• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同生物炭材料的制備及其在Li-S電池中的應(yīng)用

    2017-05-11 00:45:57李君濤吳嬌紅
    物理化學(xué)學(xué)報(bào) 2017年5期
    關(guān)鍵詞:生物

    李君濤吳 嬌紅 張 濤 黃 令

    (1廈門大學(xué)能源學(xué)院,福建廈門361005;2廈門大學(xué)化學(xué)化工學(xué)院,福建廈門361005)

    不同生物炭材料的制備及其在Li-S電池中的應(yīng)用

    李君濤1,*吳 嬌紅1張 濤1黃 令2

    (1廈門大學(xué)能源學(xué)院,福建廈門361005;2廈門大學(xué)化學(xué)化工學(xué)院,福建廈門361005)

    通過可再生生物質(zhì)制備的生物炭具有成本低、環(huán)保和資源可再生的優(yōu)勢。本研究以分布廣泛的稻谷殼、芒草、杉木和柚子皮等生物質(zhì)為原料,制備了4種不同類型生物炭,然后研究了其作為鋰-硫電池硫/碳正極的載體的性能。研究表明由稻谷殼制備的硫/生物炭正極材料表現(xiàn)出最高的比容量和最優(yōu)的循環(huán)穩(wěn)定性。為了進(jìn)一步改善其電性能,以SiO2溶膠為模板制備了具有高孔隙率的稻谷殼生物炭,其多孔結(jié)構(gòu)可有效抑制多硫化物的溶解。由此得到的硫/生物炭(硫含量為60%(w,質(zhì)量分?jǐn)?shù)))材料中的硫以無定型態(tài)均勻地分散在碳載體中。該材料表現(xiàn)出更優(yōu)異的電化學(xué)性能:在0.2C(1C=1675 mA·g-1)倍率下,首周放電容量為1534.1 mAh·g-1,循環(huán)100周后仍可保持在783.7 mAh·g-1;倍率性能測試中,在2.0C倍率下,材料的可逆容量為485.3 mAh·g-1。

    鋰硫電池;復(fù)合物;稻殼;芒草;杉木;柚子皮

    1 Introduction

    Due to the impending energy and environmental issues,rechargeable electrochemical batteries with high energy density and long cycle ability are in high demand.The lithium-sulfur(Li-S) battery is one of the most potential solutions due to its high theoretical capacity(1675 mAh·g-1for Li2S).Moreover,sulfur,due to the advantages of low cost,natural abundance and environmental friendliness,has been an attractive cathode candidate material for a large-scale practicalapplication.Nevertheless,there still remains three major problems to be settled,which includes: (1)the inherently poor electricalconductivity of elementalsulfur (5×10-30S·cm-1at 25°C);(2)the dissolution and shuttling problems with the lithium polysulfide intermediates in nonaqueous electrolyte;and(3)the volume expansion/contraction of sulfur during the electrochemical cycling.All of the above issues could cause rapid capacity decay and low coulombic efficiency of Li-S battery1-4.

    To overcome these challenges,considerable efforts have been carried outon exploring new battery configuration5,additives6,7, novel organic electrolytes8,9,polymer/sulfur composites10,and sulfur/carbon composites11-16.Recently,various porous carbon materials such as porous carbon nanofibers11,carbon nanotubes12, porous hollow carbon spheres13,carbon fibers/nanofoam composite14,metal organic framework(MOF)15,and MOF-derived porous carbon16have been studied and proved to be one of the mostpromising methods to improve the electrochemicalperformances of Li-S batteries,as the porous carbon can both serve as a host to trap sulfur and provide conductive paths to facilitate electron migration.However,most of these porous carbon materials are either expensive or require complex synthesis processes, which makes them difficultto scale up for practicalapplication in the Li-S battery systems.

    In the lastfew years,reproducible massive biomasses with low costhave attracted greatattention due to theirpotentialapplication in the preparation of carbon materials.Biomass such as banana fibers17,peanut shells18,cherry stones19,sugar20,coffee shells21, alginic acid fiber22,silk cocoon23and rice husk24,25have been served as carbon sources and showed many excellent features.Zhang et al.had successfully prepared porous carbons with high surface area from rice straw,which showed an excellent reversible capacity for anode materials in lithium-ion batteries26.In case of Li-S battery,the biochar materials are promising host matrixes for encapsulating sulfur,which enables efficient electrical contact between the conductive carbon framework material and sulfur. The porous carbon/sulfur composite with hierarchically porous structure was prepared from silk cocoon by the thermal carbonization with KOH23.This electrode materialshowed a high initial discharge capacity of 1443.0 mAh·g-1and a capacity of 804.0 mAh·g-1could be retained after 80 discharge/charge cycles at 0.5C.In addition,a kind of 3D structured carbon material was prepared from pomelo peel27.After a solution infiltration method with sulfur,the resulting sulfur/activated carbon foam nanocomposite showed an initialdischarge capacity of 1258 mAh·g-1at0.2C,with a capacity of 750 mAh·g-1retained after 100 cycles. Tao et al.28also used the Kapok fiber derived carbon nanotiles as the host of sulfur.The as-prepared composite electrodes showed a high and stable capacity of 524 mAh·g-1after 90 cycles at0.4 A·g-1.Moreno et al.used activated carbon derived from olive stones for the matrix in the S/C composites29,and the resulting cathode possessed a high capacity of about670 mAh·g-1after 50 cycles and a good rate capability.On the basis of the above review, it could be noticed that the biochar derived from different biomasses would possess differentstructural and even compositional features,which thus lead to distinctelectrochemicalperformances for the relevant biochar/sulfur cathode.To promote their applications in Li-S battery,itis stillnecessary to compare and optimize the properties of differentkinds of biochar.

    Among innumerable species of biomasses,the rice husk(RH), miscanthus(M),fir(F),and pomelo peel(PP)are the mostpopular and readily available ones whose estimated worldwide productions are as large as million tons.The rationalutilization of such massive biomasses would make great sense.In this study,the applications of four kinds of different biochar which is respectively derived from rice husk,miscanthus,fir,and pomelo peelare explored and compared in Li-S battery for the firsttime.What?s more,silica template was introduced in the preparation of rice husk derived biochar,and a highly porous rice husk derived biochar was produced accordingly,which brings enhanced performance for the resulting sulfur/biochar cathode.

