• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米片自組裝的(BiO)2CO3單分散微米絨球的綠色可控合成及其光催化性能

    2017-05-11 00:45:57阮毛毛宋樂新王青山越許哲遠
    物理化學學報 2017年5期
    關鍵詞:絨球化工學院阜陽

    阮毛毛 宋樂新,* 王青山,* 夏 娟 楊 尊 滕 越許哲遠

    (1中國科學技術大學化學系,合肥230026;2阜陽師范學院化學與化工學院,安徽阜陽236037)

    納米片自組裝的(BiO)2CO3單分散微米絨球的綠色可控合成及其光催化性能

    阮毛毛1宋樂新1,*王青山1,*夏 娟2楊 尊1滕 越1許哲遠1

    (1中國科學技術大學化學系,合肥230026;2阜陽師范學院化學與化工學院,安徽阜陽236037)

    采用水為溶劑,Bi(NO3)3·5H2O為Bi源,C6H5Na3O7·2H2O(TCD)為配體構筑了前驅(qū)配合物Bi-TCD,通過配合物分解實現(xiàn)了由納米片自組裝的碳酸氧鉍(BS)微米絨球的綠色可控合成,例如,BS的結(jié)構和形貌可經(jīng)由改變反應物濃度和反應時間來調(diào)控。我們發(fā)現(xiàn),一方面,TCD的配位作用可致BiO+離子緩慢釋出從而調(diào)控BS的形成速率;另一方面,尿素在BS材料的形成過程中起碳源、堿源、形貌調(diào)控劑和晶體成長控制劑的多重作用,通過調(diào)控尿素的濃度制備了三種分別沿著[001]、[110]和[013]優(yōu)勢生長方向的BS晶體。這種合成方法成本低,不需要有機溶劑、模板、表面活性劑、高溫和很長的反應時間;產(chǎn)物分散性好;產(chǎn)率高;且擁有可控的形貌和優(yōu)勢生長方向。特別是由納米片自組裝的BS微米絨球?qū)α_丹明B展現(xiàn)出優(yōu)異的光催化性能。我們相信當前工作將是綠色可控合成和無機微納材料應用方面的一個重要進展。

    碳酸氧鉍;綠色可控合成;光催化性能;微米絨球;二水合檸檬酸三鈉

    Scheme 1 Objective one is achieved by the coordination of Bi(III) ions with Cit3-and the slow hydrolysis ofurea;objective two is met very satisfactorily due to very large specific surface area and exposed{001}facets of the as-obtained BS material

    1 Introduction

    Photocatalytic technology has attracted wide attention toward designing novel photocatalysts with excellent activity to mitigate the globalenergy crisis and environmentalpollution1,2.Among the photocatalysts investigated,micro-and nano-materials with layered structures have been a subjectof increasing interest,because their anisotropic crystalstructure and internal static electric field effectcan efficiently improve photoinduced charge separation and transfer3.Ithas been reported thatthe 5d106s2valence orbits of Bi (III)ions can hybridize with the O-2p valence orbits to form a hybridized valence band,thereby allowing oxide semiconductors of the ions to exhibita specific absorption in visible lightrange4, for example,high photocatalytic performance of bismuth oxyhalides5.Bismuth subcarbonate[(BiO)2CO3,BS],a newcomer of Sillen-type semiconductors,with alternating layers ofandions,bears close resemblance to those seen in bismuth oxyhalides5.

    In the lastyears,BS has drawn considerable attention because of its strong antibacterial activity,good photoelectric property,and high photocatalytic performance,becoming a very active research area6-12.Several groups have an interest in designing and synthesizing BS micro-and nano-structures with different morphologies8-19.For example,Dong and co-workers14bsuccessfully synthesized monodisperse BS microspheres using ammonia bismuth citrate and urea as reactants through a hydrothermal process at453 K for 12 h.The as-obtained BS microspheres exhibited efficientphotocatalytic removal of NO in indoor air under UV light or visible irradiation.Chen and his coagents8,17obtained nanotube,nanoplate,and nanocube-like structures of BS by a simple reflux or solvothermalsynthesis using ethylene glycol or mannitolas a solvent.They found thatthe solventethylene glycol or mannitol played an important role in controlling the morphology of BS.Cao and his colleagues9successfully prepared persimmon-like BS microstructures using polyacrylamide as a template via a simple hydrothermalprocess at453 K.Moreover, Liu′s group14areported the synthesis of novelhierarchicalrose-like BS microstructures using ammonia bismuth citrate as bismuth source in the presence of polyvinylpyrrolidone through a hydrothermal treatmentat 453 K for 12 h.The BS microstructures assembled by 2D single-crystalline nanosheets with dominant {001}facets exhibited good photocatalytic performance.Recently, Qian′s group15synthesized sponge-like BS structures at453 K for 18 h,and found thatthe morphology and Brunauer-Emmett-Teller (BET)specific surface area of the obtained BS materials could be easily adjusted by changing the concentration of reactants.

    There is no doubt that the results of of these authors were qualitatively representative,but it is well to note that in most instances the synthesis techniques either required a high temperature and/or a long reaction time to be applied15,18,19,or tended to use organic solvents or templates8,15,17,which do notsatisfy the requirements of green synthesis due to the creation of organic waste and pollutants.Therefore,a green,mild and controllable synthesis method needs to be developed.This is one objective of the presentwork(Scheme 1).

    In this study,a simple one-pot hydrothermal synthesis was carried out in a sealed Teflon-lined stainless steel autoclave at 413 K for 10 h using deionized water,bismuth nitrate pentahydrate[Bi(NO3)3·5H2O,BNP],and urea as solvent,bismuth source and carbon source respectively,when trisodium citrate dihydrate [Na3Cit·2H2O,TCD]was used as a coordination agentto fabricate the citrate complex Bi-Citas a precursor20,21.White crystals of BS with spherical-shape were successfully obtained.The main advantages of this method,when compared to previously available synthesis methods2,3,9,10,are its simplicity(comes from simple inorganic salts rather than expensive Bi-Cit)and the absence of polymer ligands.

    The other objective of the present work is to improve photo-catalytic performance of BS by the analysis of the relation between the structure and photocatalytic performance of BS (Scheme 1).The as-prepared BS materials were characterized by various techniques.Our results provide new insights in understanding the catalytic capabilities of BS and how they mightbe enhanced by controlled crystal-facet synthesis.We believe that these results are significantmilestones towards the controllable fabrication of Bi-based photocatalysts based on the concept of green synthesis.

    2 Experimental

    2.1 Materials

    Citric acid,BNP,TCD,sodium tartrate dehydrate,urea,sodium hydroxide and sodium sulfate were purchased from Shanghai Chemical Reagent Company.Rhodamine B(RhB)was obtained from Aladdin Chemistry Co.Ltd.Lead.Allother reagents were the best available commercial products,used without further purification.Water used in the preparation of solutions for measurements was distilled and deionized carefully before use.

    2.2 Preparation of the BS materials

    The BS-1 was synthesized by a facile hydrothermal process. First,TCD of 0.882 g(3 mmol)and BNP of 0.484 g(1 mmol) were dissolved in 40 mL of deionized water at room temperature under vigorous stirring for 0.5 h,and then urea of 0.301 g(5 mmol)was added to the solution.This solution was stirred for another 0.5 h.Subsequently,the solution was removed to a Teflonlined stainless autoclave(50 mL).The autoclave was maintained at 413 K for 10 h,and then cooled gradually to ambient temperature.Finally,a white precipitate was collected via centrifugation, and washed with deionized water and absolute ethanol several times and dried in vacuum.Allof the other samples including the BS-2 and BS-3 were synthesized in a similar fashion.

    2.3 Materialcharacterization

    The X-ray diffraction(XRD)measurements were recorded on a Philips X′Pert Pro X-ray diffractometer equipped with monochromatized Cu Kα(λ=0.15418 nm)radiation operated at 40 kV and 40 mA in the range:10°≤2θ≤65°.The field emission scanning electron microscope(FE-SEM)images were performed by using a Supra 40 FE-SEM.The transmission electron microscopy(TEM),high-resolution(HR-TEM)images,and selectedarea electron diffraction(SAED)patterns were taken on JEF 2100F microscope performing at 200 kV.The UV-Vis diffusereflectance spectrum(DRS)of the BS-1 was recorded employing a Shimadzu DUV-3700 spectrophotometer in the wavelength between 220 and 1000 nm.Barium sulfate powder was used as the reflectance standard materialto adjustbaseline parameters.UVVis spectra were done with a Shimadzu UV 3600 spectrometer in the range of 200-800 nm.X-ray photoelectron spectroscopy (XPS)measurements were done using an ESCALAB 250 spectrometer with Al Kαradiation(1486.6 eV)in ultra-high vacuum (2.67×10-7Pa).And all of the values of binding energy were referenced to C 1s peak(284.8 eV)with an energy resolution of 0.16 eV.Nitrogen adsorption/desorption isotherms were acquired using Micromeritics ASAP-2000 at77 K.The photoluminescence (PL)measurements were performed on a Perkin Elmer Luminescence spectrometer L550B atroom temperature(excited at280 nm).

