• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米片自組裝的(BiO)2CO3單分散微米絨球的綠色可控合成及其光催化性能

    2017-05-11 00:45:57阮毛毛宋樂新王青山越許哲遠
    物理化學學報 2017年5期
    關鍵詞:絨球化工學院阜陽

    阮毛毛 宋樂新,* 王青山,* 夏 娟 楊 尊 滕 越許哲遠

    (1中國科學技術大學化學系,合肥230026;2阜陽師范學院化學與化工學院,安徽阜陽236037)

    納米片自組裝的(BiO)2CO3單分散微米絨球的綠色可控合成及其光催化性能

    阮毛毛1宋樂新1,*王青山1,*夏 娟2楊 尊1滕 越1許哲遠1

    (1中國科學技術大學化學系,合肥230026;2阜陽師范學院化學與化工學院,安徽阜陽236037)

    采用水為溶劑,Bi(NO3)3·5H2O為Bi源,C6H5Na3O7·2H2O(TCD)為配體構筑了前驅(qū)配合物Bi-TCD,通過配合物分解實現(xiàn)了由納米片自組裝的碳酸氧鉍(BS)微米絨球的綠色可控合成,例如,BS的結(jié)構和形貌可經(jīng)由改變反應物濃度和反應時間來調(diào)控。我們發(fā)現(xiàn),一方面,TCD的配位作用可致BiO+離子緩慢釋出從而調(diào)控BS的形成速率;另一方面,尿素在BS材料的形成過程中起碳源、堿源、形貌調(diào)控劑和晶體成長控制劑的多重作用,通過調(diào)控尿素的濃度制備了三種分別沿著[001]、[110]和[013]優(yōu)勢生長方向的BS晶體。這種合成方法成本低,不需要有機溶劑、模板、表面活性劑、高溫和很長的反應時間;產(chǎn)物分散性好;產(chǎn)率高;且擁有可控的形貌和優(yōu)勢生長方向。特別是由納米片自組裝的BS微米絨球?qū)α_丹明B展現(xiàn)出優(yōu)異的光催化性能。我們相信當前工作將是綠色可控合成和無機微納材料應用方面的一個重要進展。

    碳酸氧鉍;綠色可控合成;光催化性能;微米絨球;二水合檸檬酸三鈉

    Scheme 1 Objective one is achieved by the coordination of Bi(III) ions with Cit3-and the slow hydrolysis ofurea;objective two is met very satisfactorily due to very large specific surface area and exposed{001}facets of the as-obtained BS material

    1 Introduction

    Photocatalytic technology has attracted wide attention toward designing novel photocatalysts with excellent activity to mitigate the globalenergy crisis and environmentalpollution1,2.Among the photocatalysts investigated,micro-and nano-materials with layered structures have been a subjectof increasing interest,because their anisotropic crystalstructure and internal static electric field effectcan efficiently improve photoinduced charge separation and transfer3.Ithas been reported thatthe 5d106s2valence orbits of Bi (III)ions can hybridize with the O-2p valence orbits to form a hybridized valence band,thereby allowing oxide semiconductors of the ions to exhibita specific absorption in visible lightrange4, for example,high photocatalytic performance of bismuth oxyhalides5.Bismuth subcarbonate[(BiO)2CO3,BS],a newcomer of Sillen-type semiconductors,with alternating layers ofandions,bears close resemblance to those seen in bismuth oxyhalides5.

    In the lastyears,BS has drawn considerable attention because of its strong antibacterial activity,good photoelectric property,and high photocatalytic performance,becoming a very active research area6-12.Several groups have an interest in designing and synthesizing BS micro-and nano-structures with different morphologies8-19.For example,Dong and co-workers14bsuccessfully synthesized monodisperse BS microspheres using ammonia bismuth citrate and urea as reactants through a hydrothermal process at453 K for 12 h.The as-obtained BS microspheres exhibited efficientphotocatalytic removal of NO in indoor air under UV light or visible irradiation.Chen and his coagents8,17obtained nanotube,nanoplate,and nanocube-like structures of BS by a simple reflux or solvothermalsynthesis using ethylene glycol or mannitolas a solvent.They found thatthe solventethylene glycol or mannitol played an important role in controlling the morphology of BS.Cao and his colleagues9successfully prepared persimmon-like BS microstructures using polyacrylamide as a template via a simple hydrothermalprocess at453 K.Moreover, Liu′s group14areported the synthesis of novelhierarchicalrose-like BS microstructures using ammonia bismuth citrate as bismuth source in the presence of polyvinylpyrrolidone through a hydrothermal treatmentat 453 K for 12 h.The BS microstructures assembled by 2D single-crystalline nanosheets with dominant {001}facets exhibited good photocatalytic performance.Recently, Qian′s group15synthesized sponge-like BS structures at453 K for 18 h,and found thatthe morphology and Brunauer-Emmett-Teller (BET)specific surface area of the obtained BS materials could be easily adjusted by changing the concentration of reactants.

    There is no doubt that the results of of these authors were qualitatively representative,but it is well to note that in most instances the synthesis techniques either required a high temperature and/or a long reaction time to be applied15,18,19,or tended to use organic solvents or templates8,15,17,which do notsatisfy the requirements of green synthesis due to the creation of organic waste and pollutants.Therefore,a green,mild and controllable synthesis method needs to be developed.This is one objective of the presentwork(Scheme 1).

