• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enantioseparation of 2-(substituted phenyl)propanoic acids with hydroxypropyl-β-cyclodextrin as a chiral additive:investigation of substituent influence on enantiorecognition

    2017-05-11 07:59:06WANGXiaopingLUMengxiaBUZhisiLiqiongTONGShengqiang
    色譜 2017年5期
    關(guān)鍵詞:芳基丙基手性

    WANG Xiaoping, LU Mengxia, BU Zhisi, Lü Liqiong, TONG Shengqiang

    (College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China)

    Article

    Enantioseparation of 2-(substituted phenyl)propanoic acids with hydroxypropyl-β-cyclodextrin as a chiral additive:investigation of substituent influence on enantiorecognition

    WANG Xiaoping, LU Mengxia, BU Zhisi, Lü Liqiong, TONG Shengqiang*

    (CollegeofPharmaceuticalScience,ZhejiangUniversityofTechnology,Hangzhou310032,China)

    2-(Substituted phenyl)propanoic acids were successfully enantioseparated by reversed-phase high-performance liquid chromatography with hydroxypropyl-β-cyclodextrin as a mobile phase additive. The effect of the mobile phase composition, including the aqueous buffer, the organic modifier, and the concentration of the additive, were investigated. The aqueous buffer pH, the type and percentage of the organic modifier, and the additive concentration had a great influence on the retention time and peak resolution. Enantioseparations were achieved on an YMC ODS-C18(150 mm×4.6 mm, 5 μm) column. The mobile phase was composed of acetonitrile and 0.10 mol/L of phosphate buffer at pH 3.3 containing 25 mmol/L of the hydroxypropyl-β-cyclodextrin additive. The binding constants of the inclusion complex between each of the 2-(substituted phenyl) propanoic acids and hydroxypropyl-β-cyclodextrin were determined, and the formation of the inclusion complex was investigated. The results showed that the stoichiometries for all of the inclusion complexes between hydroxypropyl-β-cyclodextrin and enantiomers were 1∶1. It was found that the electron-donating group of the enantiomer was advantageous for enantiorecognition by hydroxypropyl-β-cyclodextrin. The results provide a useful reference for the influence of the enantiorecognitionfactors produced by hydroxypropyl-β-cyclodextrin.

    enantioseparation; high-performance liquid chromatography (HPLC); 2-(substituted phenyl)propanoic acids; hydroxypropyl-β-cyclodextrin

    2-(Substituted phenyl)propanoic acids are important intermediates for synthesis of non-steroidal phenyl propanoic acid antipyretic analgesic and anti-inflammatory drugs. Different pharmacological activities, mechanisms, and toxicities exist between theR- andS-enantiomers. Accordingly, the enantioseparation of 2-(substituted phenyl)propanoic acids has become an important issue [1]. An increasing number of studies regarding enantioseparation of 2-(substituted phenyl)propanoic acids by liquid chromatography have become available, such as enantioseparation by chiral stationary phases [2-7] and chiral mobile phase additives [8,9]. As chiral stationary phases are generally expensive, the application of a chiral mobile phase additive is an alternative method for enantioseparation owing to its relatively low cost. In the current work, a method is presented for enantioseparation of four racemic 2-(substituted phenyl)propanoic acids via high-performance liquid chromatography (HPLC) with the chiral mobile phase additive hydroxypropyl-β-cyclodextrin, including 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid.

    A method for enantioseparation of eight nonsteroidal anti-inflammatory drugs by reversed-phase HPLC has been established [9]. Hydroxypropyl-β-cyclodextrin was added as a chiral mobile phase additive, and stereoselective skin permeation of different enantiomers were investigated. All of the evaluated racemic drugs were 2-(substituted phenyl)propanoic acids. The major difference in their chemical structures was the substituent on the benzene ring of 2-phenylpropionic acid. Additionally, major variance in enantiorecognition for each racemate was found when investigating enantioseparation of these racemates by HPLC with hydroxypropyl-β-cyclodextrin as a chiral additive. Meanwhile, in our recent studies [10-12], high-speed countercurrent chromatography was used for preparative enantioseparation of some 2-(substituted phenyl)propanoic acids. We determined the distribution ratio and enantioseparation factor for all the racemates by enantioselective liquid-liquid extraction. It was found that the racemates with an electron-donating group on the benzene ring presented a higher enantiorecognition produced by the same chiral selector hydroxypropyl-β-cyclodextrin than that of racemates with an electron-withdrawing group on the benzene ring [10]. In the present work, in order to further verify the abovementioned results, enantioseparation of the four racemic 2-(substituted phenyl)propanoic acids along with four racemic nonsteroidal anti-inflammatory drugs (suprofen, ibuprofen, ketoprofen, and naproxen)were investigated. It was carried out by reversed-phase HPLC with hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive. Enantiorecognition between the enantiomers and chiral additive was evaluated by determining binding constants for the different inclusion complexes. The separation mechanism of HPLC is different than that of high-speed countercurrent chromatography; yet, enantiorecognition between the enantiomers and hydroxypropyl-β-cyclodextrin could be well evaluated by the determination of binding constant ratios for the inclusion complexes from enantioseparation by liquid chromatography. The binding constant ratios of the inclusion complexes could be compared with enantioseparation factors obtained from countercurrent chromatography. Fig. 1 shows the chemical structures of the eight 2-(substituted phenyl)propanoic acids.