    2.4 Photocatalytic measurements

    The photocatalytic activities of the BS materials were evaluated by the degradation of RhB in aqueous solution under visible light irradiation.Metal halide lamp(Shanghai Yaming Lighting Co. Ltd.,XY73,220 V,150 W)was used as the light source.In a typical experiment,25 mg of the BS-1 sample was added to a solution of RhB(50 mL,10 mg·L-1).Before being irradiated,the solution was stirred in the dark for 60 min atroom temperature to establish the adsorption equilibrium between the solution and the photocatalyst.Subsequently,the solution was irradiated under metal halide lamp for 70 min.Finally,the BS catalyst was separated by centrifugation and the supernatant solution was analyzed using an UV-Vis spectrophotometer.

    2.5 Photoelectrochemicalmeasurements

    The BS-1 material was coated on the indium-tin oxide electrode.The electrode was immerged in Na2SO4solution(0.5 mol· L-1).Current-time curves were obtained by an electrochemical analyzer system,CHI760(Chenhua,Shanghai,China)in a threecompartment cell with a working electrode,a platinum plate counter electrode and a Ag/AgClreference electrode under a bias voltage of 0.5 V using the excitation light of Xe lamp(PLSSXE300,300 W)as the lightsource.Electrochemical impedance spectroscopy(EIS)experiments were carried out under visible lightirradiation in 0.1 mol·L-1KClsolution containing 5.0 mmol· L-1K3[Fe(CN)6]/K4[Fe(CN)6](1:1,molar ratio)mixture as a redox probe in the frequency range of 10-2to 105Hz with a perturbation signalof 10 mV.

    3 Results and discussion

    3.1 Structure and morphology of the BS-1 and BS-2

    Fig.1a shows the XRD pattern of the BS-1.Allof the diffraction peaks are in perfect agreement with the tetragonal phase of BS [JCPDS 41-1488;space group I4/mmm#139;a=0.3865 nm and c=1.367 nm]22,23.No impurity phase was detected.The(002), (004)and(006)diffraction peaks are much sharper and stronger in intensity than those of the others,suggesting that the crystals preferentially grow along the[001]crystalllographic direction13,24,25.

    The FE-SEM of the BS-1 in Fig.1b indicates a large scale feature over the entire image,stressing high monodispersity and uniform size of about 1.6μm.The magnified images in Figs.1c and 1d exhibitthat the BS-1 particles have a pompon-like morphology assembled by a side-by-side arrangementof nanosheets (side length,200 nm;thickness,40 nm).The TEMimage(Fig.1e) ofa single micropompon reveals a regular sphericalparticle shape. The HR-TEM image(Fig.1f)from an edge of the micropompon illustrates that the interplanar spacing of lattice fringes is 0.275 nm,which is indexed with the(110)plane in XRD pattern.This is demonstrated by the factthatthe intersection angle between the (110)planes is 90°.The SAED pattern(the insetof Fig.1f)takenfrom the edge of the same micropompon as the HR-TEM pattern shown in Fig.1f confirms the single-crystallinity ofthe nanosheet.

    3.2 Formation process of the monodisperse BS-1 micropompons

    Initially,BNPwas easily hydrolyzed into insoluble BiONO3(Eq. (1))26,resulting in the release of H+ions into the solution(pH~2.8),and then the BiONO3was reacted with the ligand Cit3–to produce the Bi-Cit precursor complex20,21(pH~6.0,Eq.(2)). Clearly,the transfer between the two forms of Bi(III)is markedly dependent on the acidity of the medium.Thereafter,urea in the solution was hydrolyzed to OH-(pH~9.5)andions9,27,and the Bi-Citprecursor in the alkaline solution was hydrolyzed into BiO+9,14b,when heated(Eqs.(3-6)).Finally,theions were reacted with the BiO+ions to form the BS-1(Eq.

    In order to further understand the formation mechanism of BS, we examined the effect of reaction parameters including the reactantconcentration,reaction time and temperature.There were severalinteresting findings.

    First,the effectof the concentration of TCD on the morphology of a group of BS was investigated by changing the molar ratio of TCD and BNP from 3:1 to 0:1,1:1,2:1,and 5:1.As shown in Fig.S1(Supporting Information(SI)),no appreciable difference was detected in their XRD patterns,and allthe diffraction peaks belong to the tetragonalphase of BS.Fig.S2(SI)shows thatthe creation of BS microparticles as well as the uniformity and dispersity of the particles was strongly dependent on the molar ratio. An adequate molar ratio to form regular sphericalparticles seemed to be between 2:1 and 3:1,and a higher or lower ratio led to either the formation of irregular particles or the appearance of clusters.These results provide a significant clue regarding the role of TCD.Although TCD mightnotact as a carbon source,itdid play an importantpartin affecting the morphology of BS,namely, acting as a morphology control agent.This can be understood if we consider thatthe role of TCD is to form a precursor complex (Eq.(2)),thus decreasing the formation rate of BS due to a direct competitive interaction for the BiO+ions between the coordination equilibrium(Eq.(6))and the precipitation equilibrium(Eq.(7)).

    Fig.1 XRD patterns ofthe BS-1 and-2(a),FE-SEMimages(b-d),TEM image(e),and HR-TEMimage(f)ofthe BS-1; FE-SEM images(g and h),TEMimage(i),and HR-TEMimage(j)of the BS-2The insetin Fig.1f is the SAEDpattern ofthe same place as shown in Fig.1f.The insetin Fig.1jis the SAED pattern of the same place as shown in Fig.1j.

    Second,the effectof the concentration of urea on the formation of BS was studied by a series of similar syntheses with BNP(1 mmol)and urea of 0.420 g(7 mmol),0.180 g(3 mmol),0.060 g (1 mmol),0.030 g(0.5 mmol)and 0 g(0 mmol)to get the materials:BS-2,-3,-4,-5 and-6,respectively.The XRD analysis (Fig.1a and Fig.2)reveals that the particles are pure and homogeneous,having the same tetragonal structure as their sister compound BS-1.The particle size increases,and especially the increase in the degree of crystallinity becomes more pronounced with the increase of the concentration of urea as can be seen from Fig.1(a,c,g),and Fig.2.Moreover,the relative intensity of the (110)diffraction peak in the BS-3 and-4 is significantly higher than thatof the other three,indicating that the two crystals have a preferred orientation along the[110],which differs from the [001]orientation of the BS-1.Upon increase(BS-2)or decrease (BS-5)of the concentration of urea from this level,the preferred growth orientation is along the[013].These findings highly suggest a potential role of urea in the regulation of BS crystal growth direction and thereby in the modulation of the BS structure.The control experiments supported the presence of the structuraldifference between the BS materials.As shown in Fig.1 (g,h),the BS-2 formed a nest-like structure(diameter,~1.3μm), with an internal hollow(Fig.1i),which was self-assembled by single crystalnanosheets(see the insetin Fig.1j).The spacing oflattice fringes observed is 0.372 nm,corresponding to lattice spacing of(011)plane(Fig.1j).Further,we found thatonly Bi2O4(BS-6)was formed in the absence of urea(Fig.S3(SI)).

    In lightof the above observations,we think thatthe role of urea merits greater emphasis.On the one hand,it was used as the only carbon source for the formation of.This was verified by the factthat TCD did notdecompose atthis temperature(Fig.S4(SI)), though it could be used as a carbon source at higher temperatures15,19.On the other hand,the presence of OH-ions from the hydrolysis of urea28,29contributed to the hydrolysis reaction of the Bi-Citcomplex to generate BiO+(Eq.(6)).In other words,higher pH in this system was required to promote the hydrolysis of the complex.A simple experimentdemonstrated this.Alower yield (42.0%)of BS was obtained when TCD was replaced by citric acid(pH~6.3 in the system)while sodium tartrate(pH~8.7 in the system)afforded a high yield(80.4%,Fig.S5(SI)).In the other experiment(Fig.S6(SI)),when urea was substituted by NaOH to create the same alkaline conditions(i.e.,the molar ratio of NaOH to urea is 2:1),only Bi2O3was observed.The results not only verified a synergistic effect of the combination of citrate and urea on the formation of BS,butalso highlighted thata slow supply of OH-ions7,8,16was required for decreasing the formation rate of BS, perhaps by the competitive interaction between the two equilibria (Eqs.(6)and(7)).

