• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled Hydrodynamic and Aerodynamic Response Analysis of a Tension-Leg Platform Floating Wind Turbine

    2017-05-13 02:33:33SHENchengHUZhiqingGENGTin
    船舶力學(xué) 2017年3期
    關(guān)鍵詞:浮式上海交通大學(xué)工程學(xué)院

    SHEN M-cheng,HU Zhi-qing,b,GENG Tin

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University,Shanghai 200240,China)

    Coupled Hydrodynamic and Aerodynamic Response Analysis of a Tension-Leg Platform Floating Wind Turbine

    SHEN Ma-chenga,HU Zhi-qianga,b,GENG Tiana

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University,Shanghai 200240,China)

    A fully coupled time-domain aero-hydro-servo-elastic simulation of a tension-leg-platform (TLP)floating wind turbine is conducted.3-D potential theory and Morison equation are applied to calculate the hydrodynamic loads.Blade element momentum theory and generalized dynamic wake theory are applied to calculate the aerodynamic loads.Time series results are obtained and analyzed to study the coupled dynamic responses of the TLP floating wind turbine.An analytic equation governing the surge motion was formulated and solved based on perturbation method.This equation can explain the high frequency response in surge motion induced by the nonlinearity of viscosity.From the analysis results,the dynamic responses of the TLP floating wind turbine are obtained and analyzed, and it is found that the high frequency component of the response has significant impact on the platform’s dynamic performance.

    floating wind turbine;TLP;dynamic response;coupled aerodynamic and hydrodynamic loads;nonlinear drag force

    0 Introduction

    The offshore wind power is a promising renewable energy resource.Tension-Leg-Platform (TLP)can play an important role and provide a desirable foundation for floating wind turbine because of its steady motion,and thus high energy transformation ratio.But TLP platform is susceptible to high frequency excitation due to its high stiffness mooring system.Typically,the natural frequencies of a TLP platform are designed to avoid the wave frequency effect.But high frequency excitations can be induced by aerodynamic loads,coupled structural responses and nonlinear hydrodynamic loads such as second order forces and viscous effects.It is necessary to include these effects in a time domain simulation to get a realistic estimation of the dynamic response of TLP platform floating wind turbine.

    Various studies have been conducted on floating wind turbines.Nielsen[5]analyzed negative aerodynamic damping on a Spar floating wind turbine by using a combined aero-servo-elastic hydrodynamic and mooring program.Wayman and Jonkman[6]conducted a frequency domain analysis on various TLP designs,but transient and nonlinear effects were not considered.Roald[7]investigated the effect of the second order forces on a TLP floating wind turbine which showed importance of high frequency excitation.But the second order forces were calculated in frequency domain,and the tower flexibility was not taken into consideration.Matha[8]studied the response,ultimate loads and fatigue loads of a TLP floating wind turbine by conducting time domain simulation of various load cases,which captured major nonlinear effects. Goupee and Kimball[11]performed model tests for floating wind turbines,from which valuable data were acquired.However,phenomena concerning viscosity could not be simulated accurately in the model test due to scale effect.

    This paper studies the coupled dynamic response of a TLP floating wind turbine.Major focuses are put on the effects of steady wind and drag force on the surge and pitch responses. In addition,the derivation and property of drag force induced nonlinear responses,especially high frequency nonlinear responses,are discussed in detail,which have not been seldom analyzed in former researches.

    1 Theory and method

    The NREL 5 MW Wind Turbine[3]supported by a TLP developed by the University of Maine for use in the DeepCwind project shown in Fig.1 is adopted as the research object.

    Tab.1 Principal dimensions and mass properties of NREL 5MW wind turbine

    Tab.2 Principal dimensions and mass properties*of TLP

    Fig.1 TLP floating wind turbine

    The principal dimensions of the wind turbine are listed in Tab.1.The principal dimensions and mass properties of the TLP with wind turbine and moorings are listed in Tab.2[10].

    It should be noted that the mass of the TLP is of the same magnitude with those of the wind turbine and the tendons,and thus strong coupled dynamic interactions can be expected among them.Therefore,time domain analysis is necessary to simulate the effects of aerodynamic loads,structural elastic modes,control system and nonlinear wave loads simultaneously. The numerical simulation studied in this paper is conducted using a numerical aero-hydroservo-elastic simulator FAST.

    The aerodynamic loads are calculated based on blade element momentum theory coupled with generalized dynamic wake theory.It takes into consideration the time lag in the induced velocities created by vorticity being shed from the blades and being convected downstream. Details about the aerodynamic theories applied by FAST can be found in Ref.[1].

    The hydrodynamic loads are obtained from potential theory and semi-empirical Morison equation.Wave forces caused by incident waves and body motions can be calculated in time domain by three-dimensional potential theory.The wave-induced forces include the Froude-Kriloff force due to incident waves,diffraction force due to scattering of incident waves and radiation force due to body motions.

    By assuming the floating body as a rigid body,the governing equation for transient motion[11]is written as

    where the six degrees of freedom are coupled by added mass and damping derived from radiation forces and restoring forces from the mooring system.

