• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled Hydrodynamic and Aerodynamic Response Analysis of a Tension-Leg Platform Floating Wind Turbine

    2017-05-13 02:33:33SHENchengHUZhiqingGENGTin
    船舶力學(xué) 2017年3期
    關(guān)鍵詞:浮式上海交通大學(xué)工程學(xué)院

    SHEN M-cheng,HU Zhi-qing,b,GENG Tin

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University,Shanghai 200240,China)

    Coupled Hydrodynamic and Aerodynamic Response Analysis of a Tension-Leg Platform Floating Wind Turbine

    SHEN Ma-chenga,HU Zhi-qianga,b,GENG Tiana

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University,Shanghai 200240,China)

    A fully coupled time-domain aero-hydro-servo-elastic simulation of a tension-leg-platform (TLP)floating wind turbine is conducted.3-D potential theory and Morison equation are applied to calculate the hydrodynamic loads.Blade element momentum theory and generalized dynamic wake theory are applied to calculate the aerodynamic loads.Time series results are obtained and analyzed to study the coupled dynamic responses of the TLP floating wind turbine.An analytic equation governing the surge motion was formulated and solved based on perturbation method.This equation can explain the high frequency response in surge motion induced by the nonlinearity of viscosity.From the analysis results,the dynamic responses of the TLP floating wind turbine are obtained and analyzed, and it is found that the high frequency component of the response has significant impact on the platform’s dynamic performance.

    floating wind turbine;TLP;dynamic response;coupled aerodynamic and hydrodynamic loads;nonlinear drag force

    0 Introduction

    The offshore wind power is a promising renewable energy resource.Tension-Leg-Platform (TLP)can play an important role and provide a desirable foundation for floating wind turbine because of its steady motion,and thus high energy transformation ratio.But TLP platform is susceptible to high frequency excitation due to its high stiffness mooring system.Typically,the natural frequencies of a TLP platform are designed to avoid the wave frequency effect.But high frequency excitations can be induced by aerodynamic loads,coupled structural responses and nonlinear hydrodynamic loads such as second order forces and viscous effects.It is necessary to include these effects in a time domain simulation to get a realistic estimation of the dynamic response of TLP platform floating wind turbine.

    Various studies have been conducted on floating wind turbines.Nielsen[5]analyzed negative aerodynamic damping on a Spar floating wind turbine by using a combined aero-servo-elastic hydrodynamic and mooring program.Wayman and Jonkman[6]conducted a frequency domain analysis on various TLP designs,but transient and nonlinear effects were not considered.Roald[7]investigated the effect of the second order forces on a TLP floating wind turbine which showed importance of high frequency excitation.But the second order forces were calculated in frequency domain,and the tower flexibility was not taken into consideration.Matha[8]studied the response,ultimate loads and fatigue loads of a TLP floating wind turbine by conducting time domain simulation of various load cases,which captured major nonlinear effects. Goupee and Kimball[11]performed model tests for floating wind turbines,from which valuable data were acquired.However,phenomena concerning viscosity could not be simulated accurately in the model test due to scale effect.

    This paper studies the coupled dynamic response of a TLP floating wind turbine.Major focuses are put on the effects of steady wind and drag force on the surge and pitch responses. In addition,the derivation and property of drag force induced nonlinear responses,especially high frequency nonlinear responses,are discussed in detail,which have not been seldom analyzed in former researches.

    1 Theory and method

    The NREL 5 MW Wind Turbine[3]supported by a TLP developed by the University of Maine for use in the DeepCwind project shown in Fig.1 is adopted as the research object.

    Tab.1 Principal dimensions and mass properties of NREL 5MW wind turbine

    Tab.2 Principal dimensions and mass properties*of TLP

    Fig.1 TLP floating wind turbine

    The principal dimensions of the wind turbine are listed in Tab.1.The principal dimensions and mass properties of the TLP with wind turbine and moorings are listed in Tab.2[10].

    It should be noted that the mass of the TLP is of the same magnitude with those of the wind turbine and the tendons,and thus strong coupled dynamic interactions can be expected among them.Therefore,time domain analysis is necessary to simulate the effects of aerodynamic loads,structural elastic modes,control system and nonlinear wave loads simultaneously. The numerical simulation studied in this paper is conducted using a numerical aero-hydroservo-elastic simulator FAST.

    The aerodynamic loads are calculated based on blade element momentum theory coupled with generalized dynamic wake theory.It takes into consideration the time lag in the induced velocities created by vorticity being shed from the blades and being convected downstream. Details about the aerodynamic theories applied by FAST can be found in Ref.[1].

    The hydrodynamic loads are obtained from potential theory and semi-empirical Morison equation.Wave forces caused by incident waves and body motions can be calculated in time domain by three-dimensional potential theory.The wave-induced forces include the Froude-Kriloff force due to incident waves,diffraction force due to scattering of incident waves and radiation force due to body motions.

    By assuming the floating body as a rigid body,the governing equation for transient motion[11]is written as

    where the six degrees of freedom are coupled by added mass and damping derived from radiation forces and restoring forces from the mooring system.