    Itshould be noted thatthe materials(BS-1-5)were constructed at the condition of excessive urea.As seen from Eq.(5),the increase ofions signifies the decrease of OH-ions.Thus,the relative concentrations ofand OH-ions change with changing the initialconcentration of urea.Recent reports showed thatexcessiveions can cause a preferred growth orientation of BS9,10,while a suitable pH may facilitate the oriented growth30,31. Therefore,we have good reason to speculate the difference in the crystal structure of the BS materials may be attributed to the difference in the concentrations of CO2-and OH-

    ions induced by

    3the initialconcentration of urea.

    Based on these results,we conclude thaturea acts notonly as a carbon source and an appropriate alkaline source but also as a morphology control agentand especially a crystal growth control agent.This is an interesting result.The role of urea in many synthetic strategies was well established32-35,butthis is the first example in which it can exert so many functions for inorganic synthesis,i.e.,acting as a multifunction reagent.Therefore,we expectthatthis resultcan be extended to other inorganic materials and more complex inorganic structures.

    Fig.2 FE-SEMimages and XRD patterns of the BS-1,-2,-3,-4 and-5

    Finally,we performed several time-dependentexperiments to elucidate the crystalformation process of BS.Fig.S7(SI)displays the morphologicalevolution of the BS materials obtained atthe identical pathway used for Fig.1c butat different growth stages: 2,4,6,8 and 12 h.Atan early stage of 2 h,irregular nanoparticles (diameter,~120 nm)were formed.Subsequently(4 h),some of the nanoparticles were changed into nanosheets(thickness,~30 nm) by spontaneous organization,and a few spherical structures constructed by the nanosheets appeared.When the reaction time was prolonged to 6 h,almost allthe nanoparticles were changed into nanosheetstructures,and more self-assembled microspheres were observed.With increasing the reaction time to 8 h,the nanosheets almost disappeared,and the self-assembled microspheres grew larger,buthaving different sizes.The larger particles grew at the cost of the small ones as described by the Gibbs-Thomson law36.After the reaction continued for two more hours (10 h),the uniform pompon-like microstructures were formed (Fig.1c).When the reaction time was further increased to 12 h,the size of the micropompons was increased(Fig.S7).It is worth stressing that the crystallinity of the BS materials increases with increasing reaction time(Fig.S8(SI)).Since this crystallinity increase was accompanied by a steady sharpening of the crystalline diffraction peaks,we consider thatthe crystallinity increase may be related to an improvementin the quality of the crystals. Furthermore,we found that temperatures can influence the size and uniformity of the BS particles formed(Figs.S9 and S10(SI)). The proper temperature is about413 K(Fig.1b),because a lower (393 K)or higher(433 K)led to nonuniform sphericalstructures. These observations convincingly demonstrate that the crystal growth of the microsphere-like BS was controlled by an Ostwald ripening process37.

    On the basis of the above results,a possible five-step growth process is presented in Fig.3.Initially,the precursor complex Bi-Citwas formed(Step I)in water.Then,with the aid of hydrolysis of urea to produce OH-andions(Step II),the complex was hydrolyzed to release free BiO+ions(Step III).Subsequently,theions were reacted with the BiO+ions to produce BS crystal nuclei(Step IV).With the increase of reaction time,the crystal nuclei gradually grew up to form nanosheets.Finally,the nanosheets were stacked together,and self-assembled into BS microspheres(Step V).The optimal conditions for the micro-pompon-like BS were determined to be as follows:TCD/BNPmolar ratio,3/1;urea/BNP,5/1;temperature,413 K;and time,10 h.

    Although some existing synthetic methods can obtain uniform size and good morphology of BS materials8,9,17,butthere are many problems in these methods such as the use of organic solvents, polymer additives or expensive complexes of bismuth(Table S1 (SI)),which is not conducive to the realization of large-scale production.Especially,the organic solvents and polymer additives are likely to cause pollution to the environment.Recently,some researchers tried to synthesize BS materials at room temperature or in the absence of coordination agents16b,butthey were unable to achieve the controllable synthesis of BS.Moreover,the synthesized materials usually have either large sizes or disordered layer structures16b.Also,there were some attempts to improve the synthesis methods of BS,such as the use of citrate as a coordination agentor using urea as carbon source to controlthe reaction process6b,15,butthe improved methods stillhave some problems, such as long reaction time,high temperature or poor product morphology.To the bestof our knowledge,our work provides the first example in which the formation mechanism of BS has been associated with the synergistic effect of the concentration combination of citrate and urea,thereby not only overcoming the problems of currentconcern in the synthetic field of BS,butalso achieving a substantial progress to the controlled growth of BS nanostructures.We believe thatthe method can be extended to a wide range of carbonate materials.

    3.3 Photocatalytic performance of the monodisperse BS micropompons

    The specific surface area and porous structure of the BS-1-3 were explored by gas adsorption/desorption measurements in liquid nitrogen(Figs.S11-S13(SI)).The sorption isotherms of the three materials exhibit a similar profile categorized as type IV38with a smallhysteresis loop observed atrelative pressures of0.45-0.97,showing mesoporous characteristics(2-50 nm).Itis worthy of remark that the BS-1 has a much larger BET39specific surface area(36.65 m2·g-1)and a much narrower average pore diameter (8.94 nm)notonly than the BS-2(10.79 m2·g-1,31.95 nm)and BS-3(27.96 m2·g-1,13.27 nm),butalso than those reported by most investigators10,14,16,40,further highlighting the advantage of the presentsynthesis method.There is a decreasing order of specific surface areas:BS-1>BS-3>BS-2.Undoubtedly,this difference reflects dissimilar surface features.The factthatthe surface of the BS-1 was loosely covered by numberless interconnecting nanosheets may be a major partof the reason for the increase in BET specific surface area and the decrease in average pore diameter.

    Fig.3 Schematic illustration describing the formation process of the BS materials

    Such a large difference in specific surface areas and pore diameters allow us to estimate whether there is a similar trend in their photocatalytic activity.Fig.4Adisplays the UV-Vis absorption spectra of RhB(10 mg·L-1)in water afterbeing treated by the BS-1(25 mg)under a metalhalide lamp(0.26 W·cm-2).Clearly, the maximum absorption peak of RhB at 554 nm was gradually decreased with increasing irradiation time.Finally,the peak almost completely disappeared at 70 min of irradiation.The photodegradation degree(ζ,%)of RhB was determined by Eq.(8)41. In this equation,C0and C are the initialconcentration of RhB and its equilibrium concentration after irradiation,respectively.

    Our data indicate thattheζvalue for the BS-1 at 70 min is up to 99.6%,butthey are dramatically decreased to 64.7%forthe BS-2(Fig.4B,75.3%at 100 min)and 85.8%for the BS-3(Fig.4B, 98.2%at100 min).Importantly,the values ofζcan stillreach up to 98%for the BS-1 at70 min over the firstthree cycles(Fig.S14 (SI)).Also,no change in crystal structure and surface morphology was observed after the consecutive cycles(Fig.S15(SI)),emphasizing that the BS-1 catalystpossesses a good structuralstability.

    Thus,these results give a strong indication thatthe BS-1 has a high photocatalytic activity,stability and sustainability for the degradation of RhB.Furthermore,we noticed that the order of photocatalytic efficiency observed forthe materials(BS-1>BS-3>BS-2)agrees with the order ofdecreasing specific surface area established above.Further,the density of O atoms on the{001} facets of the BS-1 is much higher than on the{013}facets for the BS-2 and the{110}facets for the BS-342.Itis known thatthe more oxygen atoms were exposed on the surface,notonly resulting in more photo-induced oxygen vacancies but also enhancing the ability in separating the electron-hole pairs3,36.This comparison suggests thatcontrolof crystalgrowth direction may be important in improving photocatalytic activity,which is in accordance with other studies6a,43.

    Fig.4 UV-Vis absorption spectra of the RhB solutions (10 mg·L-1)after being treated by the BS-1 after 0,10,20, 30,40,50,60 and 70 min of visible light irradiation(A), the photodegradation degree of RhB atdifferenttime points after treated by BS-1,-2 and-3(B)

    It is worth noting that theζvalue of RhB on the BS-1 is comparative to those previously reported for BS and bismuth oxyhalides,exhibiting an improved photocatalytic performance because the data reported by earlier authors were obtained either atrelatively strong lightlevels,high catalystconcentrations,low dye concentrations or long irradiation times(Table S2(SI)).