    2 Experimental

    2.1 Materials synthesis

    The biochar from differentbiomasses was prepared as follows. The raw biomasses including rice husk,miscanthus,fir,and pomelo peelwere milled and washed by deionized water to remove the impurities on the surface,and dried at100°C for 24 h. Then thermalcarbonization of the biomasses was carried outat 800°C for 2 h with a heating rate of 5°C·min-1under Ar gas in a tubular furnace.Afterward,the black residues were immersed in a mixed solution with 1 mol·L-1HCl(AR)and 10%(w,mass fraction)HF(AR)under vigorous magnetic stirring overnight to remove silica and other soluble minerals in the pristine biomass. After washing with deionized water and ethanol(AR)for several times,the as-prepared biochar was dried at 80°C in a vacuum oven overnight.

    To optimize the biochar from rice husk,colloidal silica(Aldrich,40%(w)SiO2)was used as hard template to prepare the highly porous rice husk biochar.Typically,rice husk(5 g)and silica sol(10 g)were well dispersed in water through ultrasonic treatment.Subsequently,the water was evaporated at80°C under vigorous magnetic stirring.Then the resulting powder was calcined at800°C for 2 h with a heating rate of 5°C·min-1under Ar atmosphere in a tubular furnace.Afterward,the residue was treated by 1 mol·L-1HF solution to remove the silica template. Thus prepared highly porous rice husk derived biochar after being washed severaltimes with deionized water,was dried at80°C.

    As to the preparation of the S@biochar composite,the biochar and sulfur mixture with differentmass ratios,after being ground sufficiently in an agate mortar,was transferred to a 50 mL Teflonlined autoclave and maintained at 155°C for 12 h.NETZSCH STA 449 F5 analyzer was used to thermalgravimetric measure the sulfur contentin S@biochar composites.

    2.2 Structure characterization

    The as-prepared porous carbon and S@biochar composite were characterized by X-ray diffraction(XRD,Panalytical X′pert PRO, Philip).The morphology and the structure of the samples were characterized by field emission scanning electron microscopy (SEM,S-4800,Hitachi),transmission electron microscopy(TEM, JEM 2100,JEOL).The specific surface area was measured by BET N2sorption isotherms(Micromeritics Tristar 3000).

    2.3 Electrochemicalmeasurement

    The working electrodes were made from active materials (S@biochar composite),conductive agent(BP2000)and binder (poly(vinylidene difluoride)(PVDF)(AR))with N-methy-2-pyrrolidone(NMP)(AR)as dispersantwith a mass ratio of 70: 20:10.After forming a homogeneous slurry via magnetic stirring, the mixture was spread on Al foils using a doctor-blade coating method and was then heated in a vacuum oven at55°C for 24 h. CR2025 coin-type cells were assembled in a glove box filled with Ar.Lifoilwas used as the counter electrode and the Celgard 2400 as the separator.The electrolyte was 1 mol·L-1bis-(trifluoromethane)sulfonimide lithium(LiTFSI,Alfa Corp.)and 0.1 mol· L-1lithium nitrate(LiNO3)in dimethoxyethane(DME)and 1,3-dioxolane(DOL)(1:1(V/V))(Fosai New Materials Co.,Ltd., JiangSu,China).The electrochemical measurements were conducted on a LANDCT2001Ainstrument(Wuhan,China)atroom temperature.The cells were discharged and charged in the fixed voltage range of 1.5-3.0 V(vs Li/Li+).1 C corresponds to a current density of 1675 mA·g-1.Cyclic voltammetry(CV) measurements were performed on an electrochemistry working station CHI660D(Chenhua Co.,Ltd.,Shanghai,China)at a scanning rate of 0.2 mV·s-1.Electrochemical impedance spectroscopy(EIS)was carried outbetween 100 kHz to 0.01 Hz on a VERSASTATV3 electrochemical workstation(Princeton Applied Research,USA).ZView software(Scribner,Inc.)was used to fit the EIS spectra.

    Fig.1 SEMimages ofbiochar(with different resolutions)derived from(a)rice husk,(b)miscanthus,(c)fir,and(d)pomelo peel

    3 Results and discussion

    Fig.1 shows the morphologies of the resulting four kinds of the biochar.All of the four kinds of biochar are composed of large irregular particles with a diameter of 10-30μm.Especially,the particles of the rice husk derived biochar(RH-biochar)exhibit a hierarchicalpore structure,with numerous macro pores ranging from 1 to 10μm easily identified underthe SEMobservation(Fig.1 (a)).Such a resultclearly indicates that RH-biochar possesses high specific area.The particles of the biochar prepared from the miscanthus(M-biochar)(Fig.1(b))also have some pores,though much less than thatin the RH-biochar.The biochar samples from fir(F-biochar)(Fig.1(c))and pomelo peel(PP-biochar)(Fig.1(d)) show plate-like morphology with relative smooth surface,and no obvious pores can be revealed on such plate-like particles under SEMobservation.BET analysis reveals thatthe specific surface areas of the biochar from rice husk,miscanthus,fir,and pomelo peel are 1075.3,397.9,622.7,and 638.1 m2·g-1,respectively, confirming the highest surface area of RH-biochar.Such comparative results clearly demonstrate that the morphologies and structures of the biochar are greatly affected by the species of the biomass sources.With such large surface area and hierarchical pore structures,one could expectthatour RH-biochar could make an excellent candidate for the adsorption of sulfur and lithium polysulfide intermediates.

    The XRD patterns of the four biochar samples are shown in Fig.2.Allof the four samples display typical XRDpatterns of the amorphous carbon.A broad diffraction peak at around 24°is observed,which is consistent with the(002)diffraction peak of graphitic carbon.The low peak intensity/background ratio and high peak broadening prove the amorphous nature of the resulting biochar,which may be related with the relative low calcination temperature.