    Since potential theory neglects viscosity effects,Morison equation is also applied as a complement to consider quadratic drag force caused by separation of boundary layer in extreme sea states[9].The drag force on unit length of a cylinder is found by equation(2)where ρ denotes the density of the fluid,D denotes the diameter of the cylinder and urdenotes the relative velocity between the fluid particle and the strip of the cylinder.

    A control system ensuring constant power generation above rated wind speed is also simulated.The responses of tower and blades are calculated based on superposition method of vibration mode.

    2 Load cases definition

    Two groups of load cases,the RAO load cases and the design load cases are conducted.The RAO load cases is performed with unit-amplitude regular waves to study the frequency domain response characteristics of the floating wind turbine,while the design load cases with waves and steady wind are performed to verify the survivability in severe sea states.For all load cases,the wind and wave are in collinear direction and the wind turbine is in the upwind condition.The load cases investigated in this paper are listed in Tab.3 and Tab.4,respectively.

    Tab.3 RAO load cases

    Tab.4 Design load cases

    Wind speed is usually related with the severity of sea condition,and strong wind normally induces large wave.Therefore,different wind speeds are chosen depending on the corresponding wave heights and frequencies.Corresponding load cases are carried out without steady wind to study the aerodynamic effect through comparison.

    The natural frequencies of the platform[7]are listed in Tab.5.

    Tab.5 Natural frequencies of the TLP with rigid and flexible wind turbine blades and tower

    A significant discrepancy of pitch and roll natural frequencies between a rigid tower model and a flexible tower model are observed,due to coupling between tower elasticity and platform pitch.

    3 Simulation results and discussions

    3.1 Unit-amplitude regular wave

    Usually,a frequency domain analysis is used for dynamic response analysis of offshore floating structures under the excitation of regular wave.Assuming the whole system is linear, the response can be characterized by RAOs,which equal the response amplitudes normalized by the wave amplitude.However,when nonlinearity is taken into consideration for floating wind turbine,a new concept of the normalized amplitudes,named effective RAOs,was proposed by Jonkman[2],to consider the complicated coupling effect between wave and wind.The effective RAOs for floating wind turbine not only depend on wave frequency but also vary with wave amplitude and the effect of wind load.The word‘effective’is used to clarify that they are not true RAOs when the underlying models are nonlinear[2].

    The effective RAOs are obtained by running simulation with periodic,unit amplitude waves with the rotor parked.The effective RAOs are thus obtained at several discretized frequencies and cubic spline fitting is applied to get a smooth curve.Surge and pitch effective RAOs are shown in Fig.2 and Fig.3,respectively.

    Fig.2 Surge effective RAO for regular wave only case

    Fig.3 Pitch effective RAO for regular wave only case

    It can be observed that surge RAOs are in good accordance with the fitting curve,but pitch RAOs are difficult to be represented by a smooth curve,and at certain frequencies the results at simulated frequencies deviate quite a little from the fitting curve.Such frequencies are 0.628 rad/s,0.448 rad/s and 0.285 rad/s,all of which are close to submultiples of the pitch natural frequency 2.021 rad/s.This deviation phenomenon can be explained from the nonlinearity of viscosity at certain frequencies.It is because that the quadratic drag force induces responses in surge motion whose frequencies are odd multiples of wave frequency.The surge motion induced inertial force contributes a high-frequency moment to the pitch motion and causes resonance when the frequency is close enough to the pitch natural frequency.This is the reason why the effective RAOs in pitch motion seem irregular in certain frequencies.Although the high frequency components in surge motion are small,the inertial-force-induced momentcan be large because the center of mass of the wind turbine is high.This results in stronglycoupled dynamic responses in surge and pitch motion,which is not so conspicuous in traditional TLP platform for oil production.

    3.2 Regular wave and steady wind

    Aerodynamic effect on the TLP platform wind turbine is investigated by simulating regular wave and steady wind load cases.The effective RAOs of surge and pitch motion with and without wind are plotted in Fig.4 and Fig.5,respectively.

    Fig.4 Surge effective RAO for regular wave with and without wind cases

    Fig.5 Pitch effective RAO for regular wave with and without wind cases

    The surge effective RAOs show great differences compared with the ones presented in section 3.1 at the range of low frequency.This is because the wave heights are large enough to make viscous drag significant.When the wave height increases,the KC number increases as well.The boundary layer is likely to separate at tendons and the surface-piercing pontoon, causing the viscous drag force due to high pressure at the up-stream side and low pressure at the down-stream side.The drag force considered by Morison equation increases quadratically with the wave height,so the drag force plays a dominant role in severe sea states.The reduction in surge effective RAOs at low frequencies is due to the viscous damping effect by the drag force.

    The constant wind also contributes damping effect to surge motion,especially when the wind speed is around the rated speed 11.4 m/s.On the contrary,pitch motion is damped by the wind at some frequencies but excited at other frequencies.Since pitch motion is much smaller compared with surge motion,the aerodynamic thrust on the rotor is mainly dependent on the surge velocity.Under the excitation of regular wave,surge velocity and thrust both vary harmonically but in opposite phase.If pitch velocity varies in opposite phase with surge velocity, thus in the same phase with thrust,then aerodynamic thrust will excite pitch motion.Therefore, whether pitch motion is excited or damped by wind force depends on frequency domain response of the platform.Noted that turbulent wind has not yet been taken into consideration,the actual pitch response can be even more strongly excited.