    To determine whatare the main active species responsible for the degradation of RhB in the photocatalytic process,we carried out a series of trapping experiments to evaluate the effect of radicalscavengers.The photodegradation of RhB on the BS-1 was repeated,butwith addition of ascorbic acid(AC,1 mmol·L-1), isopropyl alcohol(IPA,1 mmol·L-1)and ammonium oxalate (AO,10 mmol·L-1)to quench superoxide radical ions(), hydroxylradicals(·OH)and holes(h+),respectively44,45.As shown in Fig.S16(SI),the degradation of RhB was highly inhibited by AO(10.8%)and AC(20.5%),but no significant decrease was found in the presence of IPA(92.4%).This,of course,gives a strong argumentin favor of the contribution of both·and h+, as the main active ingredients,to the degradation of RhB in aqueous solution.

    Fig.5 presents a possible explanation regarding the degradation mechanism of RhB.Atfirst,under visible lightirradiation,the BS-1 was excited to generate electrons(e-)in the conduction band (CB)and h+in the valence band(VB,Eq.(9)).Meanwhile,the photosensitization of RhB under visible light may induce the generation of RhB radicals(RhB*,Eq.(10))46,and the RhB*with the excited electrons was adsorbed onto the BS-1 surface.Subsequently,the photo-induced electrons interacted with the O2molecules adsorbed on the exposed active{001}facets of the BS-1 to produce·,a very reactive radicalanion intermediate(Eq. (11)),while the photogenerated electrons in the RhB*were injected into the conduction band of the BS-1,forming radical cations·RhB+(Eq.(12)).Atlast,the·RhB+was reacted with the activeand h+,and finally degraded into inorganic compounds such as CO2and H2O(Eq.(13)).

    Fig.5 Possible photocatalytic mechanism of RhB on the BS-1

    In order to understand the relation between the structure and properties of the BS materials,XPS,UV-Vis DRS,PL,EIS and photoelectric responses were performed to examine how the structure of the materials(BS-1-3)affects their photoelectric conversion.

    The XPS analysis displays thatthere are no other elements in these samples besides C,O and Bi.The peak at 284.8 eV can be assigned to adventitious carbon species from the XPS measurement,while the peak at288.9 eVcan be ascribed to the carbonate ion in the BS materials11(Fig.S17(SI)).The UV-Vis DRS analysis (Fig.6A)shows that all the three materials have a similar absorption profile in the range of UV and visible regions,with maximum absorptions at 300,289 and 281 nm for the BS-1,-2 and-3,respectively.A clear blue shiftwas observed as shown by the green arrow in Fig.6A.It is interesting to note,however,that the BS-1 exhibits higher absorption intensity than the other two in the UV and especially visible region,probably indicating a higher visible light utilization efficiency.The optical bandgaps were determined to be 3.03 eVfor the BS-1,3.31 eV for the BS-2 and 3.13 eVfor the BS-3(Fig.6B),based on the Kubelka-Munk function48,correlating well with the order found in the specific surface area analysis.Such a difference in bandgaps may notonly be a reason to make the difference between the maximum absorption wavelengths49.The narrower band gap of the BS-1 led to a wider absorption range,which may be a directfactor responsible for improving its photocatalytic activity due to its higher visiblelight utilization efficiency.The VBs of BS-1,-2 and-3 were measured based on valence-band XPS spectra(Fig.6C),and the edges of the maximum energy were found at approximately 1.87, 1.87 and 1.71 eV,respectively.According to the optical bandgaps, the CB minima occur atapproximately-1.16,-1.44 and-1.42 eV,respectively.In view thatthe oxidation potentials of photogenerated h+in the BS photocatalysts were negative than the standard redox potentialof·OH/OH-(1.99 eV)50,we suggestthat the h+photogenerated on the surface of the BS materials could not reactwith OH-/H2Oto form·OH.Therefore,itis reasonable that h+orare likely responsible for the oxidation of RhB over the BS catalysts,in agreementwith above trapping experiments.The PL profiles(Fig.7A)show thatthe BS-1 has a significantly lower luminescent intensity,in comparison with the BS-2 and-3, strongly implying a lower recombination rate of eand h+under UV lightirradiation(excitation wavelength,280 nm).In particular, its luminescent band covers a considerably wider spectral range (380-620 nm,withoutlarge intensity gradients).

    The time-dependent photocurrent responses(Fig.S18(SI)) indicate that upon illumination the photocurrents of the BS electrodes were abruptly increased to maxima of 77.61 nA for the BS-1,42.36 nAfor the BS-2 and 53.23 nAfor the BS-3,as well as having good reproducibility(three times).This means that the BS-1 electrode exhibited a higher efficiency of photoelectric conversion,i.e.,photo-induced charge separation and transfer, compared to the BS-2 and BS-3 electrodes.The analysis of EIS (Fig.7B)reveals that the separation and transfer efficiency of photogenerated electron-hole pairs of the BS-1 is higher than those ofthe BS-2 and BS-3 since the BS-1 electrode presented a smaller radius ofimpedance arc,thereby having a lower interfacialchargetransfer resistance51.

    These results indicate that the BS-1 material exhibits a relatively narrow bandgap,a low recombination rate of eand h+,a high efficiency of photoelectric conversion and a smallinterfacial charge-transfer resistance,thus effectively promoting the separation and transfer of charge carriers,which may be why ithas an enhanced photocatalytic performance.

    Fig.6 UV-Vis diffuse reflectance spectra(A),the plots of(ahν)1/2vs hν(B)and valence-band XPS spectra(C)ofthe BS-1,-2 and-3 a is the opticalabsorption coefficient,h is the Plank′s constant,andνis photon frequency.

    Fig.7 PL spectra(λex=280 nm)ofthe BS-1,-2 and-3(A)and the EIS spectra ofthe BS-1,-2 and-3 under visible light irradiation(B)

    4 Conclusions

    In summary,we have developed a facile and green hydrothermalroute for the controllable synthesis of BS materials with unique microstructures(large specific surface area,ultrafine grain size and high monodispersity).Importantly,the crystal growth directions([001],[013]and[110])of the BS family can be readily tuned by adjusting the concentration combination of citrate and urea.Urea was found to play multiple roles(e.g.,carbon source, appropriate alkaline source,morphology controlagent and crystal growth controlagent)in the formation process of BS crystals.This is the firstreport thatthe formation mechanism of BS was related to the synergistic effectof the concentration combination of citrate and urea.In particular,when compared with those reported by other studies,the BS-1 material shows an improved photocatalytic activity to RhB under visible lightirradiation probably due to an effective separation and transfer of charge carriers on the{001}facets.Overall,this work represents an important contribution to current efforts in understanding the controllable green synthesis and application of inorganic micro-and nano-structures.

    Supporting Information:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)(a)Chen,X.;Li,C.;Gr?tzel,M.;Kostecki,R.;Mao,S.S. Chem.Soc.Rev.2012,41,7909.doi:10.1039/C2CS35230C (b)Xiang,Q.;Yu,J.;Jaroniec,M.Chem.Soc.Rev.2012,41, 782.doi:10.1039/C1CS15172J

    (2)(a)Chen,X.;Shen,S.;Guo,L.;Mao,S.S.Chem.Rev.2010, 110,6503.doi:10.1021/cr1001645 (b)Li,X.J.;Sheng,J.Y.;Chen,H.H.;Xu,Y.M.Acta Phys.-Chim.Sin.2015,31,540.[李曉金,盛珈怡,陳海航,許宜銘.物理化學學報,2015,31,540.]doi:10.3866/PKU. WHXB201501131

    (3)(a)Hou,Y.;Laursen,A.B.;Zhang,J.;Zhang,G.;Zhu,Y.; Wang,X.;Dahl,S.;Chorkendorff,I.Angew.Chem.Int.Ed. 2013,52,3621.doi:10.1002/anie.201210294 (b)Li,J.;Zhang,L.;Li,Y.;Yu,Y.Nanoscale 2013,6,167. doi:10.1039/C3NR05246J (c)Zhang,N.;Ciriminna,R.;Pagliaro,M.;Xu,Y.J.Chem.Soc. Rev.2014,43,5276.doi:10.1039/C4CS00056K

    (4)(a)Zhou,L.;Wang,W.;Liu,S.;Zhang,L.;Xu,H.;Zhu,W. J.Mol.Catal.A:Chem.2006,252,120.doi:10.1016/j. molcata.2006.01.052 (b)Singh,M.K.;Ryu,S.;Jang,H.M.Phys.Rev.B,2005,72, 132101.doi:10.1103/PhysRevB.72.132101 (c)Yu,J.;Kudo,A.Adv.Funct.Mater.2006,16,2163. doi:10.1002/adfm.200500799 (d)He,R.A.;Cao,S.W.;Zhou,P.;Yu,J.G.Chin.J.Catal. 2014,35,989.doi:10.1016/S1872-2067(14)60075-9