    In this study,a simple one-pot hydrothermal synthesis was carried out in a sealed Teflon-lined stainless steel autoclave at 413 K for 10 h using deionized water,bismuth nitrate pentahydrate[Bi(NO3)3·5H2O,BNP],and urea as solvent,bismuth source and carbon source respectively,when trisodium citrate dihydrate [Na3Cit·2H2O,TCD]was used as a coordination agentto fabricate the citrate complex Bi-Citas a precursor20,21.White crystals of BS with spherical-shape were successfully obtained.The main advantages of this method,when compared to previously available synthesis methods2,3,9,10,are its simplicity(comes from simple inorganic salts rather than expensive Bi-Cit)and the absence of polymer ligands.

    The other objective of the present work is to improve photo-catalytic performance of BS by the analysis of the relation between the structure and photocatalytic performance of BS (Scheme 1).The as-prepared BS materials were characterized by various techniques.Our results provide new insights in understanding the catalytic capabilities of BS and how they mightbe enhanced by controlled crystal-facet synthesis.We believe that these results are significantmilestones towards the controllable fabrication of Bi-based photocatalysts based on the concept of green synthesis.

    2 Experimental

    2.1 Materials

    Citric acid,BNP,TCD,sodium tartrate dehydrate,urea,sodium hydroxide and sodium sulfate were purchased from Shanghai Chemical Reagent Company.Rhodamine B(RhB)was obtained from Aladdin Chemistry Co.Ltd.Lead.Allother reagents were the best available commercial products,used without further purification.Water used in the preparation of solutions for measurements was distilled and deionized carefully before use.

    2.2 Preparation of the BS materials

    The BS-1 was synthesized by a facile hydrothermal process. First,TCD of 0.882 g(3 mmol)and BNP of 0.484 g(1 mmol) were dissolved in 40 mL of deionized water at room temperature under vigorous stirring for 0.5 h,and then urea of 0.301 g(5 mmol)was added to the solution.This solution was stirred for another 0.5 h.Subsequently,the solution was removed to a Teflonlined stainless autoclave(50 mL).The autoclave was maintained at 413 K for 10 h,and then cooled gradually to ambient temperature.Finally,a white precipitate was collected via centrifugation, and washed with deionized water and absolute ethanol several times and dried in vacuum.Allof the other samples including the BS-2 and BS-3 were synthesized in a similar fashion.

    2.3 Materialcharacterization

    The X-ray diffraction(XRD)measurements were recorded on a Philips X′Pert Pro X-ray diffractometer equipped with monochromatized Cu Kα(λ=0.15418 nm)radiation operated at 40 kV and 40 mA in the range:10°≤2θ≤65°.The field emission scanning electron microscope(FE-SEM)images were performed by using a Supra 40 FE-SEM.The transmission electron microscopy(TEM),high-resolution(HR-TEM)images,and selectedarea electron diffraction(SAED)patterns were taken on JEF 2100F microscope performing at 200 kV.The UV-Vis diffusereflectance spectrum(DRS)of the BS-1 was recorded employing a Shimadzu DUV-3700 spectrophotometer in the wavelength between 220 and 1000 nm.Barium sulfate powder was used as the reflectance standard materialto adjustbaseline parameters.UVVis spectra were done with a Shimadzu UV 3600 spectrometer in the range of 200-800 nm.X-ray photoelectron spectroscopy (XPS)measurements were done using an ESCALAB 250 spectrometer with Al Kαradiation(1486.6 eV)in ultra-high vacuum (2.67×10-7Pa).And all of the values of binding energy were referenced to C 1s peak(284.8 eV)with an energy resolution of 0.16 eV.Nitrogen adsorption/desorption isotherms were acquired using Micromeritics ASAP-2000 at77 K.The photoluminescence (PL)measurements were performed on a Perkin Elmer Luminescence spectrometer L550B atroom temperature(excited at280 nm).

    2.4 Photocatalytic measurements

    The photocatalytic activities of the BS materials were evaluated by the degradation of RhB in aqueous solution under visible light irradiation.Metal halide lamp(Shanghai Yaming Lighting Co. Ltd.,XY73,220 V,150 W)was used as the light source.In a typical experiment,25 mg of the BS-1 sample was added to a solution of RhB(50 mL,10 mg·L-1).Before being irradiated,the solution was stirred in the dark for 60 min atroom temperature to establish the adsorption equilibrium between the solution and the photocatalyst.Subsequently,the solution was irradiated under metal halide lamp for 70 min.Finally,the BS catalyst was separated by centrifugation and the supernatant solution was analyzed using an UV-Vis spectrophotometer.

    2.5 Photoelectrochemicalmeasurements

    The BS-1 material was coated on the indium-tin oxide electrode.The electrode was immerged in Na2SO4solution(0.5 mol· L-1).Current-time curves were obtained by an electrochemical analyzer system,CHI760(Chenhua,Shanghai,China)in a threecompartment cell with a working electrode,a platinum plate counter electrode and a Ag/AgClreference electrode under a bias voltage of 0.5 V using the excitation light of Xe lamp(PLSSXE300,300 W)as the lightsource.Electrochemical impedance spectroscopy(EIS)experiments were carried out under visible lightirradiation in 0.1 mol·L-1KClsolution containing 5.0 mmol· L-1K3[Fe(CN)6]/K4[Fe(CN)6](1:1,molar ratio)mixture as a redox probe in the frequency range of 10-2to 105Hz with a perturbation signalof 10 mV.