    3.3 Irregular wave and steady wind

    The JONSWAP spectrum is chosen to simulate irregular waves.Standard deviations of surge and pitch motion are obtained from numerical simulation of each load case equivalent to one and a half hour’s real sea states.The results are plotted in Fig.6 and Fig.7.

    Fig.6 Surge response standard deviation

    Fig.7 Pitch response standard deviation

    The steady wind effect on surge standard deviation is similar to that on surge effective RAOs in regular wave cases.This is understandable because standard deviation and RAOs are both measurement of deviation from mean values.However,it is not the case in pitch motion, because the wind force also contributes irregular disturbance to rotor thrust.Pitch motion is more susceptible to variation in rotor thrust than surge motion is,since the center of rotor is high above the tower base,resulting in great variation of pitch moment.This may cover up the damping effect in pitch motion around rated wind speed.In contrast,the damping effect in surge motion predominates the disturbance in surge motion.Therefore,surge and pitch respond differently to the aerodynamic loads.

    Pitch spectrum density functions under the excitation of irregular wave with and without wind are plotted in Fig.8.The wave peak frequency is 0.448 8 rad/s.The significant wave height is 10 m,and the wind speed is 40 m/s. Viscosity effect is of crucial importance in this case.In the wave-only case,the viscosity induced high frequency pitch motion is comparable with the wave frequency motion as the solid line shows.The dotted line shows that the aerodynamic load increases the wave frequency motion while reduce the natural frequency resonance considerably.This is because aerodynamic damping is the majority of total damp-ing at high frequency.Total damping around resonance frequency has a very important effect on the amplitude of resonance motion.According to potential theory,wave radiation damping tends to vanish at high frequency while aerodynamic damping is approximately proportional to cubic of frequency[4].Therefore,the existence of aerodynamic damping significantly reduces the resonance in pitch motion.

    Fig.8 Pitch response spectrum density

    3.4 Viscosity effect

    Two major effects of the viscosity induced drag force have been discovered in the time domain simulation,and they are non-zero average displacement caused by mean drift forces and high frequency responses caused by the coupled effect of wave frequency responses and drag force.

    An approximate differential equation governing surge motion is formulated as Eq.(3)to investigate qualitative property of the nonlinear effect.Asymptotic behaviors of amplitudes of the mean displacement and high frequency responses can be found by solving this equation.

    where M denotes the sum of mass of the platform and wind turbine and added mass due to fluid motion,x denotes the surge displacement,C denotes the coefficient of drag force for surge motion,U denotes the amplitude of fluid horizontal velocity at mean position of the platform,ω denotes the wave angular frequency,T denotes the pre-tension of the tension leg,L denotes the length of the tension leg and F denotes amplitude of the excitation force in surge motion.α denotes the phase difference between the fluid velocity and the excitation force.

    Several approximations and assumptions are made to build up this equation.These approximations and assumptions include but not exclusively:

    (1)The platform responses approximately harmonically at the wave frequency.Therefore, time domain equation containing convolution term degenerates into frequency domain equation.

    (2)Wave radiation damping is negligible compared to drag force and thus being neglected.

    (3)The surge motion is small compared with the wave length and the characteristic length of the platform.Therefore,the velocity of fluid particle at instantaneous position is replaced by that at mean position and the restoring force from tension legs is linearized at mean position.

    (4)Airy wave theory is applied and the amplitudes of fluid velocity and excitation force are all proportional to wave height.

    Following quantities are introduced to simplify Eq.(3):h denotes wave height,u denotes transfer function of fluid horizontal velocity at mean position of the platform and f denotes transfer function of surge excitation force.

    The natural frequency of the undamped mode is given by

    For normal sea states,the corresponding quantity ε is a small parameter.Therefore,Eq. (4)can be solved using perturbation method by expanding X into an asymptotic series as follows[12].

    In fact,Eq.(6)corresponds to the linearized equation for frequency domain analysis.The steady state solution to Eq.(6)is

    This solution corresponds to the wave frequency response.

    In Eq.(7),A0and φ0are simple functions of A and γ,which need not be shown explicitly.This convention is also applied in following deduction to avoid lengthy expressions.

    By substituting Eq.(7)into Eq.(8),Eq.(9)is obtained.

    The right hand side of Eq.(9)is a periodic function,so it can be expanded into a Fourier series as follows:

    This excitation term for X1is the derivation of high frequency excitation.

    The solution to Eq.(9)is

    It can be easily shown that the asymptotic behavior of coefficient anis an∝1/n3if n is odd and an=0 if n is even.Therefore,the amplitude of high frequency response decays inverse-proportionally to cubic of the frequency.Small as it is,it can be detrimental if it coincides with pitch natural frequency.

    By applying former results,Eq.(12)is simplified to give

    Third power function is applied to fit the data points.The result is in good accordance with the prediction derived from the perturbation analysis,and thus verifies the model.