    1 Experimental

    1.1 Chemicals and reagents

    2-(4-Nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, 2-(4-chlorophenyl)propanoic acid, suprofen, ibuprofen, ketoprofen, and naproxen were purchased from J&K Scientific Ltd., Shanghai, China. Hydroxypropyl-β-cyclodextrin was purchased from Qianhui Fine Chemical Co. Inc., Shandong, China. Analytical grade sodium dihydrogen phosphate, phosphoric acid, acetic acid, and sodium acetate were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Chromatographic grade acetonitrile and methanol used for HPLC were purchased from Sigma-Aldrich, Shanghai, China. Water used for HPLC was redistilled by the distillation unit purchased from Shanghai Huxi Analysis Instrument Factory Co., Ltd., Shanghai, China.

    Fig. 1 Chemical structures of the eight 2-(substituted phenyl)propanoic acids

    1.2 Apparatus

    The chromatographic studies were performed on a Shimadzu HPLC LC-solution system. The instrument was composed of a Shimadzu LC-10Avp UV detector, a SCL-10Avp controller, a Shimadzu LC-10ATvp multisolvent delivery system, and a dual Shimadzu LC pump. The pH value was determined with a Delta 320-s pH meter, Shanghai, China.

    1.3 Chromatographic conditions

    The chiral separations of all the analytes were performed on an YMC ODS C18column (150 mm×4.6 mm i. d., 5 μm, Shanghai, China). The mobile phase was composed of acetonitrile and 0.10 mol/L phosphate buffer (pH 3.3) containing 25 mmol/L of hydroxypropyl-β-cyclodextrin. It was filtered through a 0.45-μm filter and degassed for 20 min prior to use. All of the analytes were detected at 212 nm. The temperature of the column was 35 ℃. The sample injection volume was 20 μL.

    1.4 Preparation of stock solution

    Each racemate of the 2-(substituted phenyl)propanoic acids was accurately weighed, transferred to volumetric flasks, dissolved in methanol, and stored at 5 ℃. The concentration of each solution was approximately 0.5 mg/mL.

    2 Results and discussion

    2.1 Chromatographic conditions for method development

    Enantioseparation of four 2-(substituted phenyl)propanoic acids, including 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, 2-(4-chlorophenyl)propanoic acid, and 2-(4-nitrophenyl)propanoic acid, by HPLC using hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive was investigated. The main influence factors, organic modifier and concentration of the chiral additive, were investigated with regard to peak resolution.

    Fig. 2 Effects of the volume percentage of acetonitrile on peak resolutionAqueous phase: 0.10 mol/L of phosphate buffer (pH 3.3) containing 25 mmol/L of hydroxypropyl-β-cyclodextrin; flow rate: 0.8 mL/min; wavelength: 212 nm; column temperature: 35 ℃.

    First, the type and percentage of the organic modifier were investigated. Methanol and acetonitrile are two frequently used organic modifiers. A shorter retention time, higher theoretical plates, better peak shape, and a slightly higher peak resolution was obtained with acetonitrile as the modifier compared to methanol. Moreover, the percentage of acetonitrile in the mobile phase had a great effect on the retention time and peak resolution. The results showed that a longer retention time and higher peak resolution were obtained with a low volume percentage of acetonitrile. For example, the retention time for enantiomers of 2-(4-chlorophenyl)propanoic acid was 75.81 min and 94.08 min with 5% of acetonitrile compared with 61.46 min and 67.16 min with 20% of acetonitrile, while the peak resolution was approximately 3.58 with 5% of acetonitrile compared with 0.984 with 20% of acetonitrile. As shown in Fig. 2, the peak resolution decreased with increasing concentration of acetonitrile. Therefore, suitable acetonitrile volume percentages of 10%, 20%, 5%, and 15% were chosen for 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid, respectively.

    Fig. 3 Effects of the concentration of hydroxypropyl-β-cyclodextrin on peak resolutionChromatographic conditions: 0.10 mol/L of phosphate buffer (pH 3.3) containing different concentrations of hydroxypropyl-β-cyclodextrin and acetonitrile, (90∶10, v/v) for 2-(4-nitrophenyl)propanoic acid, (80∶20, v/v) for 2-(4-methylphenyl)propanoic acid, (95∶5, v/v) for 2-(4-hydroxyphenyl)propanoic acid, and (85∶15, v/v) for 2-(4-chlorophenyl)propanoic acid; flow rate: 0.4 mL/min for 2-(4-hydroxyphenyl)propanoic acid and 0.8 mL/min for 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid; detection wavelength: 212 nm; column temperature: 35 ℃.