    3 Results and discussion

    3.1 Structure and morphology of the BS-1 and BS-2

    Fig.1a shows the XRD pattern of the BS-1.Allof the diffraction peaks are in perfect agreement with the tetragonal phase of BS [JCPDS 41-1488;space group I4/mmm#139;a=0.3865 nm and c=1.367 nm]22,23.No impurity phase was detected.The(002), (004)and(006)diffraction peaks are much sharper and stronger in intensity than those of the others,suggesting that the crystals preferentially grow along the[001]crystalllographic direction13,24,25.

    The FE-SEM of the BS-1 in Fig.1b indicates a large scale feature over the entire image,stressing high monodispersity and uniform size of about 1.6μm.The magnified images in Figs.1c and 1d exhibitthat the BS-1 particles have a pompon-like morphology assembled by a side-by-side arrangementof nanosheets (side length,200 nm;thickness,40 nm).The TEMimage(Fig.1e) ofa single micropompon reveals a regular sphericalparticle shape. The HR-TEM image(Fig.1f)from an edge of the micropompon illustrates that the interplanar spacing of lattice fringes is 0.275 nm,which is indexed with the(110)plane in XRD pattern.This is demonstrated by the factthatthe intersection angle between the (110)planes is 90°.The SAED pattern(the insetof Fig.1f)takenfrom the edge of the same micropompon as the HR-TEM pattern shown in Fig.1f confirms the single-crystallinity ofthe nanosheet.

    3.2 Formation process of the monodisperse BS-1 micropompons

    Initially,BNPwas easily hydrolyzed into insoluble BiONO3(Eq. (1))26,resulting in the release of H+ions into the solution(pH~2.8),and then the BiONO3was reacted with the ligand Cit3–to produce the Bi-Cit precursor complex20,21(pH~6.0,Eq.(2)). Clearly,the transfer between the two forms of Bi(III)is markedly dependent on the acidity of the medium.Thereafter,urea in the solution was hydrolyzed to OH-(pH~9.5)andions9,27,and the Bi-Citprecursor in the alkaline solution was hydrolyzed into BiO+9,14b,when heated(Eqs.(3-6)).Finally,theions were reacted with the BiO+ions to form the BS-1(Eq.

    In order to further understand the formation mechanism of BS, we examined the effect of reaction parameters including the reactantconcentration,reaction time and temperature.There were severalinteresting findings.

    First,the effectof the concentration of TCD on the morphology of a group of BS was investigated by changing the molar ratio of TCD and BNP from 3:1 to 0:1,1:1,2:1,and 5:1.As shown in Fig.S1(Supporting Information(SI)),no appreciable difference was detected in their XRD patterns,and allthe diffraction peaks belong to the tetragonalphase of BS.Fig.S2(SI)shows thatthe creation of BS microparticles as well as the uniformity and dispersity of the particles was strongly dependent on the molar ratio. An adequate molar ratio to form regular sphericalparticles seemed to be between 2:1 and 3:1,and a higher or lower ratio led to either the formation of irregular particles or the appearance of clusters.These results provide a significant clue regarding the role of TCD.Although TCD mightnotact as a carbon source,itdid play an importantpartin affecting the morphology of BS,namely, acting as a morphology control agent.This can be understood if we consider thatthe role of TCD is to form a precursor complex (Eq.(2)),thus decreasing the formation rate of BS due to a direct competitive interaction for the BiO+ions between the coordination equilibrium(Eq.(6))and the precipitation equilibrium(Eq.(7)).

    Fig.1 XRD patterns ofthe BS-1 and-2(a),FE-SEMimages(b-d),TEM image(e),and HR-TEMimage(f)ofthe BS-1; FE-SEM images(g and h),TEMimage(i),and HR-TEMimage(j)of the BS-2The insetin Fig.1f is the SAEDpattern ofthe same place as shown in Fig.1f.The insetin Fig.1jis the SAED pattern of the same place as shown in Fig.1j.

    Second,the effectof the concentration of urea on the formation of BS was studied by a series of similar syntheses with BNP(1 mmol)and urea of 0.420 g(7 mmol),0.180 g(3 mmol),0.060 g (1 mmol),0.030 g(0.5 mmol)and 0 g(0 mmol)to get the materials:BS-2,-3,-4,-5 and-6,respectively.The XRD analysis (Fig.1a and Fig.2)reveals that the particles are pure and homogeneous,having the same tetragonal structure as their sister compound BS-1.The particle size increases,and especially the increase in the degree of crystallinity becomes more pronounced with the increase of the concentration of urea as can be seen from Fig.1(a,c,g),and Fig.2.Moreover,the relative intensity of the (110)diffraction peak in the BS-3 and-4 is significantly higher than thatof the other three,indicating that the two crystals have a preferred orientation along the[110],which differs from the [001]orientation of the BS-1.Upon increase(BS-2)or decrease (BS-5)of the concentration of urea from this level,the preferred growth orientation is along the[013].These findings highly suggest a potential role of urea in the regulation of BS crystal growth direction and thereby in the modulation of the BS structure.The control experiments supported the presence of the structuraldifference between the BS materials.As shown in Fig.1 (g,h),the BS-2 formed a nest-like structure(diameter,~1.3μm), with an internal hollow(Fig.1i),which was self-assembled by single crystalnanosheets(see the insetin Fig.1j).The spacing oflattice fringes observed is 0.372 nm,corresponding to lattice spacing of(011)plane(Fig.1j).Further,we found thatonly Bi2O4(BS-6)was formed in the absence of urea(Fig.S3(SI)).