    (5)(a)Huo,Y.;Hou,R.;Chen,X.;Yin,H.;Gao,Y.;Li,H.J.Mater. Chem.A 2015,3,14801.doi:10.1039/C5TA03279B (b)Huo,Y.;Zhang,J.;Miao,M.;Jin,Y.Appl.Catal.B 2012, 111,334.doi:10.1016/j.apcatb.2011.10.016 (c)Xia,J.;Yin,S.;Li,H.;Xu,H.;Xu,L.;Xu,Y.Dalton Trans. 2011,40,5249.doi:10.1039/C0DT01511C (d)Wu,Y.;Yuan,B.;Li,M.;Zhang,W.H.;Liu,Y.;Li,C.; Chem.Sci.2015,6,1873.doi:10.1039/C4SC03229B

    (6)(a)Huang,H.;Wang,J.;Dong,F.;Guo,Y.;Tian,N.;Zhang,Y.; Zhang,T.Cryst.Growth Des.2015,15,534.doi:10.1021/ cg501527k (b)Dong,F.;Ho,W.K.;Lee,S.;Wu,Z.;Fu,M.;Zou,S.; Huang,Y.J.Mater.Chem.2011,21,12428.doi:10.1039/ C1JM11840D

    (7)Liang,N.;Zai,J.;Xu,M.;Zhu,Q.;Wei,X.;Qian,X.J.Mater. Chem.A 2014,2,4208.doi:10.1039/C3TA13931J

    (8)Tang,J.;Zhao,H.;Li,G.;Lu,Z.;Xiao,S.;Chen,R.Ind.Eng. Chem.Res.2013,52,12604.doi:10.1021/ie401840x

    (9)Cao,X.F.;Zhang,L.;Chen,X.T.;Xue,Z.L.CrystEngComm 2011,13,1939.doi:10.1039/C0CE00324G

    (10)Xiong,T.;Dong,F.;Wu,Z.B.RSC Adv.2014,4,56307.doi: 10.1039/C4RA10786A

    (11)Xiong,T.;Huang,H.W.;Sun,Y.J.;Dong,F.J.Mater.Chem.A 2015,3,6118.doi:10.1039/C5TA00103J

    (12)Dong,F.;Xiong,T.;Sun,Y.J.;Huang,H.W.;Wu,Z.B. J.Mater.Chem.A 2015,3,18466.doi:10.1039/C5TA05099E

    (13)Zhao,Z.Y.;Zhou,Y.;Wang,F.;Zhang,K.H.;Yu,S.;Cao,K. ACS Appl.Mater.Interfaces 2014,7,730.doi:10.1021/ am507089x

    (14)(a)Madhusudan,P.;Zhang,J.;Cheng,B.;Liu,G. CrystEngComm 2013,15,231.doi:10.1039/C2CE26639C (b)Dong,F.;Lee,S.C.;Wu,Z.B.;Huang,Y.;Fu,M.;Ho,W. K.;Zou,S.C.;Wang,B.J.Hazard.Mater.2011,195,346.doi: 10.1016/j.jhazmat.2011.08.050

    (15)Zhao,T.;Zai,J.;Xu,M.;Zou,Q.;Su,Y.;Wang,K.;Qian,X. CrystEngComm 2011,13,4010.doi:10.1039/C1CE05113J

    (16)(a)Dong,F.;Sun,Y.J.;Fu,M.;Ho,W.K.;Lee,S.C.;Wu,Z.B. Langmuir 2011,28,766.doi:10.1021/la202752q (b)Chen,L.;Huang,R.;Yin,S.F.;Luo,S.L.;Au,C.T.Chem. Eng.J.2012,193,123.doi:10.1016/j.cej.2012.04.023

    (17)Qin,F.;Li,G.;Wang,R.;Wu,J.;Sun,H.;Chen,R.Chem.Eur. J.2012,18,16491.doi:10.1002/chem.201201989

    (18)Dong,F.;Zheng,A.M.;Sun,Y.J.;Fu,M.;Jiang,B.Q.;Ho,W. K.;Lee,S.C.;Wu,Z.B.CrystEngComm 2012,14,3534.doi: 10.1039/C2CE06677G

    (19)Zheng,Y.;Duan,F.;Chen,M.Q.;Xie,Y.J.Mol.Catal.A: Chem.2010,317,34.doi:10.1016/j.molcata.2009.10.018

    (20)Ma,D.;Huang,S.;Chen,W.;Hu,S.;Shi,F.;Fan,K.J.Phys. Chem.C 2009,113,4369.doi:10.1021/jp810726d

    (21)Li,X.;Tang,C.J.;Ai,M.;Dong,L.;Xu,Z.Chem.Mater.2010, 22,4879.doi:10.1021/cm101419w

    (22)Peng,S.;Li,L.;Tan,H.;Wu,Y.;Cai,R.;Yu,H.;Huang,X.; Zhu,P.;Ramakrishna,S.;Srinivasan,M.J.Mater.Chem.A 2013,1,7630.doi:10.1039/C3TA10951H

    (23)Xiong,M.;Chen,L.;Yuan,Q.;He,J.;Luo,S.L.;Au,C.T.;Yin, S.F.Dalton Trans.2014,43,8331.doi:10.1039/C4DT00486H

    (24)Chen,J.;Guan,M.;Cai,W.;Guo,J.;Xiao,C.;Zhang,G.Phys. Chem.Chem.Phys.2014,16,20909.doi:10.1039/C4CP02972K (25)Zhang,D.;Li,J.;Wang,Q.;Wu,Q.J.Mater.Chem.A 2013,1, 8622.doi:10.1039/C3TA11390F

    (26)(a)Zhang,H.;Ji,Y.;Ma,X.;Xu,J.;Yang,D.Nanotechnology, 2003,14,974.doi:0957-4484/14/9/307 (b)Kudo,A.;Omori,K.;Kato,H.J.Am.Chem.Soc.1999,121, 11459.doi:10.1021/ja992541y

    (27)Huang,H.;Li,X.;Wang,J.;Dong,F.;Chu,P.K.;Zhang,T.; Zhang,Y.ACS Catalysis 2015,5,4094.doi:10.1021/ acscatal.5b00444

    (28)Teng,Y.;Song,L.X.;Ponchel,A.;Yang,Z.K.;Xia,J.Adv.Mater.2014,26,6238.doi:10.1002/adma.201402047

    (29)Teng,Y.;Song,L.X.;Liu,W.;Xu,Z.Y.;Wang,Q.S.;Ruan,M. M.J.Mater.Chem.C 2016,4,3113.doi:10.1039/C6TC00748A

    (30)Jiang,J.;Zhao,K.;Xiao,X.;Zhang,L.J.Am.Chem.Soc.2012, 134,4473.doi:10.1021/ja210484t

    (31)Lee,W.;Kim,E.;Choi,J.;Lee,K.B.Cryst.Growth Des.2015, 15,884.doi:10.1021/cg5016737

    (32)(a)Wang,B.;Chen,J.S.;Wang,Z.;Madhavi,S.;Lou,X.W.D. Adv.Energy Mater.2012,2,1188.doi:10.1002/aenm.201200008 (b)Zhan,J.Lin,H.P.;Mou,C.Y.Adv.Mater.2003,15,621. doi:10.1002/adma.200304600

    (33)(a)Ye,Y.;Chen,J.;Ding,Q.;Lin,D.;Dong,R.;Yang,L.;Liu, J.Nanoscale 2013,5,5887.doi:10.1039/C3NR01273E (b)Wang,B.;Zhu,T.;Wu,H.B.;Xu,R.;Chen,J.S.;Lou,X. W.D.Nanoscale 2012,4,2145.doi:10.1039/C2NR11897A

    (34)Xuan,S.;Hao,L.;Jiang,W.;Gong,X.;Hu,Y.;Chen,Z. Nanotechnology 2007,18,035602.doi:0957-4484/18/3/035602

    (35)Wang,W.;Lu,C.;Ni,Y.;Su,M.;Xu,Z.Appl.Catal.B 2012, 127,28.doi:10.1016/j.apcatb.2012.08.002

    (36)Mullin,J.W.Crystallization,3rd ed.;Butterworth-Heinemaan: Oxford,1997.