    Since potential theory neglects viscosity effects,Morison equation is also applied as a complement to consider quadratic drag force caused by separation of boundary layer in extreme sea states[9].The drag force on unit length of a cylinder is found by equation(2)where ρ denotes the density of the fluid,D denotes the diameter of the cylinder and urdenotes the relative velocity between the fluid particle and the strip of the cylinder.

    A control system ensuring constant power generation above rated wind speed is also simulated.The responses of tower and blades are calculated based on superposition method of vibration mode.

    2 Load cases definition

    Two groups of load cases,the RAO load cases and the design load cases are conducted.The RAO load cases is performed with unit-amplitude regular waves to study the frequency domain response characteristics of the floating wind turbine,while the design load cases with waves and steady wind are performed to verify the survivability in severe sea states.For all load cases,the wind and wave are in collinear direction and the wind turbine is in the upwind condition.The load cases investigated in this paper are listed in Tab.3 and Tab.4,respectively.

    Tab.3 RAO load cases

    Tab.4 Design load cases

    Wind speed is usually related with the severity of sea condition,and strong wind normally induces large wave.Therefore,different wind speeds are chosen depending on the corresponding wave heights and frequencies.Corresponding load cases are carried out without steady wind to study the aerodynamic effect through comparison.

    The natural frequencies of the platform[7]are listed in Tab.5.

    Tab.5 Natural frequencies of the TLP with rigid and flexible wind turbine blades and tower

    A significant discrepancy of pitch and roll natural frequencies between a rigid tower model and a flexible tower model are observed,due to coupling between tower elasticity and platform pitch.

    3 Simulation results and discussions

    3.1 Unit-amplitude regular wave

    Usually,a frequency domain analysis is used for dynamic response analysis of offshore floating structures under the excitation of regular wave.Assuming the whole system is linear, the response can be characterized by RAOs,which equal the response amplitudes normalized by the wave amplitude.However,when nonlinearity is taken into consideration for floating wind turbine,a new concept of the normalized amplitudes,named effective RAOs,was proposed by Jonkman[2],to consider the complicated coupling effect between wave and wind.The effective RAOs for floating wind turbine not only depend on wave frequency but also vary with wave amplitude and the effect of wind load.The word‘effective’is used to clarify that they are not true RAOs when the underlying models are nonlinear[2].

    The effective RAOs are obtained by running simulation with periodic,unit amplitude waves with the rotor parked.The effective RAOs are thus obtained at several discretized frequencies and cubic spline fitting is applied to get a smooth curve.Surge and pitch effective RAOs are shown in Fig.2 and Fig.3,respectively.

    Fig.2 Surge effective RAO for regular wave only case

    Fig.3 Pitch effective RAO for regular wave only case

    It can be observed that surge RAOs are in good accordance with the fitting curve,but pitch RAOs are difficult to be represented by a smooth curve,and at certain frequencies the results at simulated frequencies deviate quite a little from the fitting curve.Such frequencies are 0.628 rad/s,0.448 rad/s and 0.285 rad/s,all of which are close to submultiples of the pitch natural frequency 2.021 rad/s.This deviation phenomenon can be explained from the nonlinearity of viscosity at certain frequencies.It is because that the quadratic drag force induces responses in surge motion whose frequencies are odd multiples of wave frequency.The surge motion induced inertial force contributes a high-frequency moment to the pitch motion and causes resonance when the frequency is close enough to the pitch natural frequency.This is the reason why the effective RAOs in pitch motion seem irregular in certain frequencies.Although the high frequency components in surge motion are small,the inertial-force-induced momentcan be large because the center of mass of the wind turbine is high.This results in stronglycoupled dynamic responses in surge and pitch motion,which is not so conspicuous in traditional TLP platform for oil production.

    3.2 Regular wave and steady wind

    Aerodynamic effect on the TLP platform wind turbine is investigated by simulating regular wave and steady wind load cases.The effective RAOs of surge and pitch motion with and without wind are plotted in Fig.4 and Fig.5,respectively.

    Fig.4 Surge effective RAO for regular wave with and without wind cases

    Fig.5 Pitch effective RAO for regular wave with and without wind cases

    The surge effective RAOs show great differences compared with the ones presented in section 3.1 at the range of low frequency.This is because the wave heights are large enough to make viscous drag significant.When the wave height increases,the KC number increases as well.The boundary layer is likely to separate at tendons and the surface-piercing pontoon, causing the viscous drag force due to high pressure at the up-stream side and low pressure at the down-stream side.The drag force considered by Morison equation increases quadratically with the wave height,so the drag force plays a dominant role in severe sea states.The reduction in surge effective RAOs at low frequencies is due to the viscous damping effect by the drag force.

    The constant wind also contributes damping effect to surge motion,especially when the wind speed is around the rated speed 11.4 m/s.On the contrary,pitch motion is damped by the wind at some frequencies but excited at other frequencies.Since pitch motion is much smaller compared with surge motion,the aerodynamic thrust on the rotor is mainly dependent on the surge velocity.Under the excitation of regular wave,surge velocity and thrust both vary harmonically but in opposite phase.If pitch velocity varies in opposite phase with surge velocity, thus in the same phase with thrust,then aerodynamic thrust will excite pitch motion.Therefore, whether pitch motion is excited or damped by wind force depends on frequency domain response of the platform.Noted that turbulent wind has not yet been taken into consideration,the actual pitch response can be even more strongly excited.