    In lightof the above observations,we think thatthe role of urea merits greater emphasis.On the one hand,it was used as the only carbon source for the formation of.This was verified by the factthat TCD did notdecompose atthis temperature(Fig.S4(SI)), though it could be used as a carbon source at higher temperatures15,19.On the other hand,the presence of OH-ions from the hydrolysis of urea28,29contributed to the hydrolysis reaction of the Bi-Citcomplex to generate BiO+(Eq.(6)).In other words,higher pH in this system was required to promote the hydrolysis of the complex.A simple experimentdemonstrated this.Alower yield (42.0%)of BS was obtained when TCD was replaced by citric acid(pH~6.3 in the system)while sodium tartrate(pH~8.7 in the system)afforded a high yield(80.4%,Fig.S5(SI)).In the other experiment(Fig.S6(SI)),when urea was substituted by NaOH to create the same alkaline conditions(i.e.,the molar ratio of NaOH to urea is 2:1),only Bi2O3was observed.The results not only verified a synergistic effect of the combination of citrate and urea on the formation of BS,butalso highlighted thata slow supply of OH-ions7,8,16was required for decreasing the formation rate of BS, perhaps by the competitive interaction between the two equilibria (Eqs.(6)and(7)).

    Itshould be noted thatthe materials(BS-1-5)were constructed at the condition of excessive urea.As seen from Eq.(5),the increase ofions signifies the decrease of OH-ions.Thus,the relative concentrations ofand OH-ions change with changing the initialconcentration of urea.Recent reports showed thatexcessiveions can cause a preferred growth orientation of BS9,10,while a suitable pH may facilitate the oriented growth30,31. Therefore,we have good reason to speculate the difference in the crystal structure of the BS materials may be attributed to the difference in the concentrations of CO2-and OH-

    ions induced by

    3the initialconcentration of urea.

    Based on these results,we conclude thaturea acts notonly as a carbon source and an appropriate alkaline source but also as a morphology control agentand especially a crystal growth control agent.This is an interesting result.The role of urea in many synthetic strategies was well established32-35,butthis is the first example in which it can exert so many functions for inorganic synthesis,i.e.,acting as a multifunction reagent.Therefore,we expectthatthis resultcan be extended to other inorganic materials and more complex inorganic structures.

    Fig.2 FE-SEMimages and XRD patterns of the BS-1,-2,-3,-4 and-5

    Finally,we performed several time-dependentexperiments to elucidate the crystalformation process of BS.Fig.S7(SI)displays the morphologicalevolution of the BS materials obtained atthe identical pathway used for Fig.1c butat different growth stages: 2,4,6,8 and 12 h.Atan early stage of 2 h,irregular nanoparticles (diameter,~120 nm)were formed.Subsequently(4 h),some of the nanoparticles were changed into nanosheets(thickness,~30 nm) by spontaneous organization,and a few spherical structures constructed by the nanosheets appeared.When the reaction time was prolonged to 6 h,almost allthe nanoparticles were changed into nanosheetstructures,and more self-assembled microspheres were observed.With increasing the reaction time to 8 h,the nanosheets almost disappeared,and the self-assembled microspheres grew larger,buthaving different sizes.The larger particles grew at the cost of the small ones as described by the Gibbs-Thomson law36.After the reaction continued for two more hours (10 h),the uniform pompon-like microstructures were formed (Fig.1c).When the reaction time was further increased to 12 h,the size of the micropompons was increased(Fig.S7).It is worth stressing that the crystallinity of the BS materials increases with increasing reaction time(Fig.S8(SI)).Since this crystallinity increase was accompanied by a steady sharpening of the crystalline diffraction peaks,we consider thatthe crystallinity increase may be related to an improvementin the quality of the crystals. Furthermore,we found that temperatures can influence the size and uniformity of the BS particles formed(Figs.S9 and S10(SI)). The proper temperature is about413 K(Fig.1b),because a lower (393 K)or higher(433 K)led to nonuniform sphericalstructures. These observations convincingly demonstrate that the crystal growth of the microsphere-like BS was controlled by an Ostwald ripening process37.

    On the basis of the above results,a possible five-step growth process is presented in Fig.3.Initially,the precursor complex Bi-Citwas formed(Step I)in water.Then,with the aid of hydrolysis of urea to produce OH-andions(Step II),the complex was hydrolyzed to release free BiO+ions(Step III).Subsequently,theions were reacted with the BiO+ions to produce BS crystal nuclei(Step IV).With the increase of reaction time,the crystal nuclei gradually grew up to form nanosheets.Finally,the nanosheets were stacked together,and self-assembled into BS microspheres(Step V).The optimal conditions for the micro-pompon-like BS were determined to be as follows:TCD/BNPmolar ratio,3/1;urea/BNP,5/1;temperature,413 K;and time,10 h.