    Fig. 4 Effects of mobile phase pH on peak resolutionMobile phase: 0.5% (v/v) acetate buffer (pH 3.5-5.5) and 0.10 mol/L of phosphate buffer (pH 2.5-3.3) containing 25 mmol/L of hydroxypropyl-β-cyclodextrin and methanol (85∶15, v/v); flow rate: 0.8 mL/min; wavelength: 212 nm; column temperature: 35 ℃.

    Then, the effects of the chiral additive concentration on the enantioseparation were investigated. Fig. 3 shows the effects of hydroxypropyl-β-cyclodextrin concentration on peak resolution. The results showed that the peak resolution increased with increasing concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD) for 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid. However, it was found that the peak resolution of 2-(4-hydroxyphenyl)propanoic acid decreased owing to its large polarity. A higher concentration of the additive generally led to higher column pressure. Hence, 25 mmol/L of hydroxypropyl-β-cyclodextrin was selected.

    Lastly, the pH value and flow rate of the mobile phase were investigated. As all of the racemates possessed a carboxyl group, the peak resolution was strongly influenced by the pH value of the mobile phase. The results showed that the higher the pH of the buffer, the lower the peak resolution observed for all racemates, as shown in Fig. 4. Though this effect of pH on enantioseparation of 2-arylpropionic acid derivatives using cyclodextrins as chiral selectors has been known, different analytes were tested in our work. Therefore, the pH of the mobile phase was kept below 4.0. A flow rate of 0.8 mL/min was suitable for all racemates except for 2-(4-hydroxyphenyl)propanoic acid, which was eluted early owing to its chemical structure and large polarity resulting in poor peak resolution. However, when the flow rate was set at 0.4 mL/min, a satisfactory peak resolution (Rs=1.52) for 2-(4-hydroxyphenyl) propanoic acid was obtained.

    Table 1 and Fig. 5 show the optimized chromatographic conditions and resultant chromatogram for enantioseparation of the four 2-(substituted phenyl)propanoic acids.

    Table 1 Optimized chromatographic conditions for enantioseparation of four 2-(substituted phenyl)propanoic acids

    Mobile phase: 0.10 mol/L of phosphate buffer (pH 3.3) containing 25 mmol/L hydroxypropyl-β-cyclodextrin and acetonitrile; flow rate: 0.8 mL/min for all racemates except 2-(4-hydroxyphenyl)propanoic acid (0.4 mL/min); wavelength: 212 nm; column temperature: 35 ℃.

    Fig. 5 Chromatograms of the enantioseparation of 2- (substituted phenyl)propanoic acids by reversed-phase HPLC with hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive under optimized chromatographic conditions

    2.2 Investigation of the influence of substituents on enantiorecognition

    In enantioseparation by HPLC using a chiral mobile phase additive, enantiorecognition between hydroxypropyl-β-cyclodextrin and enantiomers may be greatly affected by the percentage of organic modifier. Generally, a higher enantiorecognition can be achieved with a lower concentration of organic modifier because the organic modifier in the mobile phase competitively forms an inclusion complex with hydroxypropyl-β-cyclodextrin. Therefore, a higher peak resolution is generally always observed for a racemate with a lower concentration of the organic modifier. As shown in Table 1, the highest peak resolution of 2.646 was obtained for 2-(4-methylphenyl)propanoic acid even with the highest percentage of organic modifier (20%) in the mobile phase among all of the racemates, which indicated that the best enantiorecognition occurred between enantiomers of 2-(4-methylphenyl)propanoic acid and hydroxypropyl-β-cyclodextrin among all the racemates examined. Interestingly, the racemate peak resolution of 2-(4-methylphenyl)propanoic acid, 2-(4-chlorophenyl)propanoic acid, and 2-(4-nitrophenyl)propanoic acid decreased successively, although the percentage of organic modifier used in the optimized conditions decreased (as shown in Table 1), which indicated that enantiorecognition between the enantiomers of each of the three racemates and hydroxypropyl-β-cyclodextrin decreased successively. Enantiorecognition between the enantiomers and hydroxypropyl-β-cyclodextrin may be greatly affected by the size, polarity, and electronegativity of the differing benzene ring substituents. Since the chromatographic conditions were almost identical, the difference in enantiorecognition might be caused by the different benzene ring substituents of the analytes. It was found that methyl and chloro radicals were electron-donating groups but nitro was a typical electron-withdrawing group. The chloro radical may be thought of as an electron-donating group in this case because of the high electronegativity of carboxyl on the para-position. As for 2-(4-hydroxyphenyl)propanoic acid, though the hydroxyl was an electron-donating group, the peak resolution for this analyte was pretty low, which was mainly caused by early elution owing to its chemical structure and high polarity.