    3.3 Irregular wave and steady wind

    The JONSWAP spectrum is chosen to simulate irregular waves.Standard deviations of surge and pitch motion are obtained from numerical simulation of each load case equivalent to one and a half hour’s real sea states.The results are plotted in Fig.6 and Fig.7.

    Fig.6 Surge response standard deviation

    Fig.7 Pitch response standard deviation

    The steady wind effect on surge standard deviation is similar to that on surge effective RAOs in regular wave cases.This is understandable because standard deviation and RAOs are both measurement of deviation from mean values.However,it is not the case in pitch motion, because the wind force also contributes irregular disturbance to rotor thrust.Pitch motion is more susceptible to variation in rotor thrust than surge motion is,since the center of rotor is high above the tower base,resulting in great variation of pitch moment.This may cover up the damping effect in pitch motion around rated wind speed.In contrast,the damping effect in surge motion predominates the disturbance in surge motion.Therefore,surge and pitch respond differently to the aerodynamic loads.

    Pitch spectrum density functions under the excitation of irregular wave with and without wind are plotted in Fig.8.The wave peak frequency is 0.448 8 rad/s.The significant wave height is 10 m,and the wind speed is 40 m/s. Viscosity effect is of crucial importance in this case.In the wave-only case,the viscosity induced high frequency pitch motion is comparable with the wave frequency motion as the solid line shows.The dotted line shows that the aerodynamic load increases the wave frequency motion while reduce the natural frequency resonance considerably.This is because aerodynamic damping is the majority of total damp-ing at high frequency.Total damping around resonance frequency has a very important effect on the amplitude of resonance motion.According to potential theory,wave radiation damping tends to vanish at high frequency while aerodynamic damping is approximately proportional to cubic of frequency[4].Therefore,the existence of aerodynamic damping significantly reduces the resonance in pitch motion.

    Fig.8 Pitch response spectrum density

    3.4 Viscosity effect

    Two major effects of the viscosity induced drag force have been discovered in the time domain simulation,and they are non-zero average displacement caused by mean drift forces and high frequency responses caused by the coupled effect of wave frequency responses and drag force.

    An approximate differential equation governing surge motion is formulated as Eq.(3)to investigate qualitative property of the nonlinear effect.Asymptotic behaviors of amplitudes of the mean displacement and high frequency responses can be found by solving this equation.

    where M denotes the sum of mass of the platform and wind turbine and added mass due to fluid motion,x denotes the surge displacement,C denotes the coefficient of drag force for surge motion,U denotes the amplitude of fluid horizontal velocity at mean position of the platform,ω denotes the wave angular frequency,T denotes the pre-tension of the tension leg,L denotes the length of the tension leg and F denotes amplitude of the excitation force in surge motion.α denotes the phase difference between the fluid velocity and the excitation force.

    Several approximations and assumptions are made to build up this equation.These approximations and assumptions include but not exclusively:

    (1)The platform responses approximately harmonically at the wave frequency.Therefore, time domain equation containing convolution term degenerates into frequency domain equation.

    (2)Wave radiation damping is negligible compared to drag force and thus being neglected.

    (3)The surge motion is small compared with the wave length and the characteristic length of the platform.Therefore,the velocity of fluid particle at instantaneous position is replaced by that at mean position and the restoring force from tension legs is linearized at mean position.

    (4)Airy wave theory is applied and the amplitudes of fluid velocity and excitation force are all proportional to wave height.

    Following quantities are introduced to simplify Eq.(3):h denotes wave height,u denotes transfer function of fluid horizontal velocity at mean position of the platform and f denotes transfer function of surge excitation force.

    The natural frequency of the undamped mode is given by

    For normal sea states,the corresponding quantity ε is a small parameter.Therefore,Eq. (4)can be solved using perturbation method by expanding X into an asymptotic series as follows[12].

    In fact,Eq.(6)corresponds to the linearized equation for frequency domain analysis.The steady state solution to Eq.(6)is

    This solution corresponds to the wave frequency response.

    In Eq.(7),A0and φ0are simple functions of A and γ,which need not be shown explicitly.This convention is also applied in following deduction to avoid lengthy expressions.

    By substituting Eq.(7)into Eq.(8),Eq.(9)is obtained.

    The right hand side of Eq.(9)is a periodic function,so it can be expanded into a Fourier series as follows:

    This excitation term for X1is the derivation of high frequency excitation.

    The solution to Eq.(9)is

    It can be easily shown that the asymptotic behavior of coefficient anis an∝1/n3if n is odd and an=0 if n is even.Therefore,the amplitude of high frequency response decays inverse-proportionally to cubic of the frequency.Small as it is,it can be detrimental if it coincides with pitch natural frequency.