    Although some existing synthetic methods can obtain uniform size and good morphology of BS materials8,9,17,butthere are many problems in these methods such as the use of organic solvents, polymer additives or expensive complexes of bismuth(Table S1 (SI)),which is not conducive to the realization of large-scale production.Especially,the organic solvents and polymer additives are likely to cause pollution to the environment.Recently,some researchers tried to synthesize BS materials at room temperature or in the absence of coordination agents16b,butthey were unable to achieve the controllable synthesis of BS.Moreover,the synthesized materials usually have either large sizes or disordered layer structures16b.Also,there were some attempts to improve the synthesis methods of BS,such as the use of citrate as a coordination agentor using urea as carbon source to controlthe reaction process6b,15,butthe improved methods stillhave some problems, such as long reaction time,high temperature or poor product morphology.To the bestof our knowledge,our work provides the first example in which the formation mechanism of BS has been associated with the synergistic effect of the concentration combination of citrate and urea,thereby not only overcoming the problems of currentconcern in the synthetic field of BS,butalso achieving a substantial progress to the controlled growth of BS nanostructures.We believe thatthe method can be extended to a wide range of carbonate materials.

    3.3 Photocatalytic performance of the monodisperse BS micropompons

    The specific surface area and porous structure of the BS-1-3 were explored by gas adsorption/desorption measurements in liquid nitrogen(Figs.S11-S13(SI)).The sorption isotherms of the three materials exhibit a similar profile categorized as type IV38with a smallhysteresis loop observed atrelative pressures of0.45-0.97,showing mesoporous characteristics(2-50 nm).Itis worthy of remark that the BS-1 has a much larger BET39specific surface area(36.65 m2·g-1)and a much narrower average pore diameter (8.94 nm)notonly than the BS-2(10.79 m2·g-1,31.95 nm)and BS-3(27.96 m2·g-1,13.27 nm),butalso than those reported by most investigators10,14,16,40,further highlighting the advantage of the presentsynthesis method.There is a decreasing order of specific surface areas:BS-1>BS-3>BS-2.Undoubtedly,this difference reflects dissimilar surface features.The factthatthe surface of the BS-1 was loosely covered by numberless interconnecting nanosheets may be a major partof the reason for the increase in BET specific surface area and the decrease in average pore diameter.

    Fig.3 Schematic illustration describing the formation process of the BS materials

    Such a large difference in specific surface areas and pore diameters allow us to estimate whether there is a similar trend in their photocatalytic activity.Fig.4Adisplays the UV-Vis absorption spectra of RhB(10 mg·L-1)in water afterbeing treated by the BS-1(25 mg)under a metalhalide lamp(0.26 W·cm-2).Clearly, the maximum absorption peak of RhB at 554 nm was gradually decreased with increasing irradiation time.Finally,the peak almost completely disappeared at 70 min of irradiation.The photodegradation degree(ζ,%)of RhB was determined by Eq.(8)41. In this equation,C0and C are the initialconcentration of RhB and its equilibrium concentration after irradiation,respectively.

    Our data indicate thattheζvalue for the BS-1 at 70 min is up to 99.6%,butthey are dramatically decreased to 64.7%forthe BS-2(Fig.4B,75.3%at 100 min)and 85.8%for the BS-3(Fig.4B, 98.2%at100 min).Importantly,the values ofζcan stillreach up to 98%for the BS-1 at70 min over the firstthree cycles(Fig.S14 (SI)).Also,no change in crystal structure and surface morphology was observed after the consecutive cycles(Fig.S15(SI)),emphasizing that the BS-1 catalystpossesses a good structuralstability.

    Thus,these results give a strong indication thatthe BS-1 has a high photocatalytic activity,stability and sustainability for the degradation of RhB.Furthermore,we noticed that the order of photocatalytic efficiency observed forthe materials(BS-1>BS-3>BS-2)agrees with the order ofdecreasing specific surface area established above.Further,the density of O atoms on the{001} facets of the BS-1 is much higher than on the{013}facets for the BS-2 and the{110}facets for the BS-342.Itis known thatthe more oxygen atoms were exposed on the surface,notonly resulting in more photo-induced oxygen vacancies but also enhancing the ability in separating the electron-hole pairs3,36.This comparison suggests thatcontrolof crystalgrowth direction may be important in improving photocatalytic activity,which is in accordance with other studies6a,43.

    Fig.4 UV-Vis absorption spectra of the RhB solutions (10 mg·L-1)after being treated by the BS-1 after 0,10,20, 30,40,50,60 and 70 min of visible light irradiation(A), the photodegradation degree of RhB atdifferenttime points after treated by BS-1,-2 and-3(B)

    It is worth noting that theζvalue of RhB on the BS-1 is comparative to those previously reported for BS and bismuth oxyhalides,exhibiting an improved photocatalytic performance because the data reported by earlier authors were obtained either atrelatively strong lightlevels,high catalystconcentrations,low dye concentrations or long irradiation times(Table S2(SI)).

