中文网久久字幕| 国产午夜精品久久久久久一区二区三区| 七月丁香在线播放| 女人十人毛片免费观看3o分钟| 干丝袜人妻中文字幕| 女人久久www免费人成看片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品国产av成人精品| 一级黄片播放器| 欧美成人精品欧美一级黄| 久热久热在线精品观看| 嘟嘟电影网在线观看| 午夜老司机福利剧场| 天天躁日日操中文字幕| 久久久久性生活片| 久久国内精品自在自线图片| 国产亚洲一区二区精品| 国产午夜精品一二区理论片| 久久热精品热| 久久久久久国产a免费观看| 精品一区二区三区视频在线| 国产在视频线在精品| 天天一区二区日本电影三级| av免费观看日本| 舔av片在线| 日韩 亚洲 欧美在线| 大又大粗又爽又黄少妇毛片口| 肉色欧美久久久久久久蜜桃 | 亚洲最大成人中文| 九草在线视频观看| 天天躁夜夜躁狠狠久久av| 2018国产大陆天天弄谢| 能在线免费看毛片的网站| 亚洲国产色片| 亚洲精品成人av观看孕妇| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆 | 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| 我的老师免费观看完整版| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 天堂中文最新版在线下载 | 亚洲高清免费不卡视频| kizo精华| 一级毛片 在线播放| 亚洲精品第二区| 黄色配什么色好看| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片| 日本黄大片高清| 国产黄色小视频在线观看| 国产色爽女视频免费观看| 日日啪夜夜撸| 欧美日韩国产mv在线观看视频 | 九九爱精品视频在线观看| 国产高潮美女av| 一二三四中文在线观看免费高清| a级一级毛片免费在线观看| 亚洲熟女精品中文字幕| 乱系列少妇在线播放| 不卡视频在线观看欧美| 亚洲av中文av极速乱| av在线天堂中文字幕| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩卡通动漫| 久久久久久久久中文| 精品久久久久久电影网| 婷婷色av中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲aⅴ乱码一区二区在线播放| 成人综合一区亚洲| 亚洲怡红院男人天堂| 99热全是精品| 国产精品久久久久久久电影| 一夜夜www| 成人一区二区视频在线观看| 国产成人免费观看mmmm| 免费看日本二区| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频 | 亚洲激情五月婷婷啪啪| 久久久色成人| 九草在线视频观看| 国产综合精华液| 免费观看精品视频网站| 色吧在线观看| 国产一级毛片在线| 成人毛片60女人毛片免费| 日日干狠狠操夜夜爽| 一级毛片aaaaaa免费看小| 成人国产麻豆网| 韩国av在线不卡| 国产老妇女一区| 亚洲av一区综合| 国产日韩欧美在线精品| 搡女人真爽免费视频火全软件| 亚洲精品成人av观看孕妇| 一级毛片黄色毛片免费观看视频| 可以在线观看毛片的网站| 亚洲欧美精品专区久久| 三级毛片av免费| 在线天堂最新版资源| 搡老妇女老女人老熟妇| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 男人狂女人下面高潮的视频| 看十八女毛片水多多多| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 日韩欧美三级三区| 国产精品久久久久久精品电影小说 | 尤物成人国产欧美一区二区三区| 国产熟女欧美一区二区| 久久久久久伊人网av| 日本欧美国产在线视频| 国产午夜精品一二区理论片| av网站免费在线观看视频 | 免费人成在线观看视频色| 亚洲美女视频黄频| 欧美极品一区二区三区四区| 国产亚洲5aaaaa淫片| 午夜精品在线福利| 人体艺术视频欧美日本| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| av一本久久久久| 亚洲人成网站高清观看| 日韩大片免费观看网站| 免费黄网站久久成人精品| 亚洲精品自拍成人| 国产人妻一区二区三区在| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 婷婷色麻豆天堂久久| 老司机影院成人| 国产精品一区二区在线观看99 | 波多野结衣巨乳人妻| 黑人高潮一二区| 亚洲av在线观看美女高潮| 精华霜和精华液先用哪个| 简卡轻食公司| 寂寞人妻少妇视频99o| 好男人视频免费观看在线| 亚洲最大成人中文| 91在线精品国自产拍蜜月| 1000部很黄的大片| 国产视频首页在线观看| 国产高清三级在线| 日韩欧美三级三区| av线在线观看网站| 日韩制服骚丝袜av| 亚洲国产精品国产精品| www.