    With the above biochar as carriers,the S@biochar composite cathodes were prepared with our previously reported melt-diffusion method30.For comparison,the S content in these composites was controlled to be 50%(the thermalgravimetric analysis (TGA)was shown in Fig.2(e)).The electrochemical performances of these four S@biochar composite cathodes are shown in Fig.3 (a).One can see thatthe S@RH-biochar shows a high dischargecapacity of 1005.5 mAh·g-1at 0.2C with an initial Coulombic efficiency of 101.6%,which indicates that there is no obvious overcharge phenomenon.After 100 electrochemical cycles,566.8 mAh·g-1with a Coulombic efficiency of 96.9%could be retained, suggesting a high stability of this cathode.The S@biochar composites from miscanthus and pomelo peel give lower initial capacities,which are 824.5 and 892.8 mAh·g-1,separately.And after 100 cycles,their capacity could be maintained at 388.2 and 393.8 mAh·g-1,respectively.However,the initial Coulombic efficiency of S@biocharfrom pomelo peelis 110.7%,which could be associated with relatively severe shuttle effect.Though the S@biochar from fir displays the highestinitial capacity of 1051.7 mAh·g-1,its cycling stability is limited,which decays to only 532.5 mAh·g-1after 100 cycles.What′s more,the low initial Coulombic efficiency of 89.8%was observed on this cathode. Fig.3(b)is the discharge-charge curves of S@biochar cathodes at 0.2C in 1.5-3 V.Obviously,the S@RH-biochar cathode displays a longer voltage plateau than other S@biochar cathodes at the same electrode potential.On this basis,one could see that the S@RH-biochar delivered a superior electrochemical performance to those of the other three and we attribute its outstanding performance to its large specific surface area and its hierarchicalpore structures.The electrochemical performances of different S@biochar cathodes are summarized in Table 1.

    Fig.2 XRD patterns of biochar derived from(a)rice husk,(b)miscanthus,(c)fir,and(d)pomelo peel; (e)TGAcurves of S@RH-biochar with 50%(w)S

    Fig.3(a)Cycle performance and Coulombic ef fi ciency and(b)charge-discharge pro fi les of S@RH-biochar,S@M-biochar, S@F-biochar and S@PP-biochar cathode in 1 mol·L-1LiTFSI in DME and DOL(1:1(V/V))with 0.1 mol·L-1LiNO3at 0.2C The mass ratio ofsulfur and biocharis 1:1.

    Table 1 Summary ofthe electrochemicalperformance of S@biochar cathodes

    To further improve the electrochemicalproperties of the biochar derived from rice husk,silica template was introduced into its preparative process to create additionalmesopores in the resulting biochar.The morphology and structure of thus-prepared biochar, namely the highly porous rice husk derived biochar(named as HPRH-biochar)are shown in Fig.4.The particle size of such HPRH-biochar is reduced compared with that derived with no addition ofsilica(i.e.,the previously discussed RH-biochar).Moreimportantly,massive mesopores with average size of 10 nm could be observed in the TEM image,which are generated using the silica colloidal particles as the template.The specific surface area ofsuch HPRH-biocharis as large as 1960 m2·g-1,proving thatthe introduction of silica is an efficient strategy to improve the specific surface area of the biochar.

    To determine the optimal S content,the S@HPRH-biochar samples with different S ratios were prepared with the melt diffusion method.The XRD patterns of the HPRH-biochar,namely the pure highly porous rice-husk-derived biochar,and the S@HPRH-biochar samples are shown in Fig.5.As can be seen,the original HPRH-biochar is amorphous in nature(Fig.5(a)).When the loading of S content is 60%(w)(the thermal gravimetric analysis was shown in Fig.5(e)),the composite remains amorphous according to its XRD pattern(Fig.5(b)),which indicates uniform dispersion of sulfur in the pores of the carbon.When the loading of S is further improved to,e.g.,70%(w)(Fig.5(c))and 80%(w)(Fig.5(d)),peaks corresponding to bulk crystalline sulfur appear in their relevant XRD patterns,which is consistent with some previous reports31.

    Fig.5 XRD patterns of(a)the pure HPRH-biochar,and the S@HPRH-biochar samples with(b)60%,(c)70%,and (d)80%(w)S;(e)TGAcurves of S@HPRH-biochar with 60%(w)S

    Fig.6(a)shows the charge-discharge profiles of the S@HPRH-biochar with 60%(w)S in 1.5-3.0 Vat0.2C.A shorter potential plateau at about 2.3 V and longer potential plateau at 2.1 V are observed in the first discharge curve,which correspond to the reduction of sulfur to polysulfi des and then to the Li2S2/Li2S,respectively.In the firstcharge curve,a potentialplateau atabout2.3 V is observed,owing to the transformation of sulfur species from Li2Sx(x>2).This voltage of potentialplateau increases gradually in the following charge process.The CV curves of S@HPRH-biochar with 60%(w)S(Fig.6(b))shows the presence of two reductive current peaks atabout 2.0 and 2.3 V in the first cycle. These two peaks are positive-shifted in the following cycle.On a forward positive-going scan,an oxidative current peak ataround 2.4 V is observed.The cycle performance and coulombic effi ciency of S@RH-biochar and S@HPRH-biochar samples are compared in Fig.6(c).Itcan be seen that,for the S@RH-biochar cathode,the case loaded with 60%(w)S content shows higher initialcharge capacity than thatwith a 50%(w)S content;however,the cycling stability of the former is inferiorto the latter,with only 417.9 mAh·g-1retained after 100 cycles test.It could be observed thatthe S@HPRH-biochar sample with an S loading of 60%(w)demonstrates a high initial charge capacity of 1534.1 mAh·g-1and a capacity of 738.7 mAh·g-1after 100 cycles,revealing an improved sulfur utilization,higher reversible capacity and better stability than the pristine biochar from rice husk.When the S content was further increased to 70%(w),the charge/discharge capacity of the S@HPRH-biochar cathode becomes even more stable in the first100 cycles.As shown in Fig.6(c),an initial capacity of 1005.4 mAh·g-1and 1299.7 mAh·g-1could be obtained for the case with 70%(w)S and the one with 80%S,respectively,which decay to 569.0 and 486.2 mAh·g-1after 100 cycles,correspondingly.Nevertheless,there are obvious capacity attenuations in sulfur@HPRH-biochar with the S of 70%and 80% (w)in the firstseveralcycles.With increasing sulfur content,part ofthe sulfur would be located on the externalsurface of the carbon materialdue to the limitation of the pore volume of HPRH-biochar,which may lead to the dissolution of the polysulfide in theelectrolyte in the electrochemical cycle process,resulting in the loss of the active materialform the electrode.The above results reflect the important effects of the S content on the electrochemicalperformances of the cathode.With significantly larger specific surface area,HPRH-biochar could accommodate more S content than the RH-biochar,which therefore results in evidently improved electrochemical performance.The electrochemical performances of S@RH-biochar and S@HPRH-biochar cathodes are compared in Table 2.The EIS spectra of pristine S@RH-biochar(60%(w)S)cathode and S@HPRH-biochar(60%(w)S) cathode are also compared in Fig.6(e).The S@HPRH-biochar cathode shows lower resistance value(36.1Ω)than S@RH-biochar cathode(43.7Ω).Various current rates were applied to evaluate the rate capability of S@HPRH-biochar composites with 60%(w)S.The rate performance illustrated in Fig.6(d)was conducted at0.2C,0.5C,1.0C,2.0C,and the reversible capacities are 870.2,675.4,571.8,485.3 mAh·g-1,respectively.When the currentdensity turns back to 0.2C,a high capacity of735.9 mAh· g-1 could be recovered.Such rate capability is comparable to the previous works32-34.improved electrochemical performance.The electrochemical performances of S@RH-biochar and S@HPRH-biochar cathodes are compared in Table 2.The EIS spectra of pristine S@RH-biochar(60%(w)S)cathode and S@HPRH-biochar(60%(w)S) cathode are also compared in Fig.6(e).The S@HPRH-biochar cathode shows lower resistance value(36.1Ω)than S@RH-biochar cathode(43.7Ω).Various current rates were applied to evaluate the rate capability of S@HPRH-biochar composites with 60%(w)S.The rate performance illustrated in Fig.6(d)was conducted at0.2C,0.5C,1.0C,2.0C,and the reversible capacities are 870.2,675.4,571.8,485.3 mAh·g-1,respectively.When the currentdensity turns back to 0.2C,a high capacity of735.9 mAh· g-1could be recovered.Such rate capability is comparable to the previous works32-34.