    Time series of pitch motion under the excitation of regular wave with 0.285 6 rad/s peak frequency and 2 m wave height is shown in Fig.10.Transient motion due to initial condition quickly vanishes because of strong damping effect of viscosity,and the pitch motion shown in Fig.10 is in steady state.It is obvious that there is a high frequency component superposing upon the wave frequency component and the time average of pitch motion is nonzero.Fast Fourier Transformation of the time series result is shown in Fig.11.There are four major components.The highest peak is the wave frequency motion.The second highest peak corresponds to mean drift displacement.The small peak around 0.85 rad/s corresponds to three times the wave frequency and is induced by drag force.But it does not coincide with pitch natural frequency,so the amplitude of this motion is negligible.The corresponding frequency to the thirdhighest peak,i.e.about 2 rad/s happens to be seven times the wave frequency.It is also induced by drag force and causes considerable resonance in pitch motion.This phenomenon should be taken into consideration in future design of TLP platform wind turbine and should be avoided if possible.

    Fig.9 Surge mean drift displacement

    Fig.10 Time series of pitch motion

    Fig.11 Fast Fourier Transformation of pitch motion

    4 Conclusions

    Responses in surge and pitch motion of the TLP platform floating wind turbine to aerodynamic and hydrodynamic loads have been investigated.

    Aerodynamic loads generally have damping effect on surge motion,which reduce surge response.The damping effect is most significant around rated wind speed.Aerodynamic loads have both damping and exciting effect on pitch motion.It depends on the relative phase between pitch motion and thrust force.In irregular wave cases,exciting effect covers up damping effect while damping effect plays an important role when resonance occurs in pitch motion.

    Hydrodynamic loads dominate platform motion.When wave height is small,linear hydrodynamic forces dominate.When wave height is large,nonlinear drag force induced by viscosity dominates.The drag force contributes damping but also causes mean drift and high frequency responses.The resulted high frequency response in pitch motion is detrimental to TLP if it coincides with pitch natural frequency,which may cause fatigue and even serious failure of the tendons.Qualitative property of the mean drift and high frequency responses are exploited by perturbation analysis and in good accordance with the numerical results.

    [1]Moriarty P J,Hansen A C.AeroDyn theory manual[M].Colorado:National Renewable Energy Laboratory,2005.

    [2]Jonkman J.Memorandum-Load Case 5.4 from OC3 Phase IV(Floating)[M].Colorado:National Renewable Energy Laboratory,2009.

    [3]Jonkman J.Dynamics modeling and loads analysis of an offshore floating wind turbine[M].Colorado:National Renewable Energy Laboratory,2009:94-95.

    [4]Karimirad M.Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems[D]. Norwegian:Norwegian University of Science and Technology,2011.

    [5]Nielsen F G,Hanson T D,Skaare B.Integrated dynamic analysis of floating offshore wind turbines[C]//European Wind Energy Conference,May,2007.Milan,Italy,2007:7-10.

    [6]Wayman E N,Sclavounos P D,Butterfield S,et al.Coupled dynamic modeling of floating wind turbine systems[C]//Offshore Technology Conference,May,2006.Houston,Texas,2006:1-10.

    [7]Roalda L,Jonkman J,Robertson A,et al.The effect of second-order hydrodynamics on floating offshore wind turbines [C]//Deep Sea Offshore Wind R&D Conference,January,2013.Trondheim,Norway,2013:260-263.

    [8]Matha D.Model development and loads analysis of an offshore wind turbine on a tension leg platform,with a comparison to other floating turbine concepts[D].Colorado:University of Colorado-Boulder,2009.

    [9]Faltinsen O M.Sea loads on ships and offshore structures[M].Cambridge:Cambridge University Press,1999.

    [10]Goupee A J,Koo B,Lambrakos K F,et al.Offshore wind energy:Model tests for three floating wind turbine concepts[C]// Offshore Technology Conference,May,2012.Houston,Texas,2012:455-465.

    [11]Mei C C,Stiassnie M,Yue K P.Theory and applications of ocean surface waves[M].Cambridge:World Scientific,2005.

    [12]Mei C C.Mathematical analysis in engineering[M].Cambridge:Cambridge University Press,1997.

    張力腿式浮式風(fēng)機(jī)平臺(tái)的水動(dòng)力和空氣動(dòng)力耦合響應(yīng)分析

    沈馬成a,胡志強(qiáng)a,b,耿添a
    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200240)

    文章采用了空氣動(dòng)力、水動(dòng)力、控制與彈性完全耦合的時(shí)域模擬方法研究了張力腿式浮式風(fēng)機(jī)平臺(tái)的動(dòng)力響應(yīng)。水動(dòng)力載荷的計(jì)算采用了三維勢(shì)流理論與Morison公式。空氣動(dòng)力載荷的計(jì)算采用了葉素動(dòng)量理論和廣義動(dòng)態(tài)尾流理論。利用FAST軟件得到了張力腿式浮式風(fēng)機(jī)平臺(tái)響應(yīng)的時(shí)域結(jié)果,并分析了其動(dòng)力響應(yīng)特性。建立了描述平臺(tái)縱蕩運(yùn)動(dòng)的非線性微分方程,并采用了攝動(dòng)方法求得其近似解,解釋了縱蕩運(yùn)動(dòng)中由非線性粘性效應(yīng)引起的高頻響應(yīng)。對(duì)數(shù)值模擬結(jié)果的分析表明高頻的響應(yīng)分量對(duì)平臺(tái)的動(dòng)力性能有顯著的影響。