    By applying former results,Eq.(12)is simplified to give

    Third power function is applied to fit the data points.The result is in good accordance with the prediction derived from the perturbation analysis,and thus verifies the model.

    Time series of pitch motion under the excitation of regular wave with 0.285 6 rad/s peak frequency and 2 m wave height is shown in Fig.10.Transient motion due to initial condition quickly vanishes because of strong damping effect of viscosity,and the pitch motion shown in Fig.10 is in steady state.It is obvious that there is a high frequency component superposing upon the wave frequency component and the time average of pitch motion is nonzero.Fast Fourier Transformation of the time series result is shown in Fig.11.There are four major components.The highest peak is the wave frequency motion.The second highest peak corresponds to mean drift displacement.The small peak around 0.85 rad/s corresponds to three times the wave frequency and is induced by drag force.But it does not coincide with pitch natural frequency,so the amplitude of this motion is negligible.The corresponding frequency to the thirdhighest peak,i.e.about 2 rad/s happens to be seven times the wave frequency.It is also induced by drag force and causes considerable resonance in pitch motion.This phenomenon should be taken into consideration in future design of TLP platform wind turbine and should be avoided if possible.

    Fig.9 Surge mean drift displacement

    Fig.10 Time series of pitch motion

    Fig.11 Fast Fourier Transformation of pitch motion

    4 Conclusions

    Responses in surge and pitch motion of the TLP platform floating wind turbine to aerodynamic and hydrodynamic loads have been investigated.

    Aerodynamic loads generally have damping effect on surge motion,which reduce surge response.The damping effect is most significant around rated wind speed.Aerodynamic loads have both damping and exciting effect on pitch motion.It depends on the relative phase between pitch motion and thrust force.In irregular wave cases,exciting effect covers up damping effect while damping effect plays an important role when resonance occurs in pitch motion.

    Hydrodynamic loads dominate platform motion.When wave height is small,linear hydrodynamic forces dominate.When wave height is large,nonlinear drag force induced by viscosity dominates.The drag force contributes damping but also causes mean drift and high frequency responses.The resulted high frequency response in pitch motion is detrimental to TLP if it coincides with pitch natural frequency,which may cause fatigue and even serious failure of the tendons.Qualitative property of the mean drift and high frequency responses are exploited by perturbation analysis and in good accordance with the numerical results.

    [1]Moriarty P J,Hansen A C.AeroDyn theory manual[M].Colorado:National Renewable Energy Laboratory,2005.

    [2]Jonkman J.Memorandum-Load Case 5.4 from OC3 Phase IV(Floating)[M].Colorado:National Renewable Energy Laboratory,2009.

    [3]Jonkman J.Dynamics modeling and loads analysis of an offshore floating wind turbine[M].Colorado:National Renewable Energy Laboratory,2009:94-95.

    [4]Karimirad M.Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems[D]. Norwegian:Norwegian University of Science and Technology,2011.

    [5]Nielsen F G,Hanson T D,Skaare B.Integrated dynamic analysis of floating offshore wind turbines[C]//European Wind Energy Conference,May,2007.Milan,Italy,2007:7-10.

    [6]Wayman E N,Sclavounos P D,Butterfield S,et al.Coupled dynamic modeling of floating wind turbine systems[C]//Offshore Technology Conference,May,2006.Houston,Texas,2006:1-10.

    [7]Roalda L,Jonkman J,Robertson A,et al.The effect of second-order hydrodynamics on floating offshore wind turbines [C]//Deep Sea Offshore Wind R&D Conference,January,2013.Trondheim,Norway,2013:260-263.

    [8]Matha D.Model development and loads analysis of an offshore wind turbine on a tension leg platform,with a comparison to other floating turbine concepts[D].Colorado:University of Colorado-Boulder,2009.

    [9]Faltinsen O M.Sea loads on ships and offshore structures[M].Cambridge:Cambridge University Press,1999.

    [10]Goupee A J,Koo B,Lambrakos K F,et al.Offshore wind energy:Model tests for three floating wind turbine concepts[C]// Offshore Technology Conference,May,2012.Houston,Texas,2012:455-465.

    [11]Mei C C,Stiassnie M,Yue K P.Theory and applications of ocean surface waves[M].Cambridge:World Scientific,2005.

    [12]Mei C C.Mathematical analysis in engineering[M].Cambridge:Cambridge University Press,1997.

    張力腿式浮式風(fēng)機(jī)平臺(tái)的水動(dòng)力和空氣動(dòng)力耦合響應(yīng)分析

    沈馬成a,胡志強(qiáng)a,b,耿添a
    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200240)

    文章采用了空氣動(dòng)力、水動(dòng)力、控制與彈性完全耦合的時(shí)域模擬方法研究了張力腿式浮式風(fēng)機(jī)平臺(tái)的動(dòng)力響應(yīng)。水動(dòng)力載荷的計(jì)算采用了三維勢(shì)流理論與Morison公式。空氣動(dòng)力載荷的計(jì)算采用了葉素動(dòng)量理論和廣義動(dòng)態(tài)尾流理論。利用FAST軟件得到了張力腿式浮式風(fēng)機(jī)平臺(tái)響應(yīng)的時(shí)域結(jié)果,并分析了其動(dòng)力響應(yīng)特性。建立了描述平臺(tái)縱蕩運(yùn)動(dòng)的非線性微分方程,并采用了攝動(dòng)方法求得其近似解,解釋了縱蕩運(yùn)動(dòng)中由非線性粘性效應(yīng)引起的高頻響應(yīng)。對(duì)數(shù)值模擬結(jié)果的分析表明高頻的響應(yīng)分量對(duì)平臺(tái)的動(dòng)力性能有顯著的影響。