    Table 2 Comparison of the electrochemicalperformance of S@RH-biochar and S@HPRH-biochar cathodes with different S loading

    4 Conclusions

    In summary,four kinds of biochar derived from reproducible massive biomasses,including rice husk,miscanthus,fir,and pomelo peel,were prepared and explored as host matrixes materials to fabricate S@biochar composite cathodes of Li-S batteries.The S@biochar cathode derived from rice husk,owing to its hierarchical porous structure and high surface area,presents superior electrochemicalperformances to those from miscanthus, fir,and pomelo peel.Moreover,to further improve its performance,silica was introduced as the template to create massive mesopores,generating the highly porous rice husk biochar(HPRH-biochar)with evidently improved ability for accommodation of sulfur,and the S content was optimized.The S@HPRH-biochar with 60%(w)S shows the best performance,which achieves a high initialdischarge capacity of 1534.1 mAh·g-1,with a capacity of 738.7 mAh·g-1retained after 100 cycles at 0.2C,and a rate capability of 485.3 mAh·g-1at 2.0C.The research provides an efficientstrategy for preparation of S@biochar cathode material with high energy density and excellentstability.

    (1)Xin,S.;Gu,L.;Zhao,N.H.;Yin,Y.X.;Zhou,L.J.;Guo,Y.G.; Wan,L.J.J.Am.Chem.Soc.2012,134,18510.doi:10.1021/ ja308170k

    (2)Yang,Z.;Zhang,W.;Shen,Y.;Yuan,L.X.;Huang,Y.H.Acta Phys.-Chim.Sin.2016,32,1062.[楊澤,張旺,沈越,袁利霞,黃云輝.物理化學(xué)學(xué)報(bào),2016,32,1062.]doi:10.3866/ PKU.WHXB201603231

    (3)Ji,H.X.;Ruoff,R.S.Acta Phys.-Chim.Sin.2016,32,797.[季恒星,Ruoff,Rodney S.物理化學(xué)學(xué)報(bào),2016,32,797.] doi:10.3866/PKU.WHXB201602192

    (4)Yin,Y.X.;Xin,S;Guo,Y.G.;Wan,L.J.Angew.Chem.Int. Edit.2013,52,13186.doi:10.1002/anie.201304762

    (5)Su,Y.S.;Manthiram,A.Nat.Commun.2012,3,1166. doi:10.1038/ncomms2163

    (6)Lin,Z.;Liu,Z.C.;Fu,W.J.;Dudney,N.J.;Liang,C.D.Adv. Funct.Mater.2013,23,1064.doi:10.1002/adfm.201200696

    (7)Zhang,S.S.;Read,J.A.J.Power Sources 2012,200,77. doi:10.1016/j.jpowsour.2011.10.076

    (8)Suo,L.M.;Hu,Y.S.;Li,H.;Armand,M.;Chen,L.Q.Nat. Commun.2013,4,1481.doi:10.1038/ncomms2513

    (9)Jeddi,K.;Ghaznavi,M.;Chen,P.J.Mater.Chem.A 2013,1, 2769.doi:10.1039/c3ta01169k

    (10)Wang,L.;He,X.M.;Li,J.J.;Chen,M.;Gao,J.;Jiang,C.Y. Electrochim.Acta 2012,72,114.doi:10.1016/j. electacta.2012.04.005

    (11)Zheng,G.Y.;Yang,Y.;Cha,J.J.;Hong,S.S.;Cui,Y.Nano Lett.2011,11,4462.doi:10.1021/nl304795g

    (12)Guo,J.C.;Xu,Y.H.;Wang,C.S.Nano Lett.2011,11,4288. doi:10.1021/nl202297p

    (13)Zhang,C.F.;Wu,H.B.;Yuan,C.Z.;Guo,Z.P.;Lou,X.W. Angew.Chem.Int.Edit.2012,51,9592.doi:10.1002/ anie.201205292

    (14)Chung,S.H.;Manthiram,A.J.Mater.Chem.A 2013,1,9590. doi:10.1039/c3ta11819c

    (15)Demir-Cakan,R.;Morcrette,M.;Nouar,F.;Davoisne,C.; Devic,T.;Gonbeau,D.;Dominko,R.;Serre,C.;Ferey,G.; Tarascon,J.M.J.Am.Chem.Soc.2011,133,16154. doi:10.1021/ja2062659