    It could be proposed that high enantiorecognition may be obtained by 2-(substituted phenyl) propanoic acids with an electron-donating group on the benzene ring. To further testify the validity of this proposal, the four nonsteroidal anti-inflammatory drugs were investigated. In order to evaluate enantiorecognition ability between different enantiomers and hydroxypropyl-β-cyclodextrin, binding constants of the inclusion complexes between host and guest molecule were investigated. Binding constants could be well determined by the retention equation in HPLC [13]. Generally, the stoichiometry of the inclusion complex between enantiomers and cyclodextrin was 1∶1. The retention equation could be expressed as:

    (1)

    wherekis the chromatographic definition of retention factor,φis the phase ratio, [A] is the concentration of stationary phase adsorption site, [CD] is the concentration of cyclodextrin molecule, andK1is the equilibrium constant. Eq (1) gives the retention behavior of the analytes bound with the cyclodextrins, which shows the stoichiometry of the inclusion complexes to be 1∶1. The binding constants for the inclusion complexes could be determined using Eq (1).

    Table 2 shows the regression equation of 1/kand the concentration of the cyclodextrin. All of the correlation coefficients of plots were greater than 0.99, indicating that the stoichiometry of all inclusion complexes was 1∶1.

    The value of the binding constant ratio of each racemate listed in Table 2 indicated that the enantiorecognition ability between each enantiomer and hydroxypropyl-β-cyclodextrin was different. Moreover, the sequence of the binding constant ratios of the eight 2-(substituted phenyl)propanoic acids further indicated that high enantiorecognition between hydroxypropyl-β-cyclodextrin and 2-(substituted phenyl)propanoic acids would most likely be obtained when an electron-donating group is on the benzene ring of 2-(substituted phenyl)propanoic acids.

    3 Conclusions

    The enantioseparation of four 2-(substituted phenyl)propanoic acids by reversed-phase HPLC with hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive was established. The ratios of binding constants of eight 2-(substituted phenyl)propanoic acids were determined, and the enantiorecognition between each enantiomer and chiral additive was evaluated. The results showed that an electron-donating group on the benzene ring is advantageous for enantiorecognition, which led to a relatively high ratio of binding constants. The results obtained in our current work were in agreement with the countercurrent chromatography results from our previous work.

    [1] Evans A M. Eur J Clin Pharmacol, 1992, 42: 237

    [2] Wang R Q, Ong T T, Tang W H, et al. Anal Chim Acta, 2012, 718: 121

    [3] Zhong Q Q, He L F, Beesley T E, et al. J Chromatogr A, 2006, 1115: 19

    [4] Wang Y, Ong T T, Li L S, et al. J Chromatogr A, 2009, 1216: 2388

    [5] Overbeke A V, Baeyens W, Dewaele C. Anal Chim Acta, 1996, 321: 245

    [6] Luo A, Wan Q, Fan H J, et al. Chinese Journal of Chromatography, 2014, 32(9): 1013

    [7] Wang M. Chinese Journal of Chromatography, 2014, 32(2): 198

    [8] Zheng Y, Yan J Z, Tong S Q, et al. Chinese Journal of Pharmaceutical Analysis, 2013, 33(4): 827

    [9] Ye J C, Yu W Y, Chen G S, et al. Biomed Chromatogr, 2010, 24: 799

    [10] Tong S Q, Wang X P, Lu M X, et al. J Sep Sci, 2016, 39: 1567

    [11] Tong S Q, Guan Y X, Yan J Z, et al. J Chromatogr A, 2011, 1218: 5434

    [12] Tong S Q, Zheng Y, Yan J Z. J Chromatogr A, 2013, 1281: 79

    [13] Armstrong D W, Nome F, Spino L A, et al. J Am Chem Soc, 1986, 108: 1418

    以羥丙基-β-環(huán)糊精為手性添加劑拆分2-取代芳基丙酸:取代基對(duì)手性識(shí)別的影響

    王小平, 魯夢(mèng)霞, 步知思, 呂力瓊, 童勝?gòu)?qiáng)*

    (浙江工業(yè)大學(xué)藥學(xué)院, 浙江 杭州 310032)

    以羥丙基-β-環(huán)糊精為手性添加劑,采用反相高效液相色譜法對(duì)2-取代芳基丙酸類物質(zhì)進(jìn)行了手性拆分??疾炝肆鲃?dòng)相的組成,包括緩沖溶液、有機(jī)改性劑以及添加劑的濃度等。緩沖溶液的pH值、有機(jī)改性劑的種類與濃度,以及添加劑的濃度對(duì)色譜峰的保留時(shí)間和分離度均有較大的影響。以YMC ODS-C18(150 mm×4.6 mm, 5 μm)為色譜柱,乙腈-0.10 mol/L磷酸鹽緩沖液(pH 3.3,含25 mmol/L添加劑)為流動(dòng)相,測(cè)定了各2-取代芳基丙酸與羥丙基-β-環(huán)糊精的包結(jié)常數(shù),考察了羥丙基-β-環(huán)糊精對(duì)各物質(zhì)的包結(jié)形式。實(shí)驗(yàn)結(jié)果表明,羥丙基-β-環(huán)糊精與各對(duì)映體均以1∶1的形式包結(jié),同時(shí)發(fā)現(xiàn)推電子取代基更有利于羥丙基-β-環(huán)糊精的包結(jié)行為,為羥丙基-β-環(huán)糊精對(duì)手性拆分的影響提供了一個(gè)有利的參考因素。

    手性分離;高效液相色譜;2-取代芳基丙酸;羥丙基-β-環(huán)糊精

    10.3724/SP.J.1123.2016.12020

    Foundation item: Project of Department of Education of Zhejiang Province, China (No. pd2013031).