    浮式風(fēng)機(jī)平臺(tái);張力腿平臺(tái);動(dòng)力響應(yīng);耦合的空氣動(dòng)力與水動(dòng)力載荷;非線性拖曳力

    U661.43

    :A

    沈馬成(1993-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院本科生;

    1007-7294(2017)03-0263-12

    U661.43

    :A

    10.3969/j.issn.1007-7294.2017.03.002

    胡志強(qiáng)(1975-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院副教授,通訊作者;

    耿添(1993-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院本科生。

    Received date:2016-11-02

    Foundation item:Supported by the Natural Science Foundation of China(Grant No.51239007)

    Biography:SHEN Ma-cheng(1993-),male,B.S.E.,graduate student,E-mail:macshen@umich.edu;

    HU Zhi-qiang(1975-),male,associate professor,corresponding author,E-mail:zhqhu@sjtu.edu.cn.

    猜你喜歡
    浮式上海交通大學(xué)工程學(xué)院
    上海交通大學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    硫磺上浮式絡(luò)合鐵脫硫工藝緩解溶液起泡研究
    云南化工(2021年5期)2021-12-21 07:41:52
    福建工程學(xué)院
    關(guān)于浮式防波堤消能效果及透射系數(shù)的研究
    上海交通大學(xué)參加機(jī)器人比賽
    浮式LNG儲(chǔ)存及再氣化裝置(FSRU)淺析及國(guó)內(nèi)應(yīng)用推廣展望
    福建工程學(xué)院
    全球首座浮式核電站于今年9月完工
    欧美精品高潮呻吟av久久| 亚洲成国产人片在线观看| 国产成人影院久久av| 大型av网站在线播放| 国产精品.久久久| kizo精华| h视频一区二区三区| 亚洲 国产 在线| 精品国产超薄肉色丝袜足j| 黑人巨大精品欧美一区二区mp4| 黑人操中国人逼视频| 午夜免费鲁丝| 中文字幕最新亚洲高清| 国产成人av教育| 欧美日韩视频精品一区| 中国美女看黄片| 成年人免费黄色播放视频| 美女高潮喷水抽搐中文字幕| 久热这里只有精品99| 日韩视频在线欧美| 亚洲国产毛片av蜜桃av| 国产精品影院久久| 老熟妇仑乱视频hdxx| 天堂俺去俺来也www色官网| 国产精品国产高清国产av | 国产亚洲午夜精品一区二区久久| 成人国产av品久久久| 夫妻午夜视频| 99久久精品国产亚洲精品| 中文字幕人妻熟女乱码| 国产黄频视频在线观看| 国产成人精品久久二区二区91| 免费观看人在逋| 免费高清在线观看日韩| 99在线人妻在线中文字幕 | 久久毛片免费看一区二区三区| 极品少妇高潮喷水抽搐| 三上悠亚av全集在线观看| 久久人人97超碰香蕉20202| 三上悠亚av全集在线观看| 日韩制服丝袜自拍偷拍| 丝袜在线中文字幕| 12—13女人毛片做爰片一| 国产精品久久久久久精品古装| 飞空精品影院首页| 老熟妇仑乱视频hdxx| 亚洲精品在线观看二区| 女人高潮潮喷娇喘18禁视频| 亚洲成人免费av在线播放| 国产深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 97在线人人人人妻| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品第一综合不卡| www.自偷自拍.com| 狠狠精品人妻久久久久久综合| 国产深夜福利视频在线观看| 极品少妇高潮喷水抽搐| 亚洲欧美色中文字幕在线| a级片在线免费高清观看视频| 波多野结衣av一区二区av| 丝瓜视频免费看黄片| 亚洲精品在线观看二区| 丁香六月天网| 亚洲欧美色中文字幕在线| 亚洲国产毛片av蜜桃av| 在线观看一区二区三区激情| 国产又爽黄色视频| 久久精品aⅴ一区二区三区四区| 在线观看免费视频网站a站| 亚洲av美国av| 亚洲久久久国产精品| 女性生殖器流出的白浆| 黄色视频不卡| 久久人妻熟女aⅴ| 久久99一区二区三区| 99国产精品一区二区蜜桃av | 成在线人永久免费视频| 欧美日韩中文字幕国产精品一区二区三区 | 纵有疾风起免费观看全集完整版| 超色免费av| 一区二区av电影网| 亚洲欧洲日产国产| 国产日韩一区二区三区精品不卡| 人人澡人人妻人| 色综合婷婷激情| 亚洲va日本ⅴa欧美va伊人久久| 成年版毛片免费区| 久久久久久免费高清国产稀缺| 天天躁夜夜躁狠狠躁躁| 丝袜喷水一区| 亚洲视频免费观看视频| 成年人免费黄色播放视频| 大陆偷拍与自拍| 男女之事视频高清在线观看| a在线观看视频网站| 操出白浆在线播放| 欧美黄色淫秽网站| 欧美中文综合在线视频| 看免费av毛片| 高清欧美精品videossex| 国产视频一区二区在线看| 乱人伦中国视频| 亚洲全国av大片| 国产真人三级小视频在线观看| 蜜桃在线观看..