    To determine whatare the main active species responsible for the degradation of RhB in the photocatalytic process,we carried out a series of trapping experiments to evaluate the effect of radicalscavengers.The photodegradation of RhB on the BS-1 was repeated,butwith addition of ascorbic acid(AC,1 mmol·L-1), isopropyl alcohol(IPA,1 mmol·L-1)and ammonium oxalate (AO,10 mmol·L-1)to quench superoxide radical ions(), hydroxylradicals(·OH)and holes(h+),respectively44,45.As shown in Fig.S16(SI),the degradation of RhB was highly inhibited by AO(10.8%)and AC(20.5%),but no significant decrease was found in the presence of IPA(92.4%).This,of course,gives a strong argumentin favor of the contribution of both·and h+, as the main active ingredients,to the degradation of RhB in aqueous solution.

    Fig.5 presents a possible explanation regarding the degradation mechanism of RhB.Atfirst,under visible lightirradiation,the BS-1 was excited to generate electrons(e-)in the conduction band (CB)and h+in the valence band(VB,Eq.(9)).Meanwhile,the photosensitization of RhB under visible light may induce the generation of RhB radicals(RhB*,Eq.(10))46,and the RhB*with the excited electrons was adsorbed onto the BS-1 surface.Subsequently,the photo-induced electrons interacted with the O2molecules adsorbed on the exposed active{001}facets of the BS-1 to produce·,a very reactive radicalanion intermediate(Eq. (11)),while the photogenerated electrons in the RhB*were injected into the conduction band of the BS-1,forming radical cations·RhB+(Eq.(12)).Atlast,the·RhB+was reacted with the activeand h+,and finally degraded into inorganic compounds such as CO2and H2O(Eq.(13)).

    Fig.5 Possible photocatalytic mechanism of RhB on the BS-1

    In order to understand the relation between the structure and properties of the BS materials,XPS,UV-Vis DRS,PL,EIS and photoelectric responses were performed to examine how the structure of the materials(BS-1-3)affects their photoelectric conversion.

    The XPS analysis displays thatthere are no other elements in these samples besides C,O and Bi.The peak at 284.8 eV can be assigned to adventitious carbon species from the XPS measurement,while the peak at288.9 eVcan be ascribed to the carbonate ion in the BS materials11(Fig.S17(SI)).The UV-Vis DRS analysis (Fig.6A)shows that all the three materials have a similar absorption profile in the range of UV and visible regions,with maximum absorptions at 300,289 and 281 nm for the BS-1,-2 and-3,respectively.A clear blue shiftwas observed as shown by the green arrow in Fig.6A.It is interesting to note,however,that the BS-1 exhibits higher absorption intensity than the other two in the UV and especially visible region,probably indicating a higher visible light utilization efficiency.The optical bandgaps were determined to be 3.03 eVfor the BS-1,3.31 eV for the BS-2 and 3.13 eVfor the BS-3(Fig.6B),based on the Kubelka-Munk function48,correlating well with the order found in the specific surface area analysis.Such a difference in bandgaps may notonly be a reason to make the difference between the maximum absorption wavelengths49.The narrower band gap of the BS-1 led to a wider absorption range,which may be a directfactor responsible for improving its photocatalytic activity due to its higher visiblelight utilization efficiency.The VBs of BS-1,-2 and-3 were measured based on valence-band XPS spectra(Fig.6C),and the edges of the maximum energy were found at approximately 1.87, 1.87 and 1.71 eV,respectively.According to the optical bandgaps, the CB minima occur atapproximately-1.16,-1.44 and-1.42 eV,respectively.In view thatthe oxidation potentials of photogenerated h+in the BS photocatalysts were negative than the standard redox potentialof·OH/OH-(1.99 eV)50,we suggestthat the h+photogenerated on the surface of the BS materials could not reactwith OH-/H2Oto form·OH.Therefore,itis reasonable that h+orare likely responsible for the oxidation of RhB over the BS catalysts,in agreementwith above trapping experiments.The PL profiles(Fig.7A)show thatthe BS-1 has a significantly lower luminescent intensity,in comparison with the BS-2 and-3, strongly implying a lower recombination rate of eand h+under UV lightirradiation(excitation wavelength,280 nm).In particular, its luminescent band covers a considerably wider spectral range (380-620 nm,withoutlarge intensity gradients).

    The time-dependent photocurrent responses(Fig.S18(SI)) indicate that upon illumination the photocurrents of the BS electrodes were abruptly increased to maxima of 77.61 nA for the BS-1,42.36 nAfor the BS-2 and 53.23 nAfor the BS-3,as well as having good reproducibility(three times).This means that the BS-1 electrode exhibited a higher efficiency of photoelectric conversion,i.e.,photo-induced charge separation and transfer, compared to the BS-2 and BS-3 electrodes.The analysis of EIS (Fig.7B)reveals that the separation and transfer efficiency of photogenerated electron-hole pairs of the BS-1 is higher than those ofthe BS-2 and BS-3 since the BS-1 electrode presented a smaller radius ofimpedance arc,thereby having a lower interfacialchargetransfer resistance51.

    These results indicate that the BS-1 material exhibits a relatively narrow bandgap,a low recombination rate of eand h+,a high efficiency of photoelectric conversion and a smallinterfacial charge-transfer resistance,thus effectively promoting the separation and transfer of charge carriers,which may be why ithas an enhanced photocatalytic performance.

    Fig.6 UV-Vis diffuse reflectance spectra(A),the plots of(ahν)1/2vs hν(B)and valence-band XPS spectra(C)ofthe BS-1,-2 and-3 a is the opticalabsorption coefficient,h is the Plank′s constant,andνis photon frequency.