    (38)(a)Gokulakrishnan,N.;Peru,G.;Rio,S.;Blach,J.;Léger,;B.; Grosso,D.;Monflier,E.;Ponchel,A.J.Mater.Chem.A 2014,2, 6641.doi:10.1039/C4TA00038B (b)Bleta,R.;Menuel,S.;Léger,B.;Da Costa,A.;Monflier,E.; Ponchel,A.RSC Adv.2014,4,8200.doi:10.1039/C3RA47765G

    (39)Brunauer,S.;Emmett,P.H.;Teller,E.J.Am.Chem.Soc.1938, 60,309.doi:10.1021/ja01269a023

    (40)Dong,F.;Liu,H.;Ho,W.K.;Fu,M.;Wu,Z.Chem.Eng.J. 2013,214,198.doi:10.1016/j.cej.2012.10.039

    (41)(a)Yang,Z.K.;Song,L.X.;Teng,Y.;Xia,J.J.Mater.Chem.A 2014,2,20004.doi:10.1039/C4TA04232H (b)Wang,Q.S.;Song,L.X.;Teng,Y.;Xia,J.;Zhao,L.;Ruan, M.M.RSC Adv.2015,5,80853.doi:10.1039/C5RA16571G

    (42)(a)Ye,L.;Zan,L.;Tian,L.;Peng,T.;Zhang,J.Chem.Commun. 2011,47,6951.doi:10.1039/C1CC11015B (b)He,R.A.;Cao,S.W.;Yu,J.G.Acta Phys.-Chim. Sin.2016,32,2841.[赫榮安,曹少文,余家國.物理化學學報, 2016,32,2841.]doi:10.3866/PKU.WHXB201611021

    (43)(a)Zhang,X.;Wang,X.B.;Wang,L.W.;Wang,W.K.;Long, L.L.;Li,W.W.;Yu,H.Q.ACS Appl.Mater.Interfaces 2014,6, 7766.doi:10.1021/am5010392 (b)Li,H.;Shang,J.;Ai,Z.;Zhang,L.J.Am.Chem.Soc.2015, 137,6393.doi:10.1021/jacs.5b03105

    (44)Yu,Y.;Cao,C.;Liu,H.;Li,P.;Wei,F.;Jiang,Y.;Song,W. J.Mater.Chem.A 2014,2,1677.doi:10.1039/C3TA14494A

    (45)Li,F.T.;Wang,Q.;Ran,J.;Hao,Y.J.;Wang,X.J.;Zhao,D.; Qiao,S.Z.Nanoscale 2015,7,1116.doi:10.1039/C4NR05451B

    (46)(a)Hu,J.;Xu,G.;Wang,J.;Lv,J.;Zhang,X.;Zheng,Z.;Xie, T.;Wu,Y.New J.Chem.2014,38,4913.doi:10.1039/ C4NJ00794H (b)Xiong,J.;Cheng,G.;Li,G.;Qin,F.;Chen,R.RSC Adv. 2011,1,1542.doi:10.1039/C1RA00335F

    (47)(a)Lagunas-Allué,L.;Martínez-Soria,M.T.;Sanz-Asensio,J.; Salvador,A.;Ferronato,C.;Chovelon,J.M.Appl.Catal.B 2010,98,122.doi:10.1016/j.apcatb.2010.05.020 (b)Zhuang,J.;Tian,Q.;Zhou,H.;Liu,Q.;Liu,P.;Zhong,H.J. Mater.Chem.2012,22,7036.doi:10.1039/C2JM16924J

    (48)(a)Kortüm,G.;Braun,W.;Herzog,G.Angew.Chem.Int.Ed. 1963,2,333.doi:10.1002/anie.196303331 (b)Sakthivel,S.;Kisch,H.Angew.Chem.Int.Ed.2003,42, 4908.doi:10.1002/anie.200351577

    (49)(a)Li,G.;Long,G.;Chen,W.;Hu,F.;Chen,Y.;Zhang,Q. Asian J.Org.Chem.2013,2,852.doi:10.1002/ajoc.201300095 (b)Cui,W.;Yuen,J.;Wudl,F.Macromolecules 2011,44,7869. doi:10.1021/ma2017293 (c)Leclerc,N.;Michaud,A.;Sirois,K.;Morin,J.F.;Leclerc, M.Adv.Funct.Mater.2006,16,1694.doi:10.1002/ adfm.200600171

    (50)(a)Fu,H.;Pan,C.;Yao,W.;Zhu,Y.J.Phys.Chem.B 2005, 109,22432.doi:10.1021/jp052995j (b)Zhao,Y.;Tan,X.;Yu,T.;Wang,S.Mater.Lett.2016,164, 243.doi:10.1016/j.matlet.2015.10.155

    (51)(a)Guo,Y.X.;Huang,H.W.;He,Y.;Tian,N.;Zhang,T.R.; Chu,P.K.;An,Q.;Zhang,Y.H.Nanoscale 2015,7,11702. doi:10.1039/C5NR02246K (b)Zhao,Y.;Yu,T.;Tan,X.;Xie,C.;Wang,S.Dalton Trans. 2015,44,20475.doi:10.1039/C5DT03315B

    Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance

    RUAN Mao-Mao1SONGLe-Xin1,*WANG Qing-Shan1,*XIAJuan2YANGZun1TENGYue1XU Zhe-Yuan1
    (1Department of Chemistry,University of Science and Technology of China,Hefei 230026,P.R.China;2Schoolof Chemistry and Chemical Engineering,Fuyang Normal College,Fuyang 236037,Anhui Province,P.R.China)

    This work reports a controlled green synthesis ofhighly monodisperse bismuth subcarbonate(BS) micropompons self-assembled by nanosheets using a simple and facile hydrothermalroute in which deionized water,bismuth nitrate pentahydrate(BNP),and urea were used as the solvent,bismuth source,and carbon source respectively.Trisodium citrate dihydrate(TCD)was used as a coordination agentto fabricate a complex precursor.The structure and morphology ofthe BS materials can be finely modulated by adjusting the initial concentration ratios ofthe reactants or the reaction time.The presence of TCD decreased the formation rate of BS due to a direct competitive interaction for the BiO+ions between a coordination equilibrium and a precipitation equilibrium.Urea played a crucialrole(e.g.,carbon source,alkaline source,morphology control agent,and crystalgrowth controlagent)in the formation ofthe BS microstructures.We obtained three kinds of BS crystals with preferred orientations along[001],[110],and[013]by adjusting the concentration of urea. Our synthesis approach has the advantages oflow cost,high reaction yields,monodisperse particles,controlled morphologies and orientations,and not requiring the use of organic solvents,templates,surfactants,hightemperatures,and long reaction times.Particularly,when compared with those reported by other investigators, the micropompon materialexhibited improved photocatalytic performance for Rhodamine B due to a unique microstructure(large specific surface area,high efficiency ofphotoelectric conversion,smallinterfacialchargetransfer resistance,and active{001}exposed facets).These results indicate a major advance in the controlled green synthesis and the application ofinorganic micro-and nano-materials.

    Bismuth subcarbonate;Controlled green synthesis;Photocatalytic performance; Micropompons;Trisodium citrate dihydrate

    O643

    Voorhees,P.W.J.Stat.Phys.1985,38,231.

    10.1007/ BF01017860

    doi:10.3866/PKU.WHXB201702101

    Received:November 11,2016;Revised:February 10,2017;Published online:February 10,2017.

    *Corresponding authors.SONG Le-Xin,Email:solexin@ustc.edu.cn;Tel:+86-551-3492002.WANG Qing-Shan,Email:wqs056@mail.ustc.edu.cn. The projectwas supported by the Natural Science Foundation of Anhui Province,China(1508085MB30)and Fundamental Research Funds for the Central Universities,China(WK2060190052,WK6030000017).

    安徽省自然科學基金(1508085MB30)和中央高?;究蒲袑m椯Y金(WK2060190052,WK6030000017)資助項目?Editorialoffice ofActa Physico-Chimica Sinica