    O658 Document code: A Article IC:1000-8713(2017)05-0544-07

    * Received date: 2016-12-09

    * Corresponding author. Tel: +86-571-88320984, Fax: +86-571-88320913, E-mail: sqtong@zjut.edu.cn.

    猜你喜歡
    芳基丙基手性
    手性磷酰胺類化合物不對(duì)稱催化合成α-芳基丙醇類化合物
    分子催化(2022年1期)2022-11-02 07:10:30
    石榴鞣花酸-羥丙基-β-環(huán)糊精包合物的制備
    中成藥(2018年6期)2018-07-11 03:01:28
    N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯浮選孔雀石的疏水機(jī)理
    魚腥草揮發(fā)油羥丙基-β環(huán)糊精包合物的制備
    中成藥(2017年5期)2017-06-13 13:01:12
    利奈唑胺原料藥中R型異構(gòu)體的手性HPLC分析
    脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
    新型3-氧-3-芳基-2-芳基腙-丙腈衍生物的合成及其抗癌活性
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進(jìn)
    一種新型芳基烷基磺酸鹽的制備與性能評(píng)價(jià)
    3-芳基苯并呋喃酮類化合物的合成
    少妇的丰满在线观看| 男人添女人高潮全过程视频| 久久人人爽人人片av| 免费在线观看视频国产中文字幕亚洲 | av福利片在线| 久久久久久久久免费视频了| 欧美性长视频在线观看| videos熟女内射| 91精品三级在线观看| 一级片免费观看大全| 欧美日韩一级在线毛片| 丰满迷人的少妇在线观看| 五月天丁香电影| 亚洲精品一区蜜桃| 国产三级黄色录像| 国产熟女午夜一区二区三区| 国产人伦9x9x在线观看| 两个人看的免费小视频| 国产99久久九九免费精品| 免费久久久久久久精品成人欧美视频| 国产女主播在线喷水免费视频网站| 19禁男女啪啪无遮挡网站| 三上悠亚av全集在线观看| 中文字幕av电影在线播放| 久久久久久亚洲精品国产蜜桃av| 大话2 男鬼变身卡| 午夜免费观看性视频| 国产黄色视频一区二区在线观看| 一级毛片女人18水好多 | 久久ye,这里只有精品| 久久热在线av| 久久影院123| 国产人伦9x9x在线观看| 国产人伦9x9x在线观看| 人人澡人人妻人| 国产av国产精品国产| av国产久精品久网站免费入址| 亚洲欧美清纯卡通| 9热在线视频观看99| 国产视频一区二区在线看| 欧美日韩黄片免| 国产爽快片一区二区三区| 涩涩av久久男人的天堂| 精品一区二区三卡| 午夜免费观看性视频| 天堂俺去俺来也www色官网| 黄片播放在线免费| 99久久精品国产亚洲精品| 黑丝袜美女国产一区| 精品亚洲乱码少妇综合久久| 免费在线观看影片大全网站 | 黄色怎么调成土黄色| 国产97色在线日韩免费| 欧美人与性动交α欧美精品济南到| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区黑人| 久久天躁狠狠躁夜夜2o2o | 国产亚洲av高清不卡| 超碰97精品在线观看| 亚洲精品久久午夜乱码| 男女边吃奶边做爰视频| 青青草视频在线视频观看| 免费少妇av软件| 在线观看国产h片| 欧美精品av麻豆av| 多毛熟女@视频| 久久久久久久精品精品| 精品一区二区三区av网在线观看 | 午夜福利视频精品| 青青草视频在线视频观看| 欧美日韩综合久久久久久| 蜜桃在线观看..| 亚洲人成77777在线视频| 精品国产一区二区久久| 超碰成人久久| 婷婷色av中文字幕| 九草在线视频观看| 亚洲欧美成人综合另类久久久| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 天天躁夜夜躁狠狠久久av| 男女边吃奶边做爰视频| 99热全是精品| 国产免费现黄频在线看| 777米奇影视久久| 男人爽女人下面视频在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲黑人精品在线| 伦理电影免费视频| 亚洲精品国产av蜜桃| 国产精品九九99| 久久精品久久久久久噜噜老黄| 国产成人精品久久二区二区免费| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美一区二区综合| 多毛熟女@视频| 又黄又粗又硬又大视频| 校园人妻丝袜中文字幕| 各种免费的搞黄视频| 2018国产大陆天天弄谢| 黄片播放在线免费| 亚洲精品国产av成人精品| 一级a爱视频在线免费观看| 91字幕亚洲| av欧美777| 美女高潮到喷水免费观看| 国产福利在线免费观看视频| 免费观看a级毛片全部| 少妇的丰满在线观看| 天堂8中文在线网| 一本大道久久a久久精品| 婷婷色av中文字幕| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 