| 国产一区二区三区在线臀色熟女 | 亚洲精品成人av观看孕妇| 国产成人欧美| 涩涩av久久男人的天堂| 在线观看一区二区三区激情| 一本一本久久a久久精品综合妖精| 性高湖久久久久久久久免费观看| 51午夜福利影视在线观看| 日韩大码丰满熟妇| 99热国产这里只有精品6| 国产激情久久老熟女| 精品国产乱子伦一区二区三区| 91九色精品人成在线观看| 国产精品一区二区精品视频观看| 午夜视频精品福利| 欧美精品高潮呻吟av久久| 国产精品免费一区二区三区在线 | 亚洲全国av大片| 日韩视频在线欧美| 国产在线免费精品| 久久久久久久精品吃奶| 香蕉国产在线看| 亚洲免费av在线视频| 大码成人一级视频| 在线播放国产精品三级| 国产av国产精品国产| 下体分泌物呈黄色| 午夜精品国产一区二区电影| av天堂在线播放| 久久精品aⅴ一区二区三区四区| 久久久久精品人妻al黑| 少妇裸体淫交视频免费看高清 | 久久九九热精品免费| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久| 高潮久久久久久久久久久不卡| 亚洲专区字幕在线| 黄网站色视频无遮挡免费观看| 亚洲av成人不卡在线观看播放网| 一区二区日韩欧美中文字幕| 国产欧美日韩精品亚洲av| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 国产精品久久电影中文字幕 | 少妇的丰满在线观看| 国产高清videossex| 午夜福利影视在线免费观看| 一区二区三区激情视频| 搡老岳熟女国产| 91麻豆精品激情在线观看国产 | 在线播放国产精品三级| 国产免费视频播放在线视频| 午夜激情av网站| 亚洲 国产 在线| 在线永久观看黄色视频| 国产一区二区三区在线臀色熟女 | 亚洲av成人不卡在线观看播放网| 两个人免费观看高清视频| 亚洲av电影在线进入| 亚洲av欧美aⅴ国产| 无人区码免费观看不卡 | 久久精品熟女亚洲av麻豆精品| 十八禁网站网址无遮挡| 18禁美女被吸乳视频| 国产精品秋霞免费鲁丝片| 高清在线国产一区| 亚洲午夜理论影院| 久久久精品区二区三区| 免费黄频网站在线观看国产| 老汉色av国产亚洲站长工具| 最近最新免费中文字幕在线| 极品人妻少妇av视频| 9色porny在线观看| www日本在线高清视频| 狠狠精品人妻久久久久久综合| 国产淫语在线视频| 亚洲人成77777在线视频| 国产成人影院久久av| 国产成人欧美在线观看 | 一级毛片电影观看| 在线观看免费高清a一片| 亚洲五月色婷婷综合| 亚洲精品在线观看二区| 久久久欧美国产精品| 一个人免费在线观看的高清视频| 最新的欧美精品一区二区| 精品国产乱码久久久久久小说| 成人18禁在线播放| 国产av国产精品国产| 成年版毛片免费区| 乱人伦中国视频| 久久久欧美国产精品| 欧美日韩亚洲综合一区二区三区_| 成人手机av| 老司机午夜福利在线观看视频 | 成年人黄色毛片网站| 午夜老司机福利片| 我的亚洲天堂| 国产老妇伦熟女老妇高清| 天天躁夜夜躁狠狠躁躁| av视频免费观看在线观看| 精品国产乱码久久久久久男人| 国产黄频视频在线观看| 久久久国产一区二区| 99九九在线精品视频| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线 | 久久精品熟女亚洲av麻豆精品| 久久国产精品大桥未久av| 欧美乱妇无乱码| 2018国产大陆天天弄谢| 男男h啪啪无遮挡| 一二三四在线观看免费中文在| 国产在线一区二区三区精| 亚洲精品一二三| 男女免费视频国产| 亚洲伊人久久精品综合| 一级毛片女人18水好多| 激情在线观看视频在线高清 | 激情视频va一区二区三区| 亚洲精品在线观看二区| 18禁国产床啪视频网站| 国产免费福利视频在线观看| 国产精品美女特级片免费视频播放器 | 亚洲精品av麻豆狂野| 亚洲午夜精品一区,二区,三区| 免费在线观看影片大全网站| 极品少妇高潮喷水抽搐| 啦啦啦 在线观看视频| 91国产中文字幕| 国产精品 欧美亚洲| 中文字幕精品免费在线观看视频| 91字幕亚洲| tube8黄色片| kizo精华| 亚洲精品粉嫩美女一区| 久久中文字幕一级| 人人妻人人澡人人看| 一级毛片女人18水好多| 一边摸一边做爽爽视频免费| 在线观看免费视频网站a站| 黄频高清免费视频| 久久这里只有精品19| 久久 成人 亚洲| 久久久精品区二区三区| 国产精品香港三级国产av潘金莲| 亚洲人成77777在线视频| 视频区图区小说| 看免费av毛片| 亚洲国产欧美日韩在线播放| 深夜精品福利| 亚洲av国产av综合av卡| 国产精品欧美亚洲77777| 在线 av 中文字幕| 两个人免费观看高清视频| 捣出白浆h1v1| 亚洲国产欧美一区二区综合| 可以免费在线观看a视频的电影网站| 精品国产国语对白av| 欧美日韩亚洲高清精品| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 日韩大片免费观看网站| 亚洲av片天天在线观看| 91字幕亚洲| 成人免费观看视频高清| 