    浮式風(fēng)機(jī)平臺(tái);張力腿平臺(tái);動(dòng)力響應(yīng);耦合的空氣動(dòng)力與水動(dòng)力載荷;非線性拖曳力

    U661.43

    :A

    沈馬成(1993-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院本科生;

    1007-7294(2017)03-0263-12

    U661.43

    :A

    10.3969/j.issn.1007-7294.2017.03.002

    胡志強(qiáng)(1975-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院副教授,通訊作者;

    耿添(1993-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院本科生。

    Received date:2016-11-02

    Foundation item:Supported by the Natural Science Foundation of China(Grant No.51239007)

    Biography:SHEN Ma-cheng(1993-),male,B.S.E.,graduate student,E-mail:macshen@umich.edu;

    HU Zhi-qiang(1975-),male,associate professor,corresponding author,E-mail:zhqhu@sjtu.edu.cn.

    猜你喜歡
    浮式上海交通大學(xué)工程學(xué)院
    上海交通大學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    硫磺上浮式絡(luò)合鐵脫硫工藝緩解溶液起泡研究
    云南化工(2021年5期)2021-12-21 07:41:52
    福建工程學(xué)院
    關(guān)于浮式防波堤消能效果及透射系數(shù)的研究
    上海交通大學(xué)參加機(jī)器人比賽
    浮式LNG儲(chǔ)存及再氣化裝置(FSRU)淺析及國(guó)內(nèi)應(yīng)用推廣展望
    福建工程學(xué)院
    全球首座浮式核電站于今年9月完工
    欧美精品国产亚洲| 日韩欧美一区二区三区在线观看| 免费看a级黄色片| 91av网一区二区| 美女大奶头视频| a级毛片免费高清观看在线播放| 春色校园在线视频观看| 99热这里只有是精品50| 免费av不卡在线播放| 免费观看a级毛片全部| 少妇的逼好多水| 男插女下体视频免费在线播放| 蜜桃亚洲精品一区二区三区| 中文在线观看免费www的网站| 婷婷色av中文字幕| 国产精品一二三区在线看| 成人av在线播放网站| 国产成人影院久久av| 欧美激情在线99| 一级二级三级毛片免费看| 97超视频在线观看视频| 久久久久久伊人网av| 哪个播放器可以免费观看大片| 只有这里有精品99| 两个人的视频大全免费| 99国产极品粉嫩在线观看| 国产av在哪里看| 国产亚洲5aaaaa淫片| 久久精品久久久久久噜噜老黄 | 在线天堂最新版资源| avwww免费| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| 少妇丰满av| 亚洲七黄色美女视频| 中出人妻视频一区二区| 搞女人的毛片| 亚洲欧洲国产日韩| 亚洲va在线va天堂va国产| 久久草成人影院| 国产精品麻豆人妻色哟哟久久 | 又粗又爽又猛毛片免费看| 欧美一区二区精品小视频在线| 熟女电影av网| 国产精品久久久久久久电影| 熟女电影av网| 我的老师免费观看完整版| 亚洲av中文av极速乱| 午夜福利高清视频| 免费看a级黄色片| 免费观看a级毛片全部| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲av香蕉五月| 日韩三级伦理在线观看| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6| 久久久国产成人精品二区| 色5月婷婷丁香| 自拍偷自拍亚洲精品老妇| 听说在线观看完整版免费高清| 一进一出抽搐动态| 亚洲,欧美,日韩| 黄片无遮挡物在线观看| 欧美zozozo另类| 一卡2卡三卡四卡精品乱码亚洲| 国产毛片a区久久久久| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 亚洲人成网站在线播放欧美日韩| 国产黄a三级三级三级人| 亚洲欧美中文字幕日韩二区| av专区在线播放| 日韩精品青青久久久久久| 日韩强制内射视频| 91精品国产九色| 日韩,欧美,国产一区二区三区 | 91久久精品国产一区二区成人| 国产精品蜜桃在线观看 | 黄色视频,在线免费观看| 欧美色欧美亚洲另类二区| 成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 天天躁夜夜躁狠狠久久av| 久久久久久久午夜电影| 亚洲国产精品成人久久小说 | 一夜夜www| 亚洲精品456在线播放app| 欧美人与善性xxx| 波多野结衣高清无吗| 久久人人精品亚洲av| 亚洲自拍偷在线| www.