色视频.com| 亚洲av电影不卡..在线观看| 久久精品国产自在天天线| 国产69精品久久久久777片| 久久热精品热| 国产淫片久久久久久久久| 在线a可以看的网站| 一二三四中文在线观看免费高清| 少妇高潮的动态图| av又黄又爽大尺度在线免费看| 中国国产av一级| 我的老师免费观看完整版| 亚洲自拍偷在线| 淫秽高清视频在线观看| 狂野欧美白嫩少妇大欣赏| 久久久a久久爽久久v久久| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 能在线免费观看的黄片| 赤兔流量卡办理| 亚洲成色77777| 亚洲av成人av| 亚洲av一区综合| 在线免费观看不下载黄p国产| 人人妻人人看人人澡| 久久精品国产自在天天线| 亚洲国产色片| 免费大片黄手机在线观看| 丰满人妻一区二区三区视频av| 亚洲精品第二区| 99视频精品全部免费 在线| 一二三四中文在线观看免费高清| 国产精品.久久久| 午夜亚洲福利在线播放| 高清视频免费观看一区二区 | 亚洲精品国产av蜜桃| 亚洲成人中文字幕在线播放| 亚洲精品中文字幕在线视频 | 亚洲欧美中文字幕日韩二区| 久久热精品热| 亚洲欧美中文字幕日韩二区| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站| 男人爽女人下面视频在线观看| 永久网站在线| 亚洲欧美清纯卡通| 国产高清三级在线| 亚洲精品日本国产第一区| 久久久久免费精品人妻一区二区| 最近最新中文字幕免费大全7| 人妻系列 视频| 三级男女做爰猛烈吃奶摸视频| 一级片'在线观看视频| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 午夜老司机福利剧场| 小蜜桃在线观看免费完整版高清| 婷婷色麻豆天堂久久| 亚洲精品影视一区二区三区av| 联通29元200g的流量卡| 精品国产三级普通话版| 久久人人爽人人片av| 亚洲第一区二区三区不卡| 久久6这里有精品| 国产伦在线观看视频一区| 久久久久久久久久黄片| 久久精品国产亚洲网站| 精品熟女少妇av免费看| 欧美性猛交╳xxx乱大交人| 免费黄频网站在线观看国产| 男的添女的下面高潮视频| 97热精品久久久久久| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 99热全是精品| ponron亚洲| 18禁裸乳无遮挡免费网站照片| 精品少妇黑人巨大在线播放| 久久久久久久午夜电影| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 国产精品熟女久久久久浪| 岛国毛片在线播放| 精品一区在线观看国产| 亚洲美女搞黄在线观看| av在线观看视频网站免费| 亚洲成色77777| 亚洲av成人精品一二三区| 欧美3d第一页| 中文天堂在线官网| 大香蕉97超碰在线| 免费大片18禁| 国产91av在线免费观看| 久久99精品国语久久久| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 久久精品综合一区二区三区| 午夜久久久久精精品| 在线观看一区二区三区| 少妇人妻精品综合一区二区| 91久久精品电影网| 久久午夜福利片| 国产伦一二天堂av在线观看| 97在线视频观看| 中文字幕久久专区| www.色视频.com| 丝瓜视频免费看黄片| 男女边摸边吃奶| 国产精品女同一区二区软件| 国产69精品久久久久777片| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 大香蕉久久网| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 美女主播在线视频| 久久久久精品性色| 国产淫语在线视频| 亚洲真实伦在线观看| 日韩av免费高清视频| 又爽又黄a免费视频| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 最近中文字幕2019免费版| 国产黄a三级三级三级人| 久久久久久久大尺度免费视频| 亚洲真实伦在线观看| 久久久色成人| 大香蕉久久网| 国产精品精品国产色婷婷| 中文在线观看免费www的网站| 亚洲欧美一区二区三区黑人 | 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 国产成人一区二区在线| 成人国产麻豆网| 久久久色成人| 久久久久国产网址| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 国产伦精品一区二区三区视频9| 大香蕉久久网| 国产精品一及| 欧美一级a爱片免费观看看| 精品一区在线观看国产| www.av在线官网国产| 卡戴珊不雅视频在线播放| 肉色欧美久久久久久久蜜桃 | 国产色婷婷99| 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 美女内射精品一级片tv| 1000部很黄的大片| 女人被狂操c到高潮| 亚洲av成人精品一二三区| 亚洲在线观看片| 一级a做视频免费观看| 欧美日本视频| 天天躁日日操中文字幕| 国产女主播在线喷水免费视频网站 | 国产精品.