后天国语完整版免费观看| 欧美大码av| 亚洲精品一卡2卡三卡4卡5卡| 巨乳人妻的诱惑在线观看| 久久中文字幕一级| 无人区码免费观看不卡 | 亚洲第一av免费看| 国产成人精品在线电影| 中文欧美无线码| 国产高清国产精品国产三级| 午夜激情av网站| 久久亚洲精品不卡| 亚洲人成电影观看| 欧美另类亚洲清纯唯美| 大片免费播放器 马上看| 国产成人欧美| 亚洲精品美女久久av网站| 汤姆久久久久久久影院中文字幕| 国产精品欧美亚洲77777| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品免费免费高清| 国产一区二区激情短视频| 欧美人与性动交α欧美精品济南到| 天堂8中文在线网| 悠悠久久av| 捣出白浆h1v1| 99香蕉大伊视频| 成人精品一区二区免费| 亚洲美女黄片视频| 久久精品国产亚洲av高清一级| 亚洲综合色网址| 成年版毛片免费区| 国产精品国产av在线观看| 欧美日韩成人在线一区二区| 欧美精品av麻豆av| 女同久久另类99精品国产91| 免费在线观看完整版高清| 两性夫妻黄色片| 50天的宝宝边吃奶边哭怎么回事| 日韩中文字幕欧美一区二区| 男女床上黄色一级片免费看| 亚洲天堂av无毛| 窝窝影院91人妻| 午夜视频精品福利| 亚洲精品一二三| 久久精品亚洲av国产电影网| 大陆偷拍与自拍| 亚洲av欧美aⅴ国产| 亚洲第一欧美日韩一区二区三区 | 亚洲伊人色综图| 久久久国产精品麻豆| e午夜精品久久久久久久| 夜夜骑夜夜射夜夜干| 国产精品麻豆人妻色哟哟久久| 男女免费视频国产| 2018国产大陆天天弄谢| 亚洲专区国产一区二区| a级片在线免费高清观看视频| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂| 不卡一级毛片| 国产三级黄色录像| 亚洲人成伊人成综合网2020| 脱女人内裤的视频| 亚洲全国av大片| 黄色视频,在线免费观看| 国产一区二区在线观看av| 久久国产亚洲av麻豆专区| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 人人妻人人澡人人看| netflix在线观看网站| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 一边摸一边抽搐一进一出视频| 他把我摸到了高潮在线观看 | 老熟妇乱子伦视频在线观看| 1024香蕉在线观看| 免费观看a级毛片全部| 亚洲成人手机| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 久久久久久久久免费视频了| 男人舔女人的私密视频| 国产不卡av网站在线观看| 他把我摸到了高潮在线观看 | 亚洲精品一二三| 在线 av 中文字幕| 日韩一卡2卡3卡4卡2021年| 免费高清在线观看日韩| 欧美在线一区亚洲| 精品午夜福利视频在线观看一区 | 亚洲国产看品久久| 一区二区三区精品91| 午夜日韩欧美国产| 国产高清激情床上av| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 亚洲三区欧美一区| 久久中文字幕一级| 久久热在线av| 国产精品麻豆人妻色哟哟久久| a在线观看视频网站| 一区二区三区乱码不卡18| kizo精华| 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 日韩熟女老妇一区二区性免费视频| av网站在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 国产精品亚洲av一区麻豆| 精品国内亚洲2022精品成人 | 国产精品99久久99久久久不卡| 91精品三级在线观看| 色婷婷av一区二区三区视频| 在线观看66精品国产| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 国产精品久久久久久精品古装| 51午夜福利影视在线观看| 人人澡人人妻人| 精品国产一区二区三区四区第35| 午夜精品久久久久久毛片777| 美国免费a级毛片| 19禁男女啪啪无遮挡网站| 国产精品免费大片| 老熟妇仑乱视频hdxx| 亚洲国产精品一区二区三区在线| 精品国内亚洲2022精品成人 | 成年人午夜在线观看视频| 日韩欧美三级三区| 久久久久视频综合| 老汉色∧v一级毛片| 久久久久久久精品吃奶| 国产成人精品久久二区二区免费| 热99久久久久精品小说推荐| 国产精品秋霞免费鲁丝片| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 97在线人人人人妻| 久久久国产成人免费| 亚洲欧美激情在线| 夜夜爽天天搞| 国产1区2区3区精品| 国产精品国产av在线观看| 91麻豆av在线| 国产精品影院久久| 两性夫妻黄色片| 亚洲午夜精品一区,二区,三区| 大香蕉久久网| 欧美久久黑人一区二区| 日韩三级视频一区二区三区| 狂野欧美激情性xxxx| 12—13女人毛片做爰片一| 国产福利在线免费观看视频| 中文字幕av电影在线播放| av视频免费观看在线观看| aaaaa片日本免费| 蜜桃国产av成人99| 国内毛片毛片毛片毛片毛片| 国产一区二区 视频在线| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 