五月天丁香电影| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| av在线播放精品| 老熟女久久久| 国产福利在线免费观看视频| 一级毛片电影观看| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 啦啦啦在线观看免费高清www| 99久久综合免费| 久久久久久久大尺度免费视频| videosex国产| 日韩大码丰满熟妇| 亚洲欧美一区二区三区黑人| 涩涩av久久男人的天堂| h视频一区二区三区| 看十八女毛片水多多多| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx| 午夜免费鲁丝| 欧美乱码精品一区二区三区| 亚洲精品久久久久久婷婷小说| 成年人黄色毛片网站| 午夜久久久在线观看| 黄色毛片三级朝国网站| 老司机深夜福利视频在线观看 | 久久久久网色| 成人国产一区最新在线观看 | 国产高清videossex| 人妻人人澡人人爽人人| 久久久久久免费高清国产稀缺| avwww免费| 黑丝袜美女国产一区| 免费观看a级毛片全部| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 三上悠亚av全集在线观看| 亚洲成人国产一区在线观看 | 国产精品久久久久久精品电影小说| av在线老鸭窝| 香蕉国产在线看| 久久精品国产综合久久久| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 国产在线观看jvid| 波多野结衣一区麻豆| 亚洲国产最新在线播放| 18禁国产床啪视频网站| 在线av久久热| 午夜视频精品福利| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 久久亚洲精品不卡| 亚洲国产av影院在线观看| 老司机影院成人| 亚洲成人国产一区在线观看 | 午夜免费观看性视频| 日本色播在线视频| 手机成人av网站| 男女床上黄色一级片免费看| 成人三级做爰电影| 久久久久久久国产电影| 又大又爽又粗| 热99国产精品久久久久久7| 赤兔流量卡办理| 精品熟女少妇八av免费久了| 亚洲精品第二区| 国产三级黄色录像| 久久久久精品国产欧美久久久 | 视频区欧美日本亚洲| 色视频在线一区二区三区| 国产午夜精品一二区理论片| 免费在线观看影片大全网站 | 久久国产精品大桥未久av| 久久久精品免费免费高清| 国产av一区二区精品久久| 日韩电影二区| 日本欧美视频一区| 好男人电影高清在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲黑人精品在线| 在线看a的网站| 男女免费视频国产| 交换朋友夫妻互换小说| 精品福利永久在线观看| 如日韩欧美国产精品一区二区三区| 欧美日韩福利视频一区二区| 视频区图区小说| 一边亲一边摸免费视频| 青青草视频在线视频观看| 99久久综合免费| 午夜91福利影院| 9色porny在线观看| 久久国产精品人妻蜜桃| 精品少妇久久久久久888优播| 久久午夜综合久久蜜桃| 国产片内射在线| 欧美中文综合在线视频| 日韩av免费高清视频| 国产一区二区在线观看av| 男女床上黄色一级片免费看| 在线观看一区二区三区激情| 国产精品麻豆人妻色哟哟久久| 日韩欧美一区视频在线观看| 精品人妻在线不人妻| 午夜影院在线不卡| 欧美日韩综合久久久久久| 青草久久国产| 国产高清国产精品国产三级| 老汉色∧v一级毛片| 十八禁网站网址无遮挡| 如日韩欧美国产精品一区二区三区| 搡老乐熟女国产| 欧美日韩国产mv在线观看视频| 999精品在线视频| 久久久精品免费免费高清| 久久中文字幕一级| 亚洲人成电影观看| 国产成人一区二区三区免费视频网站 | 两个人免费观看高清视频| 日韩熟女老妇一区二区性免费视频| 亚洲七黄色美女视频| 日韩制服骚丝袜av| 黄片播放在线免费| 91九色精品人成在线观看| 一级黄片播放器| 国产亚洲av片在线观看秒播厂| 久久毛片免费看一区二区三区| 五月开心婷婷网| 少妇裸体淫交视频免费看高清 | 黄色a级毛片大全视频| 天堂8中文在线网| 中文字幕高清在线视频| 免费一级毛片在线播放高清视频 | 久久精品熟女亚洲av麻豆精品| 男女午夜视频在线观看| 91精品三级在线观看| 叶爱在线成人免费视频播放| 久久久亚洲精品成人影院| 精品国产乱码久久久久久小说| 最新在线观看一区二区三区 | 丰满少妇做爰视频| 欧美精品亚洲一区二区| 在现免费观看毛片| 在线观看www视频免费| 无遮挡黄片免费观看| 国产91精品成人一区二区三区 | 久久精品久久精品一区二区三区| 在现免费观看毛片| 在线亚洲精品国产二区图片欧美| 亚洲第一av免费看| 亚洲中文av在线| 国产精品成人在线| 一边亲一边摸免费视频| 黄色毛片三级朝国网站| 丝袜脚勾引网站| 天天躁夜夜躁狠狠躁躁| 一区二区日韩欧美中文字幕| 午夜福利免费观看在线| 嫁个100分男人电影在线观看 | 侵犯人妻中文字幕一二三四区| 午夜免费成人在线视频| 久久亚洲国产成人精品v| 天堂中文最新版在线下载| 美女主播在线视频| av一本久久久久| 国语对白做爰xxxⅹ性视频网站| 欧美精品高潮呻吟av久久| 99精国产麻豆久久婷婷| 欧美日韩福利视频一区二区| 日本猛色少妇xxxxx猛交久久| 精品高清国产在线一区| 国产日韩欧美视频二区| 