    Fig.7 PL spectra(λex=280 nm)ofthe BS-1,-2 and-3(A)and the EIS spectra ofthe BS-1,-2 and-3 under visible light irradiation(B)

    4 Conclusions

    In summary,we have developed a facile and green hydrothermalroute for the controllable synthesis of BS materials with unique microstructures(large specific surface area,ultrafine grain size and high monodispersity).Importantly,the crystal growth directions([001],[013]and[110])of the BS family can be readily tuned by adjusting the concentration combination of citrate and urea.Urea was found to play multiple roles(e.g.,carbon source, appropriate alkaline source,morphology controlagent and crystal growth controlagent)in the formation process of BS crystals.This is the firstreport thatthe formation mechanism of BS was related to the synergistic effectof the concentration combination of citrate and urea.In particular,when compared with those reported by other studies,the BS-1 material shows an improved photocatalytic activity to RhB under visible lightirradiation probably due to an effective separation and transfer of charge carriers on the{001}facets.Overall,this work represents an important contribution to current efforts in understanding the controllable green synthesis and application of inorganic micro-and nano-structures.

    Supporting Information:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)(a)Chen,X.;Li,C.;Gr?tzel,M.;Kostecki,R.;Mao,S.S. Chem.Soc.Rev.2012,41,7909.doi:10.1039/C2CS35230C (b)Xiang,Q.;Yu,J.;Jaroniec,M.Chem.Soc.Rev.2012,41, 782.doi:10.1039/C1CS15172J

    (2)(a)Chen,X.;Shen,S.;Guo,L.;Mao,S.S.Chem.Rev.2010, 110,6503.doi:10.1021/cr1001645 (b)Li,X.J.;Sheng,J.Y.;Chen,H.H.;Xu,Y.M.Acta Phys.-Chim.Sin.2015,31,540.[李曉金,盛珈怡,陳海航,許宜銘.物理化學學報,2015,31,540.]doi:10.3866/PKU. WHXB201501131

    (3)(a)Hou,Y.;Laursen,A.B.;Zhang,J.;Zhang,G.;Zhu,Y.; Wang,X.;Dahl,S.;Chorkendorff,I.Angew.Chem.Int.Ed. 2013,52,3621.doi:10.1002/anie.201210294 (b)Li,J.;Zhang,L.;Li,Y.;Yu,Y.Nanoscale 2013,6,167. doi:10.1039/C3NR05246J (c)Zhang,N.;Ciriminna,R.;Pagliaro,M.;Xu,Y.J.Chem.Soc. Rev.2014,43,5276.doi:10.1039/C4CS00056K

    (4)(a)Zhou,L.;Wang,W.;Liu,S.;Zhang,L.;Xu,H.;Zhu,W. J.Mol.Catal.A:Chem.2006,252,120.doi:10.1016/j. molcata.2006.01.052 (b)Singh,M.K.;Ryu,S.;Jang,H.M.Phys.Rev.B,2005,72, 132101.doi:10.1103/PhysRevB.72.132101 (c)Yu,J.;Kudo,A.Adv.Funct.Mater.2006,16,2163. doi:10.1002/adfm.200500799 (d)He,R.A.;Cao,S.W.;Zhou,P.;Yu,J.G.Chin.J.Catal. 2014,35,989.doi:10.1016/S1872-2067(14)60075-9

    (5)(a)Huo,Y.;Hou,R.;Chen,X.;Yin,H.;Gao,Y.;Li,H.J.Mater. Chem.A 2015,3,14801.doi:10.1039/C5TA03279B (b)Huo,Y.;Zhang,J.;Miao,M.;Jin,Y.Appl.Catal.B 2012, 111,334.doi:10.1016/j.apcatb.2011.10.016 (c)Xia,J.;Yin,S.;Li,H.;Xu,H.;Xu,L.;Xu,Y.Dalton Trans. 2011,40,5249.doi:10.1039/C0DT01511C (d)Wu,Y.;Yuan,B.;Li,M.;Zhang,W.H.;Liu,Y.;Li,C.; Chem.Sci.2015,6,1873.doi:10.1039/C4SC03229B

    (6)(a)Huang,H.;Wang,J.;Dong,F.;Guo,Y.;Tian,N.;Zhang,Y.; Zhang,T.Cryst.Growth Des.2015,15,534.doi:10.1021/ cg501527k (b)Dong,F.;Ho,W.K.;Lee,S.;Wu,Z.;Fu,M.;Zou,S.; Huang,Y.J.Mater.Chem.2011,21,12428.doi:10.1039/ C1JM11840D

    (7)Liang,N.;Zai,J.;Xu,M.;Zhu,Q.;Wei,X.;Qian,X.J.Mater. Chem.A 2014,2,4208.doi:10.1039/C3TA13931J

    (8)Tang,J.;Zhao,H.;Li,G.;Lu,Z.;Xiao,S.;Chen,R.Ind.Eng. Chem.Res.2013,52,12604.doi:10.1021/ie401840x

    (9)Cao,X.F.;Zhang,L.;Chen,X.T.;Xue,Z.L.CrystEngComm 2011,13,1939.doi:10.1039/C0CE00324G