亚洲全国av大片| 在线观看免费午夜福利视频| 国产亚洲一区二区精品| 久久免费观看电影| 欧美日韩av久久| 国产精品久久久久久人妻精品电影 | 丝瓜视频免费看黄片| 久久精品亚洲av国产电影网| 又紧又爽又黄一区二区| 欧美在线一区亚洲| 成年人午夜在线观看视频| 最近最新中文字幕大全免费视频| 久久精品亚洲精品国产色婷小说| 精品国产一区二区三区久久久樱花| 亚洲成人手机| 性高湖久久久久久久久免费观看| 窝窝影院91人妻| 国产欧美亚洲国产| 亚洲 欧美一区二区三区| 国产在线视频一区二区| 黄色怎么调成土黄色| www.999成人在线观看| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 久久亚洲精品不卡| 国产成人免费观看mmmm| 婷婷成人精品国产| 久久天躁狠狠躁夜夜2o2o| 国产精品熟女久久久久浪| 性高湖久久久久久久久免费观看| 国产人伦9x9x在线观看| 99re在线观看精品视频| 99久久精品国产亚洲精品| 狠狠精品人妻久久久久久综合| 亚洲人成电影观看| 老司机在亚洲福利影院| 欧美激情高清一区二区三区| 国产1区2区3区精品| 天堂动漫精品| 高清在线国产一区| 久久狼人影院| 国产成人免费观看mmmm| 久久人人97超碰香蕉20202| tocl精华| 久久久精品区二区三区| 最新的欧美精品一区二区| 国产老妇伦熟女老妇高清| 俄罗斯特黄特色一大片| 丝袜美足系列| 国产欧美亚洲国产| 人人妻人人添人人爽欧美一区卜| 久久天堂一区二区三区四区| 免费av中文字幕在线| 天天影视国产精品| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 又大又爽又粗| 曰老女人黄片| 少妇裸体淫交视频免费看高清 | 久久青草综合色| 亚洲av美国av| 国产成人啪精品午夜网站| 久久精品熟女亚洲av麻豆精品| 国产成人欧美在线观看 | 色在线成人网| 日本wwww免费看| 自线自在国产av| 欧美日韩福利视频一区二区| 精品国产亚洲在线| 十八禁人妻一区二区| 97人妻天天添夜夜摸| 在线看a的网站| 五月天丁香电影| 国产伦人伦偷精品视频| 精品国产国语对白av| 欧美日韩中文字幕国产精品一区二区三区 | 成人亚洲精品一区在线观看| 午夜免费鲁丝| 人妻一区二区av| 国产精品一区二区免费欧美| 欧美老熟妇乱子伦牲交| av一本久久久久| 日韩精品免费视频一区二区三区| 精品午夜福利视频在线观看一区 | 美女高潮喷水抽搐中文字幕| 亚洲精品国产色婷婷电影| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 精品一区二区三区四区五区乱码| 久久人人97超碰香蕉20202| 99香蕉大伊视频| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 精品国产亚洲在线| 在线观看免费日韩欧美大片| 在线观看www视频免费| 18在线观看网站| 亚洲欧美激情在线| 超色免费av| 久久久精品区二区三区| 嫁个100分男人电影在线观看| 变态另类成人亚洲欧美熟女 | 国产精品亚洲av一区麻豆| 国产一区有黄有色的免费视频| 亚洲综合色网址| 国产日韩欧美在线精品| 欧美成人免费av一区二区三区 | 黄网站色视频无遮挡免费观看| 嫁个100分男人电影在线观看| 久久久精品区二区三区| 欧美日韩成人在线一区二区| 丰满饥渴人妻一区二区三| 汤姆久久久久久久影院中文字幕| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| 亚洲三区欧美一区| 国产av又大| 久久久久久久大尺度免费视频| 午夜老司机福利片| 91成人精品电影| 日韩中文字幕视频在线看片| 午夜福利视频在线观看免费| 18禁裸乳无遮挡动漫免费视频| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 国产不卡一卡二| 国产日韩一区二区三区精品不卡| 老汉色av国产亚洲站长工具| 午夜福利视频精品| 国产有黄有色有爽视频| 女人爽到高潮嗷嗷叫在线视频| 高清黄色对白视频在线免费看| av免费在线观看网站| tocl精华| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 午夜福利乱码中文字幕| av天堂久久9| 19禁男女啪啪无遮挡网站| 99九九在线精品视频| 久久99一区二区三区| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区精品| 男人舔女人的私密视频| 一本—道久久a久久精品蜜桃钙片| 男女无遮挡免费网站观看| 制服人妻中文乱码| 亚洲熟妇熟女久久| 欧美乱码精品一区二区三区| 99国产精品一区二区蜜桃av | 精品一区二区三区视频在线观看免费 | 久久久久久亚洲精品国产蜜桃av| 日本欧美视频一区| 成人18禁在线播放| 国产欧美日韩精品亚洲av| 成人精品一区二区免费| 天堂中文最新版在线下载| 国产精品一区二区精品视频观看| 香蕉国产在线看| 纯流量卡能插随身wifi吗| 一本色道久久久久久精品综合| 人妻 亚洲 视频| 午夜免费鲁丝| 亚洲av电影在线进入| 香蕉久久夜色| 亚洲av电影在线进入| 少妇猛男粗大的猛烈进出视频|