日本欧美视频一区| videosex国产| 麻豆av在线久日| 操美女的视频在线观看| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 亚洲精品国产av蜜桃| 亚洲色图综合在线观看| 一本大道久久a久久精品| 蜜桃国产av成人99| 久热这里只有精品99| 中文字幕另类日韩欧美亚洲嫩草| 如日韩欧美国产精品一区二区三区| 美女扒开内裤让男人捅视频| 一区二区三区乱码不卡18| 中文字幕亚洲精品专区| 午夜免费男女啪啪视频观看| 久久人妻熟女aⅴ| 美女主播在线视频| 中国国产av一级| 日韩 亚洲 欧美在线| 欧美av亚洲av综合av国产av| www.av在线官网国产| 欧美日韩成人在线一区二区| 欧美日韩亚洲国产一区二区在线观看 | 在线亚洲精品国产二区图片欧美| 人妻 亚洲 视频| 久久久亚洲精品成人影院| 免费一级毛片在线播放高清视频 | 欧美国产精品va在线观看不卡| 超碰97精品在线观看| av在线老鸭窝| 久久国产精品大桥未久av| 别揉我奶头~嗯~啊~动态视频 | 18禁裸乳无遮挡动漫免费视频| 91精品国产国语对白视频| 一级黄色大片毛片| 午夜免费成人在线视频| 深夜精品福利| 国产精品 国内视频| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 久久久久久久国产电影| 国产三级黄色录像| 精品国产一区二区久久| 亚洲,一卡二卡三卡| 亚洲中文字幕日韩| 亚洲国产毛片av蜜桃av| 岛国毛片在线播放| 成年人黄色毛片网站| 久久影院123| 在线 av 中文字幕| tube8黄色片| 亚洲av日韩精品久久久久久密 | 婷婷丁香在线五月| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 国产精品国产av在线观看| 老鸭窝网址在线观看| 亚洲欧洲精品一区二区精品久久久| 美女国产高潮福利片在线看| 一区福利在线观看| 满18在线观看网站| 日韩av免费高清视频| 秋霞在线观看毛片| 在线精品无人区一区二区三| 国产精品一国产av| 午夜免费鲁丝| 热re99久久精品国产66热6| 国产欧美日韩一区二区三 | 国产亚洲av片在线观看秒播厂| videosex国产| 国产国语露脸激情在线看| 精品少妇内射三级| 91成人精品电影| 十八禁人妻一区二区| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 欧美激情高清一区二区三区| 大码成人一级视频| 一级黄色大片毛片| www.999成人在线观看| av片东京热男人的天堂| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 国产色视频综合| 美女福利国产在线| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| 国产日韩一区二区三区精品不卡| 丰满饥渴人妻一区二区三| 精品久久久久久久毛片微露脸 | 男女床上黄色一级片免费看| 老司机午夜十八禁免费视频| 国产在视频线精品| 日韩视频在线欧美| 母亲3免费完整高清在线观看| 成人影院久久| 美女视频免费永久观看网站| 国产欧美亚洲国产| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 精品人妻1区二区| 性色av乱码一区二区三区2| 国产亚洲欧美精品永久| 曰老女人黄片| 午夜福利,免费看| 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 日韩熟女老妇一区二区性免费视频| 18禁黄网站禁片午夜丰满| netflix在线观看网站| 日本91视频免费播放| 精品国产一区二区三区久久久樱花| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久成人av| 精品国产一区二区三区四区第35| 亚洲国产欧美一区二区综合| 亚洲情色 制服丝袜| 中文字幕制服av| 黑丝袜美女国产一区| 一本—道久久a久久精品蜜桃钙片| 手机成人av网站| 天天影视国产精品| 欧美日韩综合久久久久久| 久久久久久亚洲精品国产蜜桃av| av不卡在线播放| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 中文字幕最新亚洲高清| 狠狠精品人妻久久久久久综合| 99re6热这里在线精品视频| 亚洲国产av新网站| 欧美精品啪啪一区二区三区 | 日日夜夜操网爽| 亚洲精品一区蜜桃| 少妇裸体淫交视频免费看高清 | 永久免费av网站大全| 中国国产av一级| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 午夜激情久久久久久久| 麻豆乱淫一区二区| 久久鲁丝午夜福利片| 久久久久久亚洲精品国产蜜桃av| 成年人午夜在线观看视频| 热99久久久久精品小说推荐| 成人手机av| 亚洲国产欧美网| 搡老岳熟女国产| 亚洲五月婷婷丁香| 久久99热这里只频精品6学生| 国产在线一区二区三区精| 久久99一区二区三区| 国产一区二区 视频在线| 嫩草影视91久久| 人成视频在线观看免费观看| 9色porny在线观看| 亚洲精品一区蜜桃| av网站免费在线观看视频| 