久久久| 高清欧美精品videossex| 男女啪啪激烈高潮av片| 一级av片app| 国产成人91sexporn| 免费观看精品视频网站| 日本免费a在线| 三级经典国产精品| 麻豆成人午夜福利视频| 国产真实伦视频高清在线观看| 尤物成人国产欧美一区二区三区| 国产一区二区亚洲精品在线观看| 国产午夜精品一二区理论片| 一夜夜www| 欧美区成人在线视频| 国产精品嫩草影院av在线观看| 亚洲av国产av综合av卡| 中文字幕亚洲精品专区| 亚洲综合色惰| 联通29元200g的流量卡| 成人漫画全彩无遮挡| 国产白丝娇喘喷水9色精品| 精品久久久久久久末码| 欧美三级亚洲精品| 三级毛片av免费| 婷婷色综合大香蕉| 久久久久久久亚洲中文字幕| 中国国产av一级| 中文字幕av在线有码专区| 国产精品三级大全| 国产伦在线观看视频一区| 美女内射精品一级片tv| 精品一区二区三区人妻视频| 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 高清在线视频一区二区三区| 久久精品综合一区二区三区| www.av在线官网国产| 久久久久九九精品影院| 男女啪啪激烈高潮av片| 99久国产av精品| 精品一区二区免费观看| 日韩欧美一区视频在线观看 | 99re6热这里在线精品视频| 天天躁日日操中文字幕| 国内精品美女久久久久久| 最近的中文字幕免费完整| 深夜a级毛片| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 熟妇人妻久久中文字幕3abv| 久久久精品欧美日韩精品| 午夜激情福利司机影院| 欧美zozozo另类| 免费看不卡的av| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久久久久| 久久精品久久久久久噜噜老黄| 久久草成人影院| 国产精品无大码| 少妇熟女欧美另类| 亚洲精品自拍成人| 久久99热6这里只有精品| 亚洲欧美精品专区久久| 国产黄a三级三级三级人| 九九爱精品视频在线观看| 久久这里只有精品中国| 尤物成人国产欧美一区二区三区| 久久久久久久久大av| av线在线观看网站| 久久久久久久久大av| 午夜久久久久精精品| 97超视频在线观看视频| 国产淫语在线视频| 久久久精品94久久精品| 亚洲精品一二三| 天美传媒精品一区二区| 免费无遮挡裸体视频| 午夜免费激情av| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网 | 中文字幕av成人在线电影| 99久久人妻综合| 噜噜噜噜噜久久久久久91| 熟女电影av网| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区久久| 久久久久国产网址| 能在线免费观看的黄片| 久久这里只有精品中国| 18+在线观看网站| 91久久精品国产一区二区成人| 久久久亚洲精品成人影院| 亚洲图色成人| 一级二级三级毛片免费看| 永久网站在线| 成年av动漫网址| 噜噜噜噜噜久久久久久91| 欧美日韩一区二区视频在线观看视频在线 | 亚洲婷婷狠狠爱综合网| 亚洲真实伦在线观看| 国产日韩欧美在线精品| 亚洲国产精品成人综合色| 久久久久久九九精品二区国产| 蜜桃亚洲精品一区二区三区| 天堂√8在线中文| 网址你懂的国产日韩在线| 男人狂女人下面高潮的视频| 99热网站在线观看| 亚洲无线观看免费| 亚洲精品日本国产第一区| 哪个播放器可以免费观看大片| 午夜精品一区二区三区免费看| 国产免费视频播放在线视频 | 亚洲欧美精品专区久久| 成人综合一区亚洲| 性插视频无遮挡在线免费观看| 久久99精品国语久久久| 精品一区二区三卡| 色播亚洲综合网| 国产亚洲5aaaaa淫片| 日韩视频在线欧美| 亚洲高清免费不卡视频| 黄片无遮挡物在线观看| 成人综合一区亚洲| 好男人视频免费观看在线| 亚洲自拍偷在线| 美女被艹到高潮喷水动态| 能在线免费看毛片的网站| 免费观看a级毛片全部| 一级毛片aaaaaa免费看小| 能在线免费看毛片的网站| 精华霜和精华液先用哪个| 中文字幕av在线有码专区| 婷婷色综合www| 精华霜和精华液先用哪个| 国产又色又爽无遮挡免| 久久久色成人| 精品一区二区免费观看| 看黄色毛片网站|