色视频.com| 长腿黑丝高跟| 观看美女的网站| 能在线免费看毛片的网站| 欧美色视频一区免费| 成人二区视频| 国产色爽女视频免费观看| 精品久久久久久久人妻蜜臀av| 婷婷亚洲欧美| 在线免费观看的www视频| 欧美一区二区国产精品久久精品| 少妇猛男粗大的猛烈进出视频 | 久久久精品大字幕| 中文字幕av在线有码专区| 黄色日韩在线| 成年女人看的毛片在线观看| 亚洲自拍偷在线| 国产精品一及| 亚洲欧洲日产国产| 嫩草影院新地址| 禁无遮挡网站| 啦啦啦啦在线视频资源| 内地一区二区视频在线| 免费人成在线观看视频色| 国产精品乱码一区二三区的特点| 国产极品精品免费视频能看的| 国产乱人视频| 国产成人91sexporn| 欧美性猛交╳xxx乱大交人| 一区二区三区免费毛片| 精品久久久久久成人av| 亚洲在久久综合| 身体一侧抽搐| 国产乱人偷精品视频| 可以在线观看毛片的网站| 91精品一卡2卡3卡4卡| 精品久久久久久久人妻蜜臀av| 亚洲经典国产精华液单| 国产一级毛片七仙女欲春2| 亚洲精品日韩av片在线观看| 久久99热这里只有精品18| 亚洲av成人av| 最近视频中文字幕2019在线8| 91久久精品国产一区二区成人| 日韩欧美精品免费久久| 国产精品一区www在线观看| 秋霞在线观看毛片| 国产成人a区在线观看| 白带黄色成豆腐渣| av天堂在线播放| 在线免费观看的www视频| 能在线免费看毛片的网站| 欧美极品一区二区三区四区| 伊人久久精品亚洲午夜| 日产精品乱码卡一卡2卡三| 色综合亚洲欧美另类图片| 欧美zozozo另类| 又爽又黄无遮挡网站| 午夜视频国产福利| 我的老师免费观看完整版| 黑人高潮一二区| 欧美xxxx黑人xx丫x性爽| 亚洲av电影不卡..在线观看| av在线亚洲专区| 亚洲真实伦在线观看| 亚洲国产欧洲综合997久久,| videossex国产| 高清毛片免费看| www.av在线官网国产| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 日韩高清综合在线| 午夜精品国产一区二区电影 | 精品人妻一区二区三区麻豆| 欧美激情久久久久久爽电影| 欧美日韩在线观看h| 我要看日韩黄色一级片| 99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| av在线蜜桃| 日韩欧美三级三区| 亚洲精品国产av成人精品| 色视频www国产| 亚洲av中文字字幕乱码综合| 亚洲中文字幕日韩| 亚洲国产欧美在线一区| 性插视频无遮挡在线免费观看| 日本撒尿小便嘘嘘汇集6| 丝袜喷水一区| 国产毛片a区久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲欧美成人综合另类久久久 | av免费在线看不卡| 欧美变态另类bdsm刘玥| 黄色一级大片看看| 久久欧美精品欧美久久欧美| 日韩欧美一区二区三区在线观看| 少妇裸体淫交视频免费看高清| 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 99久久人妻综合| 国内精品一区二区在线观看| 国产三级中文精品| 亚洲av.av天堂| 嫩草影院入口| 国产91av在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产一级毛片七仙女欲春2| 亚洲欧洲国产日韩| а√天堂www在线а√下载| 成人美女网站在线观看视频| 草草在线视频免费看| 99在线视频只有这里精品首页| 国产精品99久久久久久久久| 亚洲欧洲日产国产| 久久人妻av系列| 亚洲成人精品中文字幕电影| 精品人妻熟女av久视频| 成人亚洲欧美一区二区av| 亚洲无线在线观看| 乱码一卡2卡4卡精品| 免费看a级黄色片| 午夜福利视频1000在线观看| 免费av观看视频| 亚洲电影在线观看av| 精品人妻一区二区三区麻豆| 亚洲精华国产精华液的使用体验 | 狠狠狠狠99中文字幕| 亚洲欧美精品综合久久99| 国产伦一二天堂av在线观看| 男人舔奶头视频| 久久精品综合一区二区三区| 好男人视频免费观看在线| 日本黄色片子视频| 麻豆一二三区av精品| 免费看a级黄色片| 中文字幕熟女人妻在线| 亚洲四区av| 在线播放国产精品三级| 日本熟妇午夜| av天堂在线播放| 日韩强制内射视频| 最近的中文字幕免费完整| 国内精品久久久久精免费| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 别揉我奶头 嗯啊视频| 日韩一本色道免费dvd| 99久久无色码亚洲精品果冻| 亚洲在久久综合| 精品久久久久久久久av| 国产综合懂色| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 国产亚洲精品久久久久久毛片| 99九九线精品视频在线观看视频| 午夜视频国产福利| 九色成人免费人妻av| 亚洲人成网站在线播| 日韩av不卡免费在线播放| 18禁在线无遮挡免费观看视频| 国产午夜精品一二区理论片| 精品久久久久久久久av| 国产成人精品一,二区 | 亚洲av中文字字幕乱码综合| 欧美精品国产亚洲| 亚洲人成网站高清观看| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 1000部很黄的大片| 99久国产av精品国产电影| 天天一区二区日本电影三级| 99九九线精品视频在线观看视频| 看黄色毛片网站| av又黄又爽大尺度在线免费看 | 啦啦啦韩国在线观看视频| 男女下面进入的视频免费午夜| 精品无人区乱码1区二区| 日本-黄色视频高清免费观看| а√天堂www在线а√下载| 午夜视频国产福利| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| www.