    (16)Xi,K.;Cao,S.;Peng,X.Y.;Ducati,C.;Kumar,R.V.; Cheetham,A.K.Chem.Commun.2013,49,2192.doi:10.1039/ c3cc38009b

    (17)Stephan,A.M.;Kumar,T.P.;Ramesh,R.;Thomas,S.;Jeong,S. K.;Nahm,K.S.Mater.Sci.Eng.A 2006,430,132.doi:10.1016/ j.msea.2006.05.131

    (18)Fey,G.T.K.;Lee,D.C.;Lin,Y.Y.;Kumar,T.P.Synth.Met. 2003,139,71.doi:10.1016/S0379-6779(03)00082-1

    (19)Arrebola,J.C.;Caballero,A.;Hernan,L.;Morales,J.;Olivares-Martin,M.;Gomez-Serrano,V.J.Electrochem.Soc.2010,157, A791.doi:10.1149/1.3425728

    (20)Xing,W.;Xue,J.S.;Dahn,J.R.J.Electrochem.Soc.1996,143, 3046.doi:10.1149/1.1837162

    (21)Hwang,Y.J.;Jeong,S.K.;Nahm,K.S.;Shin,J.S.;Stephan,A. M.J.Phys.Chem.Solids 2007,68,182.doi:10.1016/j. jpcs.2006.10.007

    (22)Wu,X.L.;Chen,L.L.;Xin,S.;Yin,Y.X.;Guo,Y.G.;Kong,Q. S.;Xia,Y.Z.ChemSusChem 2010,3,703.doi:10.1002/ cssc.201000035

    (23)Zhang,B.;Xiao,M.;Wang,S.J.;Han,D.M.;Song,S.Q.; Chen,G.H.;Meng,Y.Z.ACS Appl.Mater.Interface 2014,6, 13174.doi:10.1021/am503069j

    (24)Zhang,Y.C.;You,Y.;Xin,S.;Yin,Y.X.;Zhang,J.;Wang,P.; Zheng,X.S.;Cao,F.F.;Guo,Y.G.Nano Energy 2016,25,120. doi:10.1016/j.nanoen.2016.04.043

    (25)Fey,G.T.K.;Chen,C.L.J.Power Sources 2001,97-98,47. doi:10.1016/S0378-7753(01)00504-3

    (26)Zhang,F.;Wang,K.X.;Li,G.D.;Chen,J.S.Electrochem. Commun.2009,11,130.doi:10.1016/j.elecom.2008.10.041

    (27)Zhang,J.;Xiang,J.Y.;Dong,Z.M.;Liu,Y.;Wu,Y.S.;Xu,C. M.;Du,G.H.Electrochim.Acta 2014,116,146.doi:10.1016/j. electacta.2013.11.035

    (28)Tao,X.Y.;Zhang,J.T.;Xia,Y.;Huang,H.;Du,J.;Xiao,H.; Zhang,W.K.;Gan,Y.P.J.Mater.Chem.A 2014,2,2290. doi:10.1039/c3ta14113f

    (29)Moreno,N.;Caballero,A.;Hernan,L.;Morales,J.Carbon 2014,70,241.doi:10.1016/j.carbon.2014.01.002

    (30)Li,X.L.;Cao,Y.L.;Qi,W.;Saraf,L.V.;Xiao,J.;Nie,Z.M.; Mietek,J.;Zhang,J.G.;Schwenzer,B.;Liu,J.J.Mater.Chem. 2011,21,16603.doi:10.1039/c1jm12979a

    (31)Chen,S.R.;Zhai,Y.P.;Xu,G.L.;Jiang,Y.X.;Zhao,D.Y.;Li, J.T.;Huang,L.;Sun,S.G.Electrochim.Acta 2011,56,9549. doi:10.1016/j.electacta.2011.03.005

    (32)Ye,X.M.;Ma,J.;Hu,Y.S.;Wei,H.Y.;Ye,F.F.J.Mater. Chem.A 2016,4,775.doi:10.1039/c5ta08991c

    (33)Tang,C.;Li,B.Q.;Zhang,Q.;Zhu,L.;Wang,H.F.;Shi,J.L.; Wei,F.Adv.Funct.Mater.2016,26,577.doi:10.1002/ adfm.201503726

    (34)Mi,K.;Jiang,Y.;Feng,J.K.;Qian,Y.T.;Xiong,S.L.Adv. Funct.Mater.2016,26,1571.doi:10.1002/adfm.201504835

    Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery

    LIJun-Tao1,*WU Jiao-Hong1ZHANGTao1HUANGLing2
    (1College of Energy,Xiamen University,Xiamen 361005,Fujian Province,P.R.China;2College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,Fujian Province,P.R.China)

    Biochar derived from reproducible massive biomasses presents the advantages oflow costand renewable resources.In this work aiming to solve the existing problems of the lithium-sulfur battery, sulfur@biochar(S@biochar)composite cathode materials with high capacity and good cycle performance were developed.Specifically,four kinds ofbiochar prepared from rice husk,miscanthus,fir,and pomelo peelwere used as hostmatrices for the Li-S battery.Among them,the S@biochar derived from rice husk delivered the highestspecific capacity and the bestcycle stability according to electrochemicaltests.To further optimize its performance,we prepared a highly porous rice husk derived biochar(HPRH-biochar)using silica gelas the template.The S@HPRH-biochar composite(60%(w,mass fraction)S)enables the homogeneous dispersion ofamorphous sulfur in the carbon matrix and its porous structure could effectively suppress the dissolution of the polysulfide.As a result,its electrochemicalperformance improved,achieving a high initialcharge capacity of1534.1 mAh·g-1and maintaining a high capacity of738.7 mAh·g-1after 100 cycles at0.2C(1C corresponds to a currentdensity of1675 mA·g-1).Italso gives a capacity of485.3 mAh·g-1at2.0C in the rate capacity test.

    Li/S battery;Composite;Rice husk;Miscanthus;Fir;Pomelo peel

    O646.21

    10.3866/PKU.WHXB201702093

    Received:December 28,2016;Revised:February 3,2017;Published online:February 9,2017.