国产成人av激情在线播放| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 无遮挡黄片免费观看| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 满18在线观看网站| 黄色a级毛片大全视频| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| 久久青草综合色| 久久久国产欧美日韩av| 欧美日韩成人在线一区二区| 中文字幕高清在线视频| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| a级片在线免费高清观看视频| 免费在线观看黄色视频的| www日本在线高清视频| 91麻豆精品激情在线观看国产 | 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| www.精华液| 丝瓜视频免费看黄片| 成在线人永久免费视频| 人人妻人人澡人人看| 热99国产精品久久久久久7| 亚洲久久久国产精品| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 精品视频人人做人人爽| 极品人妻少妇av视频| 2021少妇久久久久久久久久久| 日韩欧美一区视频在线观看| 成人国产av品久久久| 美女脱内裤让男人舔精品视频| 两个人看的免费小视频| 国产淫语在线视频| 免费不卡黄色视频| 纯流量卡能插随身wifi吗| 视频在线观看一区二区三区| av不卡在线播放| 女性生殖器流出的白浆| 欧美黄色淫秽网站| 黄色视频在线播放观看不卡| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 午夜91福利影院| 欧美97在线视频| 亚洲人成电影观看| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 桃花免费在线播放| 蜜桃国产av成人99| 亚洲黑人精品在线| 99久久综合免费| 国产不卡av网站在线观看| av片东京热男人的天堂| 97人妻天天添夜夜摸| 成人免费观看视频高清| 欧美国产精品一级二级三级| 97在线人人人人妻| 亚洲伊人久久精品综合| 超碰97精品在线观看| 免费观看av网站的网址| 黄片播放在线免费| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片| 午夜日韩欧美国产| 亚洲国产精品999| 大码成人一级视频| 三上悠亚av全集在线观看| 日韩一本色道免费dvd| 精品久久久精品久久久| www.999成人在线观看| 午夜久久久在线观看| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 岛国毛片在线播放| 欧美大码av| 手机成人av网站| 99国产精品免费福利视频| 国产激情久久老熟女| 乱人伦中国视频| 制服诱惑二区| 国产精品免费视频内射| 男女之事视频高清在线观看 | 亚洲欧美清纯卡通| 波野结衣二区三区在线| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲 | 精品高清国产在线一区| 亚洲国产精品999| 熟女少妇亚洲综合色aaa.| 久久久国产欧美日韩av| 一区二区av电影网| 蜜桃国产av成人99| 18在线观看网站| 黄色视频在线播放观看不卡| 精品免费久久久久久久清纯 | 久久人人爽av亚洲精品天堂| 精品一品国产午夜福利视频| 操美女的视频在线观看| 久久久久久人人人人人| 国产色视频综合| 97精品久久久久久久久久精品| 大话2 男鬼变身卡| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 日日爽夜夜爽网站| 99re6热这里在线精品视频| 搡老乐熟女国产| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| av线在线观看网站| 精品熟女少妇八av免费久了| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 777久久人妻少妇嫩草av网站| 男女之事视频高清在线观看 | 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 亚洲av日韩在线播放| www日本在线高清视频| 香蕉丝袜av| av电影中文网址| 美女脱内裤让男人舔精品视频| 亚洲中文日韩欧美视频| 国产精品九九99| 中文字幕av电影在线播放| 久久久久精品人妻al黑| 青春草亚洲视频在线观看| 国产又色又爽无遮挡免| 欧美少妇被猛烈插入视频| 国产在线观看jvid| 18禁裸乳无遮挡动漫免费视频| 精品人妻1区二区| 亚洲伊人久久精品综合| 人人妻,人人澡人人爽秒播 | 在线观看国产h片| 久久久欧美国产精品| 丰满人妻熟妇乱又伦精品不卡| 久久久精品免费免费高清| 欧美另类一区| 另类亚洲欧美激情| 多毛熟女@视频| 欧美变态另类bdsm刘玥| 美女扒开内裤让男人捅视频| 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 91国产中文字幕| 亚洲精品在线美女| 国产一区二区三区av在线| 亚洲中文字幕日韩| 国产色视频综合| 老汉色∧v一级毛片| 久9热在线精品视频| 99热全是精品|