色视频.com| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 久久九九热精品免费| 国产精品.久久久| 深爱激情五月婷婷| 日韩欧美在线乱码| 久久久久久大精品| 欧美一级a爱片免费观看看| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 欧美+日韩+精品| 国产单亲对白刺激| 日韩在线高清观看一区二区三区| 两个人的视频大全免费| 精品久久久久久久久av| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 午夜精品在线福利| 看片在线看免费视频| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频 | 日韩成人伦理影院| 亚洲欧美精品专区久久| 亚洲aⅴ乱码一区二区在线播放| 国产又黄又爽又无遮挡在线| 午夜福利在线在线| 一区二区三区免费毛片| 国产激情偷乱视频一区二区| 有码 亚洲区| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 内地一区二区视频在线| 热99在线观看视频| 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 久久人人爽人人片av| 三级国产精品欧美在线观看| 欧美色视频一区免费| 国产精品久久久久久久电影| 精品久久久久久久末码| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 成人高潮视频无遮挡免费网站| 青春草亚洲视频在线观看| 麻豆一二三区av精品| 久久人人爽人人爽人人片va| 免费人成在线观看视频色| 亚洲av免费在线观看| 99久久成人亚洲精品观看| 少妇丰满av| 男人狂女人下面高潮的视频| 五月伊人婷婷丁香| 女的被弄到高潮叫床怎么办| 精华霜和精华液先用哪个| 青春草国产在线视频 | 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 亚洲婷婷狠狠爱综合网| .国产精品久久| 免费搜索国产男女视频| 三级男女做爰猛烈吃奶摸视频| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| av天堂在线播放| 精品无人区乱码1区二区| 日韩一本色道免费dvd| 简卡轻食公司| 国产三级中文精品| 国产视频内射| 久久99精品国语久久久| 久久99热6这里只有精品| 欧美又色又爽又黄视频| 麻豆乱淫一区二区| 国产精品无大码| 国产亚洲欧美98| 免费看a级黄色片| a级毛色黄片| 国产精品久久久久久亚洲av鲁大| 色视频www国产| 人人妻人人澡欧美一区二区| 嘟嘟电影网在线观看| 日本与韩国留学比较| 夜夜夜夜夜久久久久| 国产精品福利在线免费观看| 国产v大片淫在线免费观看| 日本色播在线视频| 精品日产1卡2卡| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 97人妻精品一区二区三区麻豆| 国产精品一二三区在线看| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 亚洲精品久久久久久婷婷小说 | 国产日本99.免费观看| 久久欧美精品欧美久久欧美| 欧美丝袜亚洲另类| 亚洲欧美精品专区久久| 又爽又黄无遮挡网站| 成人三级黄色视频| 九九爱精品视频在线观看| 久久这里只有精品中国| av黄色大香蕉| 国产成人精品婷婷| 国产在线男女| 亚洲av一区综合| 国产成人freesex在线| 午夜亚洲福利在线播放| 亚洲色图av天堂| 亚洲国产精品成人综合色| 人妻制服诱惑在线中文字幕| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 最近手机中文字幕大全| 身体一侧抽搐| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 亚洲av电影不卡..在线观看| 国产精品一及| 美女被艹到高潮喷水动态| 国产精品三级大全| 色5月婷婷丁香| 国产黄片视频在线免费观看| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 日本成人三级电影网站| 久久久久网色| 日产精品乱码卡一卡2卡三| 干丝袜人妻中文字幕| 亚洲国产精品sss在线观看| 欧美极品一区二区三区四区| 我的女老师完整版在线观看| 免费人成在线观看视频色| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添av毛片| av在线播放精品| 久久久久久久久久久免费av| 春色校园在线视频观看| 99久久久亚洲精品蜜臀av| 亚洲人与动物交配视频| 91av网一区二区| 高清毛片免费看| 国产精品免费一区二区三区在线| 久久这里有精品视频免费| 最近视频中文字幕2019在线8| 精品少妇黑人巨大在线播放 | 国内久久婷婷六月综合欲色啪| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 白带黄色成豆腐渣| 午夜精品在线福利| 日本五十路高清| 91精品国产九色| 久久婷婷人人爽人人干人人爱| 丝袜喷水一区| 综合色av麻豆| 九草在线视频观看| 