    *Corresponding author.Email:jtli@xmu.edu.cn;Tel:+86-592-5197067.

    The projectwas supported by the National Natural Science Foundation of China(21373008)and Fundamental Research Funds forthe Central Universities,China(20720160124).

    國家自然科學(xué)基金(21373008)和中央高?;究蒲袠I(yè)務(wù)費(fèi)(20720160124)資助項(xiàng)目?Editorialoffice ofActa Physico-Chimica Sinica

    猜你喜歡
    生物
    生物多樣性
    生物多樣性
    上上生物
    發(fā)現(xiàn)不明生物
    史上“最黑暗”的生物
    軍事文摘(2020年20期)2020-11-28 11:42:50
    第12話 完美生物
    航空世界(2020年10期)2020-01-19 14:36:20
    最初的生物
    自然生物被直銷
    清晨生物初歷直銷
    生物的多樣性
    久久99蜜桃精品久久| 午夜福利在线在线| 国产av一区在线观看免费| 亚洲欧美日韩高清专用| 精品久久久久久久久av| 久久久久久久久大av| 国产 一区精品| 在线观看66精品国产| 中文资源天堂在线| 日韩成人伦理影院| 国产91av在线免费观看| 秋霞在线观看毛片| 18禁在线播放成人免费| 丰满的人妻完整版| 久久人人精品亚洲av| 婷婷亚洲欧美| 青春草视频在线免费观看| 久久人人爽人人片av| 日韩一区二区三区影片| 一夜夜www| 最近视频中文字幕2019在线8| 最新中文字幕久久久久| 国产精品综合久久久久久久免费| 国产精品久久久久久久电影| 看片在线看免费视频| 亚洲国产高清在线一区二区三| 在线播放无遮挡| 午夜免费男女啪啪视频观看| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲欧美98| 在线观看午夜福利视频| 狂野欧美激情性xxxx在线观看| 精品国产三级普通话版| 国产精品一区二区性色av| 亚洲国产高清在线一区二区三| 黄色一级大片看看| 婷婷精品国产亚洲av| 亚洲成av人片在线播放无| 亚洲天堂国产精品一区在线| 亚洲成a人片在线一区二区| 亚洲最大成人手机在线| 免费大片18禁| 哪里可以看免费的av片| 色噜噜av男人的天堂激情| 久久人人精品亚洲av| 欧美日本亚洲视频在线播放| 大型黄色视频在线免费观看| 久久鲁丝午夜福利片| av专区在线播放| 亚洲在线自拍视频| 久久精品国产亚洲av天美| 欧美3d第一页| 在线免费观看不下载黄p国产| 欧美成人一区二区免费高清观看| 日韩强制内射视频| 18禁在线播放成人免费| 国产黄片视频在线免费观看| 亚洲国产欧美在线一区| 久久这里只有精品中国| 国产一区二区三区av在线 | 亚洲内射少妇av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 可以在线观看毛片的网站| 十八禁国产超污无遮挡网站| 男女那种视频在线观看| 乱码一卡2卡4卡精品| 99久久人妻综合| 51国产日韩欧美| 秋霞在线观看毛片| 人妻久久中文字幕网| 国产亚洲av片在线观看秒播厂 | 欧美最黄视频在线播放免费| 如何舔出高潮| 蜜桃亚洲精品一区二区三区| 国产精品美女特级片免费视频播放器| 精品久久久久久久末码| 久久久久久国产a免费观看| 亚州av有码| 少妇被粗大猛烈的视频| 亚洲成人久久性| 天堂中文最新版在线下载 | 人妻系列 视频| 99在线视频只有这里精品首页| 欧美激情在线99| 免费搜索国产男女视频| 噜噜噜噜噜久久久久久91| 欧美性猛交黑人性爽| 国内揄拍国产精品人妻在线| 搡女人真爽免费视频火全软件| 日韩av不卡免费在线播放| 高清午夜精品一区二区三区 | 成人国产麻豆网| 亚洲成人精品中文字幕电影| 国产精品一区二区性色av| 日产精品乱码卡一卡2卡三| 亚洲精品日韩在线中文字幕 | 床上黄色一级片| 国产精品,欧美在线| 免费看a级黄色片| 此物有八面人人有两片| 国内精品美女久久久久久| 三级国产精品欧美在线观看| 99久久久亚洲精品蜜臀av| 波野结衣二区三区在线| 九草在线视频观看| 国产伦一二天堂av在线观看| 欧美日本视频| 99精品在免费线老司机午夜| 精品人妻一区二区三区麻豆| 午夜久久久久精精品| 国产精品久久久久久久久免| 一本久久精品| 亚洲精品粉嫩美女一区| 狂野欧美激情性xxxx在线观看| 99在线人妻在线中文字幕| 男女边吃奶边做爰视频| 亚洲国产欧洲综合997久久,| 国产一区二区在线av高清观看| 久久久成人免费电影| avwww免费| 一区福利在线观看| 久久99热这里只有精品18| 亚洲国产精品sss在线观看| 久久欧美精品欧美久久欧美| 欧美一区二区精品小视频在线| 国语自产精品视频在线第100页| 婷婷亚洲欧美| 麻豆成人av视频| 免费av不卡在线播放| 国产精品一区二区三区四区免费观看| 九草在线视频观看| 小蜜桃在线观看免费完整版高清| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩高清在线视频| 精品久久久久久久人妻蜜臀av| 日韩视频在线欧美| 特级一级黄色大片| 亚洲av二区三区四区| 亚洲色图av天堂| 国产综合懂色| 老熟妇乱子伦视频在线观看| 久久这里只有精品中国| 亚洲国产精品成人综合色| 国产日本99.免费观看| 国产精品电影一区二区三区| 一级黄色大片毛片| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 高清毛片免费看| 九草在线视频观看| 2021天堂中文幕一二区在线观| 亚洲精品国产成人久久av| 一级黄片播放器| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 国产精品99久久久久久久久| 日韩欧美 国产精品| 精品午夜福利在线看| 久久久国产成人免费| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| 久久99精品国语久久久| 我要看日韩黄色一级片| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 欧美又色又爽又黄视频| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 人妻制服诱惑在线中文字幕| 特级一级黄色大片| 久久热精品热| 看非洲黑人一级黄片| 97人妻精品一区二区三区麻豆| 久久亚洲精品不卡| 国产精品一及| 狂野欧美激情性xxxx在线观看| 中国国产av一级| 亚洲精品影视一区二区三区av| 日韩一区二区三区影片| 欧美成人免费av一区二区三区| 国产69精品久久久久777片| 别揉我奶头 嗯啊视频| 国内久久婷婷六月综合欲色啪| 观看免费一级毛片| 日本熟妇午夜| 