    猜你喜歡
    絨球化工學院阜陽
    小絨球的芭蕉信
    使固態(tài)化學反應100%完成的方法
    樹杈上的小絨球
    國家開放大學石油和化工學院學習中心列表
    第二屆淮河文化論壇在阜陽舉行
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    合肥至霍邱至阜陽高速公路今年開建
    安徽阜陽潁上:“產(chǎn)業(yè)花”結(jié)出“脫貧果”
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    關于把阜陽建成區(qū)域中心城市的思考
    国产成人精品久久二区二区免费| 听说在线观看完整版免费高清| 亚洲中文字幕日韩| 精品久久久久久久久久免费视频| 日韩一卡2卡3卡4卡2021年| 露出奶头的视频| 在线观看66精品国产| 日韩一卡2卡3卡4卡2021年| or卡值多少钱| 久久香蕉精品热| 国内久久婷婷六月综合欲色啪| 中国美女看黄片| 国产精品二区激情视频| www日本黄色视频网| 国产精品免费视频内射| 中文字幕精品免费在线观看视频| 色尼玛亚洲综合影院| 国产av又大| 欧美日韩福利视频一区二区| www.www免费av| 欧美日韩亚洲综合一区二区三区_| 国产三级黄色录像| 国产精品,欧美在线| 亚洲精品久久成人aⅴ小说| 最好的美女福利视频网| 少妇粗大呻吟视频| 日韩国内少妇激情av| 免费看日本二区| 精品熟女少妇八av免费久了| a级毛片a级免费在线| 人人妻,人人澡人人爽秒播| 91九色精品人成在线观看| 精品国产乱子伦一区二区三区| 亚洲国产中文字幕在线视频| 国产极品粉嫩免费观看在线| 亚洲五月婷婷丁香| 亚洲五月天丁香| 亚洲一码二码三码区别大吗| 欧美激情 高清一区二区三区| 亚洲 国产 在线| 成人国产综合亚洲| 91大片在线观看| 国产一区二区三区在线臀色熟女| 亚洲国产高清在线一区二区三 | 亚洲成av人片免费观看| 十八禁网站免费在线| 日本五十路高清| 亚洲成人免费电影在线观看| 超碰成人久久| 国产亚洲精品综合一区在线观看 | 亚洲男人的天堂狠狠| e午夜精品久久久久久久| 国产精品亚洲av一区麻豆| a级毛片在线看网站| 久久久久久久久久黄片| 巨乳人妻的诱惑在线观看| 18禁观看日本| 国产精品一区二区精品视频观看| 久久国产亚洲av麻豆专区| 法律面前人人平等表现在哪些方面| 免费在线观看黄色视频的| 亚洲一码二码三码区别大吗| 成人亚洲精品一区在线观看| 亚洲激情在线av| www.自偷自拍.com| 亚洲精品在线美女| 日韩中文字幕欧美一区二区| 50天的宝宝边吃奶边哭怎么回事| 成年免费大片在线观看| 国产成人精品无人区| 12—13女人毛片做爰片一| 亚洲国产日韩欧美精品在线观看 | 美女大奶头视频| 午夜两性在线视频| 女性生殖器流出的白浆| 美国免费a级毛片| 国产区一区二久久| 在线观看免费日韩欧美大片| 国产又色又爽无遮挡免费看| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 午夜福利18| 亚洲国产欧美日韩在线播放| 精品不卡国产一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 在线观看66精品国产| 精品少妇一区二区三区视频日本电影| 无限看片的www在线观看| 窝窝影院91人妻| 久久热在线av| 日本三级黄在线观看| 欧美一级毛片孕妇| 免费在线观看成人毛片| 1024手机看黄色片| 亚洲,欧美精品.| 少妇熟女aⅴ在线视频| 黄片播放在线免费| 欧美最黄视频在线播放免费| 两个人看的免费小视频| 欧美日韩亚洲国产一区二区在线观看| 欧美一级毛片孕妇| 中出人妻视频一区二区| 美女 人体艺术 gogo| 欧美成人一区二区免费高清观看 | 欧美另类亚洲清纯唯美| 亚洲人成伊人成综合网2020| 1024手机看黄色片| 1024手机看黄色片| 最近最新免费中文字幕在线| 亚洲国产精品成人综合色| 日本免费a在线| 国产一区二区三区在线臀色熟女| 黄片小视频在线播放| 男人舔女人下体高潮全视频| 久久国产精品男人的天堂亚洲| 97碰自拍视频| 一区二区日韩欧美中文字幕| 黄色女人牲交| 天堂动漫精品| 嫩草影院精品99| 天天添夜夜摸| 亚洲av美国av| av中文乱码字幕在线| 美国免费a级毛片| 91老司机精品| 亚洲第一电影网av| 欧美丝袜亚洲另类 | avwww免费| 久久99热这里只有精品18| 99精品欧美一区二区三区四区| 哪里可以看免费的av片| 亚洲九九香蕉| 91国产中文字幕| 国产熟女午夜一区二区三区| 亚洲成人久久爱视频| 国产精品美女特级片免费视频播放器 | 久久亚洲精品不卡| avwww免费| 国产精品免费一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 啦啦啦 在线观看视频| 亚洲人成77777在线视频| 免费人成视频x8x8入口观看| 日韩av在线大香蕉| 麻豆av在线久日| 啪啪无遮挡十八禁网站| 搡老妇女老女人老熟妇| 国产精品爽爽va在线观看网站 | a级毛片a级免费在线| 国产欧美日韩精品亚洲av| 国产伦人伦偷精品视频| 国内毛片毛片毛片毛片毛片| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 日韩一卡2卡3卡4卡2021年| 精品久久蜜臀av无| 亚洲人成网站高清观看| 亚洲国产欧美网| 亚洲中文日韩欧美视频| 亚洲av片天天在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲av片天天在线观看| 国产精品亚洲美女久久久| 国产精品亚洲美女久久久| 老司机深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 国产高清视频在线播放一区| 色在线成人网| 国产精品,欧美在线| 精品国产乱码久久久久久男人| 午夜亚洲福利在线播放| 亚洲成人国产一区在线观看| 国产蜜桃级精品一区二区三区| www日本黄色视频网| 女同久久另类99精品国产91| 嫩草影视91久久| 日本免费一区二区三区高清不卡| 亚洲成人久久性| 国产主播在线观看一区二区| 国产91精品成人一区二区三区| 人人妻人人澡欧美一区二区| 大型黄色视频在线免费观看| 国产爱豆传媒在线观看 | 黄色a级毛片大全视频| 精品久久久久久久久久免费视频| 日韩 欧美 亚洲 中文字幕| 婷婷精品国产亚洲av在线| 一区福利在线观看| 啦啦啦 在线观看视频| 欧美zozozo另类| 久久午夜亚洲精品久久| 精品午夜福利视频在线观看一区| 看免费av毛片| 又黄又粗又硬又大视频| 曰老女人黄片| 欧美日韩黄片免| 好男人电影高清在线观看| 男女下面进入的视频免费午夜 | or卡值多少钱| 男女之事视频高清在线观看| 男女视频在线观看网站免费 | 51午夜福利影视在线观看| 午夜福利视频1000在线观看| 日韩一卡2卡3卡4卡2021年| 国产人伦9x9x在线观看| 免费观看精品视频网站| 日本熟妇午夜| 日韩欧美 国产精品| 国产又色又爽无遮挡免费看| 久久久久久久久久黄片| 国产一区二区激情短视频| a级毛片a级免费在线| 日本a在线网址| 久9热在线精品视频| 亚洲欧美精品综合久久99| 亚洲天堂国产精品一区在线| 在线国产一区二区在线| 亚洲人成网站在线播放欧美日韩| 午夜视频精品福利| 欧美av亚洲av综合av国产av| 久久精品影院6| 久久久久久久午夜电影| 两性夫妻黄色片| 亚洲欧美激情综合另类| 狂野欧美激情性xxxx| 丰满人妻熟妇乱又伦精品不卡| 亚洲在线自拍视频| 丁香六月欧美| 香蕉久久夜色| 女性被躁到高潮视频| 久久久久久九九精品二区国产 | 少妇熟女aⅴ在线视频| 亚洲精品在线美女| 国产又色又爽无遮挡免费看| 国产一区二区激情短视频| 十八禁人妻一区二区| 亚洲欧美精品综合久久99| 午夜久久久久精精品| 搡老熟女国产l中国老女人| 国产亚洲av高清不卡| 国产精品久久久久久亚洲av鲁大| 亚洲第一av免费看| 深夜精品福利| 日本免费a在线| 在线观看免费午夜福利视频| 成人亚洲精品av一区二区| 欧美最黄视频在线播放免费| 午夜激情av网站| 伊人久久大香线蕉亚洲五| 久久精品夜夜夜夜夜久久蜜豆 | 日本一本二区三区精品| 制服人妻中文乱码| 人妻丰满熟妇av一区二区三区| 91在线观看av| 国产成人精品久久二区二区免费| 久久久久免费精品人妻一区二区 | 亚洲专区中文字幕在线| 波多野结衣av一区二区av| 国产av一区二区精品久久| 免费女性裸体啪啪无遮挡网站| 亚洲精华国产精华精| e午夜精品久久久久久久| 国产激情偷乱视频一区二区| 久热爱精品视频在线9| 97人妻精品一区二区三区麻豆 | 久久九九热精品免费| 欧美日韩一级在线毛片| 色av中文字幕| 脱女人内裤的视频| 欧美日韩黄片免| 一进一出好大好爽视频| а√天堂www在线а√下载| 99久久国产精品久久久| 人妻丰满熟妇av一区二区三区| av电影中文网址| 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 午夜免费观看网址| 久久中文字幕人妻熟女| 国产精品亚洲av一区麻豆| 又黄又爽又免费观看的视频| 一区福利在线观看| 在线观看一区二区三区| 99热只有精品国产| 听说在线观看完整版免费高清| 1024手机看黄色片| 最近最新中文字幕大全电影3 | 欧美 亚洲 国产 日韩一| 韩国精品一区二区三区| 啦啦啦韩国在线观看视频| 我的亚洲天堂| 国产亚洲精品久久久久久毛片| 色综合亚洲欧美另类图片| 两个人视频免费观看高清| 午夜精品久久久久久毛片777| 91大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区高清视频在线| 久久精品aⅴ一区二区三区四区| 欧美性猛交╳xxx乱大交人| 麻豆国产av国片精品| 啦啦啦观看免费观看视频高清| 黄色成人免费大全| 少妇被粗大的猛进出69影院| 一级片免费观看大全| 91麻豆av在线| 丁香六月欧美| 国产成人欧美| 