久久国内精品自在自线图片| 国产三级中文精品| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 黄色欧美视频在线观看| 嫩草影院精品99| 大香蕉久久网| 最近手机中文字幕大全| 国产三级中文精品| 校园春色视频在线观看| 日韩三级伦理在线观看| kizo精华| 日日摸夜夜添夜夜爱| 中文亚洲av片在线观看爽| 国产片特级美女逼逼视频| 99国产极品粉嫩在线观看| 国产精品蜜桃在线观看 | 校园春色视频在线观看| av又黄又爽大尺度在线免费看 | 亚洲经典国产精华液单| 麻豆国产av国片精品| 国产亚洲5aaaaa淫片| 校园春色视频在线观看| 波多野结衣高清作品| 人人妻人人看人人澡| 深爱激情五月婷婷| 一级黄色大片毛片| 99在线视频只有这里精品首页| 又黄又爽又刺激的免费视频.| 亚洲乱码一区二区免费版| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 一边摸一边抽搐一进一小说| 亚洲,欧美,日韩| 九九热线精品视视频播放| 成人综合一区亚洲| 久久久成人免费电影| 欧美极品一区二区三区四区| 国产 一区精品| 日本黄色片子视频| 国产亚洲5aaaaa淫片| 久久人人爽人人片av| 又粗又爽又猛毛片免费看| 国产人妻一区二区三区在| 身体一侧抽搐| 亚洲av免费高清在线观看| 免费观看在线日韩| 午夜免费激情av| 九九在线视频观看精品| 国模一区二区三区四区视频| av福利片在线观看| 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱 | 国产av麻豆久久久久久久| 天堂√8在线中文| 日韩在线高清观看一区二区三区| 性插视频无遮挡在线免费观看| 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色| 99热网站在线观看| 精品久久久久久久人妻蜜臀av| 成人午夜高清在线视频| 亚洲欧美精品自产自拍| 成年免费大片在线观看| 色吧在线观看| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 亚洲av中文av极速乱| 精品久久久久久成人av| 色哟哟·www| 大香蕉久久网| 国产精品一区www在线观看| 哪个播放器可以免费观看大片| 国产高清三级在线| 欧美日韩乱码在线| 永久网站在线| 干丝袜人妻中文字幕| 国产精品免费一区二区三区在线| 中国美白少妇内射xxxbb| 成人无遮挡网站| ponron亚洲| 欧美极品一区二区三区四区| 亚洲精品粉嫩美女一区| 白带黄色成豆腐渣| 可以在线观看的亚洲视频| 男女下面进入的视频免费午夜| 欧美最黄视频在线播放免费| 99国产精品一区二区蜜桃av| 国内少妇人妻偷人精品xxx网站| 午夜福利成人在线免费观看| 有码 亚洲区| 国产精品.久久久| 熟女人妻精品中文字幕| 日韩精品有码人妻一区| 欧美变态另类bdsm刘玥| 一区二区三区免费毛片| 免费看a级黄色片| 老女人水多毛片| 免费看美女性在线毛片视频| 永久网站在线| 国产精品蜜桃在线观看 | 老师上课跳d突然被开到最大视频| 91久久精品国产一区二区三区| 热99re8久久精品国产| 免费观看a级毛片全部| 日韩视频在线欧美| 欧美激情在线99| 欧美一区二区精品小视频在线| 国产91av在线免费观看| 一级毛片电影观看 | 人妻夜夜爽99麻豆av| 女的被弄到高潮叫床怎么办| 精品久久久久久久久av| 国产黄片美女视频| 秋霞在线观看毛片| 国产精品免费一区二区三区在线| 国产免费男女视频| 国产老妇伦熟女老妇高清| 久久精品国产自在天天线| 99久久精品一区二区三区| 99久久无色码亚洲精品果冻| 波多野结衣高清无吗| 国产又黄又爽又无遮挡在线| 校园人妻丝袜中文字幕| 一区二区三区高清视频在线| 中文字幕免费在线视频6| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 久久精品久久久久久久性| 国产精品人妻久久久影院| www.av在线官网国产| 日韩 亚洲 欧美在线| 99热网站在线观看| 伦精品一区二区三区| 一本一本综合久久| 色噜噜av男人的天堂激情| 亚洲人成网站在线观看播放| 99riav亚洲国产免费| 精品人妻视频免费看| 一级毛片aaaaaa免费看小| 精品久久久久久久末码| 久久人人精品亚洲av| 大又大粗又爽又黄少妇毛片口| 少妇猛男粗大的猛烈进出视频 | 日本黄色片子视频| 久久亚洲精品不卡| 亚洲精品色激情综合| 校园春色视频在线观看| 久久精品国产清高在天天线| 久久久a久久爽久久v久久| 亚洲一级一片aⅴ在线观看| 麻豆一二三区av精品| 欧美激情在线99| 国产精品一区二区性色av| 欧美丝袜亚洲另类| 九九久久精品国产亚洲av麻豆| 精品国内亚洲2022精品成人| 国产黄色小视频在线观看| .国产精品久久| 非洲黑人性xxxx精品又粗又长| www日本黄色视频网| 午夜精品一区二区三区免费看| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 最近视频中文字幕2019在线8| 国内精品一区二区在线观看| 亚洲高清免费不卡视频| 亚洲成人av在线免费| 麻豆成人午夜福利视频| 国产亚洲5aaaaa淫片| 校园春色视频在线观看| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 欧美一区二区国产精品久久精品| 一个人看视频在线观看www免费| 成人无遮挡网站|