亚洲色图av天堂| 日本免费一区二区三区高清不卡| 哪个播放器可以免费观看大片| 一区福利在线观看| 国产私拍福利视频在线观看| 嫩草影院精品99| 99九九线精品视频在线观看视频| 97热精品久久久久久| 在线免费十八禁| 国产视频内射| 99热这里只有精品一区| 国产成人精品一,二区 | 国产免费一级a男人的天堂| 欧美日韩在线观看h| 久久久久久大精品| 又粗又硬又长又爽又黄的视频 | 精品欧美国产一区二区三| 啦啦啦啦在线视频资源| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区四那| 中文资源天堂在线| 白带黄色成豆腐渣| 永久网站在线| 黄片无遮挡物在线观看| 国内揄拍国产精品人妻在线| 久久精品国产清高在天天线| 少妇的逼好多水| 18禁在线无遮挡免费观看视频| 国产精品美女特级片免费视频播放器| 夜夜夜夜夜久久久久| 国产精品永久免费网站| 国产日韩欧美在线精品| 午夜免费激情av| 99riav亚洲国产免费| 亚洲国产精品成人久久小说 | 女同久久另类99精品国产91| 国产免费一级a男人的天堂| 一区福利在线观看| 国产av不卡久久| 亚洲av一区综合| 一边摸一边抽搐一进一小说| 亚洲成人久久爱视频| 成年av动漫网址| 亚洲第一电影网av| 国产欧美日韩精品一区二区| 91狼人影院| 亚洲成人av在线免费| 男女啪啪激烈高潮av片| 久久精品国产清高在天天线| 久久久精品94久久精品| 精品久久久久久久末码| 久久午夜亚洲精品久久| 嘟嘟电影网在线观看| 美女被艹到高潮喷水动态| www.av在线官网国产| 午夜福利在线观看免费完整高清在 | 亚洲人成网站在线观看播放| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利在线观看免费完整高清在 | 26uuu在线亚洲综合色| 久久人人爽人人爽人人片va| av在线天堂中文字幕| 久久人人爽人人片av| 国产高清三级在线| 伦精品一区二区三区| 高清午夜精品一区二区三区 | 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av天美| 内射极品少妇av片p| 国产午夜福利久久久久久| 亚洲欧美日韩无卡精品| 国产av不卡久久| av卡一久久| 日本黄色片子视频| 国产av麻豆久久久久久久| 三级男女做爰猛烈吃奶摸视频| 99国产极品粉嫩在线观看| 久久久久久伊人网av| 亚洲av一区综合| 韩国av在线不卡| 亚洲三级黄色毛片| 美女脱内裤让男人舔精品视频 | or卡值多少钱| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播| 成人午夜精彩视频在线观看| 国产成人精品久久久久久| 97人妻精品一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 禁无遮挡网站| 久久精品国产99精品国产亚洲性色| 午夜视频国产福利| 精品一区二区三区人妻视频| 精华霜和精华液先用哪个| 久久久久久久午夜电影| 欧美xxxx黑人xx丫x性爽| 国产一级毛片在线| 国产探花在线观看一区二区| 白带黄色成豆腐渣| av国产免费在线观看| 久久久久久国产a免费观看| 99久国产av精品国产电影| 桃色一区二区三区在线观看| 久久久久久久久久成人| 久久人人精品亚洲av| 九色成人免费人妻av| 最近手机中文字幕大全| 亚洲人成网站在线播| 久久久久免费精品人妻一区二区| 国内精品美女久久久久久| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 国产69精品久久久久777片| 赤兔流量卡办理| 国产极品精品免费视频能看的| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 亚洲人成网站在线观看播放| 国产高潮美女av| 国产精品免费一区二区三区在线| 午夜精品在线福利| 国产91av在线免费观看| 欧美激情国产日韩精品一区| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 少妇人妻精品综合一区二区 | 不卡视频在线观看欧美| 男女下面进入的视频免费午夜| 国产精品爽爽va在线观看网站| 午夜爱爱视频在线播放| 国产在线男女| 国产女主播在线喷水免费视频网站 | 一边摸一边抽搐一进一小说| 欧美极品一区二区三区四区| 国产伦一二天堂av在线观看| 男人舔奶头视频| 又粗又硬又长又爽又黄的视频 | 中文在线观看免费www的网站| 久久鲁丝午夜福利片| 国产一区二区在线观看日韩| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 亚洲精品粉嫩美女一区| 乱人视频在线观看| 美女高潮的动态| 日韩欧美在线乱码| 国产精品综合久久久久久久免费| 亚洲自偷自拍三级| 日本欧美国产在线视频| 国产午夜精品一二区理论片| 蜜臀久久99精品久久宅男| 一级毛片电影观看 | 亚洲国产欧美在线一区| 亚洲成人久久爱视频| 国内精品久久久久精免费| 欧美三级亚洲精品| 亚洲av.av天堂| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕| 欧美一区二区精品小视频在线| 亚洲国产欧美在线一区| 日韩 亚洲 欧美在线| 久久久精品大字幕| 村上凉子中文字幕在线| 乱系列少妇在线播放| 免费av观看视频| 久久精品国产清高在天天线| 日本黄色片子视频| 一个人看的www免费观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女黄网站色视频| 麻豆精品久久久久久蜜桃| 九九在线视频观看精品| 久久久精品94久久精品| 精品久久久久久成人av| 女同久久另类99精品国产91| 亚洲欧洲日产国产| 女的被弄到高潮叫床怎么办| 国产白丝娇喘喷水9色精品| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 亚洲国产精品国产精品| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产| 一进一出抽搐动态| 中文资源天堂在线| 日韩欧美精品v在线| 美女xxoo啪啪120秒动态图| 男人狂女人下面高潮的视频| 亚洲在久久综合| 色综合亚洲欧美另类图片| 日韩高清综合在线| 成人美女网站在线观看视频| 久久热精品热| 激情 狠狠 欧美| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 99热网站在线观看| 性色avwww在线观看| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| or卡值多少钱| 干丝袜人妻中文字幕| 白带黄色成豆腐渣| 色综合亚洲欧美另类图片| 性色avwww在线观看| 国产精品人妻久久久久久| 国产一区二区三区av在线 | a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 日韩成人av中文字幕在线观看| 国产精品永久免费网站| 