欧美激情 高清一区二区三区| 两个人视频免费观看高清| 最新在线观看一区二区三区| 一本大道久久a久久精品| 精品久久久久久,| 一夜夜www| 国产精品亚洲av一区麻豆| 国产亚洲精品av在线| 女同久久另类99精品国产91| 国产亚洲精品第一综合不卡| 亚洲久久久国产精品| 色精品久久人妻99蜜桃| 99久久精品国产亚洲精品| 精品久久久久久久久久免费视频| www日本在线高清视频| 久久人人精品亚洲av| 99在线人妻在线中文字幕| 亚洲成av人片免费观看| 窝窝影院91人妻| 精品一区二区三区视频在线观看免费| 国产三级在线视频| 草草在线视频免费看| 一本久久中文字幕| 亚洲人成网站高清观看| 国产午夜福利久久久久久| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 最近最新中文字幕大全电影3 | 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 午夜精品在线福利| 欧洲精品卡2卡3卡4卡5卡区| 女性被躁到高潮视频| 久久狼人影院| 亚洲九九香蕉| 免费在线观看黄色视频的| 观看免费一级毛片| 亚洲国产高清在线一区二区三 | 亚洲精品美女久久av网站| 18美女黄网站色大片免费观看| 中出人妻视频一区二区| 超碰成人久久| 美女免费视频网站| 成人午夜高清在线视频 | 男人舔奶头视频| 久久人妻福利社区极品人妻图片| aaaaa片日本免费| 国产精品乱码一区二三区的特点| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 色尼玛亚洲综合影院| 少妇 在线观看| 在线永久观看黄色视频| 99在线视频只有这里精品首页| 国产1区2区3区精品| 97人妻精品一区二区三区麻豆 | 午夜激情福利司机影院| 久久久久免费精品人妻一区二区 | 欧美性猛交╳xxx乱大交人| 桃红色精品国产亚洲av| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区| 在线观看一区二区三区| 最近最新中文字幕大全免费视频| 国产精品亚洲av一区麻豆| 国产熟女xx| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区| 好男人在线观看高清免费视频 | 国产又爽黄色视频| 日本 欧美在线| 两个人看的免费小视频| 波多野结衣高清无吗| 丝袜美腿诱惑在线| 亚洲男人的天堂狠狠| 亚洲电影在线观看av| 久久久久久大精品| 午夜福利成人在线免费观看| 麻豆成人av在线观看| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 亚洲欧美日韩无卡精品| a级毛片在线看网站| 免费在线观看日本一区| 熟女电影av网| 搡老岳熟女国产| 午夜福利欧美成人| 成人午夜高清在线视频 | www日本在线高清视频| 黑人巨大精品欧美一区二区mp4| 久久狼人影院| 大香蕉久久成人网| 观看免费一级毛片| 一进一出抽搐gif免费好疼| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| 我的亚洲天堂| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 中文字幕久久专区| 久久人人精品亚洲av| 国产精华一区二区三区| 日日爽夜夜爽网站| 99re在线观看精品视频| 视频在线观看一区二区三区| 婷婷亚洲欧美| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| videosex国产| 国产成人欧美在线观看| 午夜激情av网站| 深夜精品福利| 很黄的视频免费| www日本在线高清视频| 丰满的人妻完整版| 一本一本综合久久| 女人爽到高潮嗷嗷叫在线视频| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 国产精品乱码一区二三区的特点| 亚洲av成人av| aaaaa片日本免费| 久久香蕉精品热| av视频在线观看入口| 窝窝影院91人妻| av在线播放免费不卡| 两性夫妻黄色片| 欧美激情久久久久久爽电影| 天堂动漫精品| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 国产精品av久久久久免费| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 听说在线观看完整版免费高清| 精品久久久久久久末码| 亚洲七黄色美女视频| 久久青草综合色| 在线视频色国产色| 国产精品久久视频播放| 精品国产乱子伦一区二区三区| 男人舔奶头视频| 一本久久中文字幕| 日韩国内少妇激情av| 亚洲精品粉嫩美女一区| 精品欧美一区二区三区在线| 欧美亚洲日本最大视频资源| 亚洲av熟女| 国产高清videossex| 婷婷精品国产亚洲av在线| 1024视频免费在线观看| 男男h啪啪无遮挡| 午夜免费观看网址| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 亚洲狠狠婷婷综合久久图片| 成人亚洲精品av一区二区| 亚洲成人久久性| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 日韩成人在线观看一区二区三区| 久久九九热精品免费| 成人永久免费在线观看视频| 国产一卡二卡三卡精品| 午夜激情福利司机影院| 欧美不卡视频在线免费观看 | 国产一级毛片七仙女欲春2 | 看免费av毛片| 男女下面进入的视频免费午夜 | 亚洲在线自拍视频| 男女下面进入的视频免费午夜 | 一级毛片女人18水好多| 国产精品av久久久久免费| 亚洲真实伦在线观看| 久久精品国产清高在天天线| 久久久国产成人免费| 中文字幕精品免费在线观看视频| 久久久水蜜桃国产精品网| 在线播放国产精品三级| 男女午夜视频在线观看| 真人一进一出gif抽搐免费| 欧美乱色亚洲激情| 久热这里只有精品99| 欧美日韩福利视频一区二区| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久 | 国产真实乱freesex| 免费无遮挡裸体视频| 丝袜美腿诱惑在线| 高清在线国产一区| 久久香蕉精品热| 88av欧美| 久9热在线精品视频| 国产精品一区二区免费欧美| 亚洲人成网站在线播放欧美日韩| 1024香蕉在线观看| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 好男人电影高清在线观看| 欧美性猛交黑人性爽| 美女 人体艺术 gogo| 亚洲午夜理论影院| 日韩成人在线观看一区二区三区| 日韩三级视频一区二区三区| 在线观看免费午夜福利视频| 亚洲av成人一区二区三| 婷婷精品国产亚洲av在线| 19禁男女啪啪无遮挡网站| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 美女国产高潮福利片在线看| 久久精品夜夜夜夜夜久久蜜豆 | 日韩欧美在线二视频| 亚洲成人久久性| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 国产精品九九99| 窝窝影院91人妻| 亚洲av美国av| 久久久久精品国产欧美久久久| 久久狼人影院| 欧美丝袜亚洲另类 | 午夜福利高清视频| 黄片大片在线免费观看| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 亚洲国产日韩欧美精品在线观看 | 19禁男女啪啪无遮挡网站| 国产aⅴ精品一区二区三区波| 午夜a级毛片| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 色哟哟哟哟哟哟| 国产精品久久久久久人妻精品电影| 在线观看舔阴道视频| 听说在线观看完整版免费高清| 中文字幕高清在线视频| 久久香蕉国产精品| 欧美久久黑人一区二区| 色综合亚洲欧美另类图片| 欧美中文综合在线视频| 一区福利在线观看| 在线av久久热| 神马国产精品三级电影在线观看 | 视频在线观看一区二区三区| 国产精品一区二区精品视频观看| 日本a在线网址| 两性午夜刺激爽爽歪歪视频在线观看 | 成人永久免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 国产免费男女视频| 国产高清有码在线观看视频 | 国产aⅴ精品一区二区三区波| 在线免费观看的www视频| 怎么达到女性高潮| 亚洲狠狠婷婷综合久久图片| 久久精品亚洲精品国产色婷小说| 亚洲av第一区精品v没综合| 午夜激情av网站| 两性夫妻黄色片| 日本免费一区二区三区高清不卡| 久久久精品国产亚洲av高清涩受| 国产成人系列免费观看| 国产久久久一区二区三区| 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 欧美激情高清一区二区三区| 曰老女人黄片| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 免费看a级黄色片| 亚洲五月婷婷丁香| 91在线观看av| 两个人免费观看高清视频| 99精品久久久久人妻精品| 国产精品亚洲美女久久久| 18禁国产床啪视频网站| xxxwww97欧美| 欧美亚洲日本最大视频资源| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 欧美中文日本在线观看视频| 黄色 视频免费看| 老鸭窝网址在线观看| 国产成人精品久久二区二区免费| 黄片小视频在线播放| 亚洲第一欧美日韩一区二区三区| 欧美亚洲日本最大视频资源| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 在线免费观看的www视频| www.熟女人妻精品国产| 日本免费一区二区三区高清不卡| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 国产黄a三级三级三级人| 成人18禁在线播放|