国产熟女欧美一区二区| 日韩强制内射视频| 国产一级毛片在线| 1000部很黄的大片| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 99久久九九国产精品国产免费| 亚洲综合色惰| 国产黄色视频一区二区在线观看 | 亚洲人成网站在线观看播放| 深夜a级毛片| 毛片一级片免费看久久久久| 中文字幕久久专区| 久久热精品热| 天美传媒精品一区二区| 精品久久久久久久久久久久久| 天堂中文最新版在线下载 | 欧美又色又爽又黄视频| 国产黄色小视频在线观看| 欧美高清性xxxxhd video| 免费观看在线日韩| 色综合站精品国产| 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 校园人妻丝袜中文字幕| 久久久久久久久久久丰满| 国产女主播在线喷水免费视频网站 | 在线免费十八禁| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 午夜免费激情av| 在线播放国产精品三级| 亚洲av中文av极速乱| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 99视频精品全部免费 在线| 国产一区二区在线av高清观看| 桃色一区二区三区在线观看| 在线观看免费视频日本深夜| 淫秽高清视频在线观看| 中文字幕制服av| 亚洲精品日韩在线中文字幕 | 国产成人精品一,二区 | 非洲黑人性xxxx精品又粗又长| 内射极品少妇av片p| АⅤ资源中文在线天堂| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 在线免费观看的www视频| 免费在线观看成人毛片| 看十八女毛片水多多多| 国产av不卡久久| 如何舔出高潮| 神马国产精品三级电影在线观看| 中国美女看黄片| 免费一级毛片在线播放高清视频| 成人毛片60女人毛片免费| 91在线精品国自产拍蜜月| 啦啦啦观看免费观看视频高清| 2021天堂中文幕一二区在线观| 国内精品宾馆在线| 国产伦一二天堂av在线观看| 久久中文看片网| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 日本爱情动作片www.在线观看| 精品久久久久久久久久免费视频| 男女下面进入的视频免费午夜| 欧美色视频一区免费| 天天一区二区日本电影三级| 国产高清视频在线观看网站| 婷婷色av中文字幕| 午夜福利在线观看免费完整高清在 | 日本欧美国产在线视频| 久久久久久久久久久免费av| 亚洲精品国产成人久久av| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 亚洲五月天丁香| a级一级毛片免费在线观看| 久久亚洲精品不卡| 久久人人爽人人片av| 亚洲中文字幕日韩| 日韩高清综合在线| av在线亚洲专区| 久久精品影院6| 亚洲人成网站在线播| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 少妇的逼水好多| 我的女老师完整版在线观看| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 欧美性感艳星| 美女被艹到高潮喷水动态| 搡女人真爽免费视频火全软件| 少妇人妻精品综合一区二区 | 91av网一区二区| 在线免费观看不下载黄p国产| 在线观看免费视频日本深夜| 18禁在线播放成人免费| 欧美潮喷喷水| 少妇丰满av| 久久人人爽人人片av| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 成人欧美大片| 久久久久久久久久黄片| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 一本久久精品| www.av在线官网国产| 久久精品综合一区二区三区| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 99久久精品国产国产毛片| 色综合色国产| 日本免费一区二区三区高清不卡| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 久久国产乱子免费精品| 一级黄片播放器| 亚洲一区二区三区色噜噜| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| 亚洲av成人av| 丝袜喷水一区| avwww免费| 欧美3d第一页| 午夜福利在线在线| av女优亚洲男人天堂| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 精品少妇黑人巨大在线播放 | 黄色视频,在线免费观看| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 97人妻精品一区二区三区麻豆| 在线免费观看不下载黄p国产| 久久久久久九九精品二区国产| 午夜免费激情av| 在线观看66精品国产| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 青春草亚洲视频在线观看| 国产伦精品一区二区三区四那| 哪里可以看免费的av片| av在线老鸭窝| 久久久久久伊人网av| av黄色大香蕉| 色综合亚洲欧美另类图片| 色尼玛亚洲综合影院| 18禁黄网站禁片免费观看直播| 国产精品一二三区在线看| av在线观看视频网站免费| 亚洲人与动物交配视频| 91久久精品电影网| 国产精品久久久久久精品电影小说 | 欧美bdsm另类| 国产v大片淫在线免费观看| 久久人人精品亚洲av| 欧美丝袜亚洲另类| 亚洲精品亚洲一区二区| 国产人妻一区二区三区在| 色哟哟哟哟哟哟| 午夜精品在线福利| 国产女主播在线喷水免费视频网站 | 99热这里只有精品一区| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看 | 色哟哟·www| 国产伦精品一区二区三区四那| 国产亚洲91精品色在线| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 长腿黑丝高跟| 国产探花在线观看一区二区| 长腿黑丝高跟| 免费人成在线观看视频色| 久久人人爽人人爽人人片va| 亚洲欧美日韩高清在线视频| 亚洲精品色激情综合| 中文字幕久久专区| 亚洲内射少妇av| av专区在线播放| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 偷拍熟女少妇极品色| 搞女人的毛片| 日本爱情动作片www.在线观看| 亚洲在久久综合| 色播亚洲综合网| 国产午夜福利久久久久久| 99热6这里只有精品| 美女大奶头视频| 中文字幕制服av| 亚洲美女视频黄频| 国产在视频线在精品| 99九九线精品视频在线观看视频| 中文字幕av在线有码专区| 久久久精品欧美日韩精品| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 天天一区二区日本电影三级| 亚洲国产欧美人成| 人人妻人人看人人澡| 深爱激情五月婷婷|