    (10)Xiong,T.;Dong,F.;Wu,Z.B.RSC Adv.2014,4,56307.doi: 10.1039/C4RA10786A

    (11)Xiong,T.;Huang,H.W.;Sun,Y.J.;Dong,F.J.Mater.Chem.A 2015,3,6118.doi:10.1039/C5TA00103J

    (12)Dong,F.;Xiong,T.;Sun,Y.J.;Huang,H.W.;Wu,Z.B. J.Mater.Chem.A 2015,3,18466.doi:10.1039/C5TA05099E

    (13)Zhao,Z.Y.;Zhou,Y.;Wang,F.;Zhang,K.H.;Yu,S.;Cao,K. ACS Appl.Mater.Interfaces 2014,7,730.doi:10.1021/ am507089x

    (14)(a)Madhusudan,P.;Zhang,J.;Cheng,B.;Liu,G. CrystEngComm 2013,15,231.doi:10.1039/C2CE26639C (b)Dong,F.;Lee,S.C.;Wu,Z.B.;Huang,Y.;Fu,M.;Ho,W. K.;Zou,S.C.;Wang,B.J.Hazard.Mater.2011,195,346.doi: 10.1016/j.jhazmat.2011.08.050

    (15)Zhao,T.;Zai,J.;Xu,M.;Zou,Q.;Su,Y.;Wang,K.;Qian,X. CrystEngComm 2011,13,4010.doi:10.1039/C1CE05113J

    (16)(a)Dong,F.;Sun,Y.J.;Fu,M.;Ho,W.K.;Lee,S.C.;Wu,Z.B. Langmuir 2011,28,766.doi:10.1021/la202752q (b)Chen,L.;Huang,R.;Yin,S.F.;Luo,S.L.;Au,C.T.Chem. Eng.J.2012,193,123.doi:10.1016/j.cej.2012.04.023

    (17)Qin,F.;Li,G.;Wang,R.;Wu,J.;Sun,H.;Chen,R.Chem.Eur. J.2012,18,16491.doi:10.1002/chem.201201989

    (18)Dong,F.;Zheng,A.M.;Sun,Y.J.;Fu,M.;Jiang,B.Q.;Ho,W. K.;Lee,S.C.;Wu,Z.B.CrystEngComm 2012,14,3534.doi: 10.1039/C2CE06677G

    (19)Zheng,Y.;Duan,F.;Chen,M.Q.;Xie,Y.J.Mol.Catal.A: Chem.2010,317,34.doi:10.1016/j.molcata.2009.10.018

    (20)Ma,D.;Huang,S.;Chen,W.;Hu,S.;Shi,F.;Fan,K.J.Phys. Chem.C 2009,113,4369.doi:10.1021/jp810726d

    (21)Li,X.;Tang,C.J.;Ai,M.;Dong,L.;Xu,Z.Chem.Mater.2010, 22,4879.doi:10.1021/cm101419w

    (22)Peng,S.;Li,L.;Tan,H.;Wu,Y.;Cai,R.;Yu,H.;Huang,X.; Zhu,P.;Ramakrishna,S.;Srinivasan,M.J.Mater.Chem.A 2013,1,7630.doi:10.1039/C3TA10951H

    (23)Xiong,M.;Chen,L.;Yuan,Q.;He,J.;Luo,S.L.;Au,C.T.;Yin, S.F.Dalton Trans.2014,43,8331.doi:10.1039/C4DT00486H

    (24)Chen,J.;Guan,M.;Cai,W.;Guo,J.;Xiao,C.;Zhang,G.Phys. Chem.Chem.Phys.2014,16,20909.doi:10.1039/C4CP02972K (25)Zhang,D.;Li,J.;Wang,Q.;Wu,Q.J.Mater.Chem.A 2013,1, 8622.doi:10.1039/C3TA11390F

    (26)(a)Zhang,H.;Ji,Y.;Ma,X.;Xu,J.;Yang,D.Nanotechnology, 2003,14,974.doi:0957-4484/14/9/307 (b)Kudo,A.;Omori,K.;Kato,H.J.Am.Chem.Soc.1999,121, 11459.doi:10.1021/ja992541y

    (27)Huang,H.;Li,X.;Wang,J.;Dong,F.;Chu,P.K.;Zhang,T.; Zhang,Y.ACS Catalysis 2015,5,4094.doi:10.1021/ acscatal.5b00444

    (28)Teng,Y.;Song,L.X.;Ponchel,A.;Yang,Z.K.;Xia,J.Adv.Mater.2014,26,6238.doi:10.1002/adma.201402047

    (29)Teng,Y.;Song,L.X.;Liu,W.;Xu,Z.Y.;Wang,Q.S.;Ruan,M. M.J.Mater.Chem.C 2016,4,3113.doi:10.1039/C6TC00748A

    (30)Jiang,J.;Zhao,K.;Xiao,X.;Zhang,L.J.Am.Chem.Soc.2012, 134,4473.doi:10.1021/ja210484t

    (31)Lee,W.;Kim,E.;Choi,J.;Lee,K.B.Cryst.Growth Des.2015, 15,884.doi:10.1021/cg5016737

    (32)(a)Wang,B.;Chen,J.S.;Wang,Z.;Madhavi,S.;Lou,X.W.D. Adv.Energy Mater.2012,2,1188.doi:10.1002/aenm.201200008 (b)Zhan,J.Lin,H.P.;Mou,C.Y.Adv.Mater.2003,15,621. doi:10.1002/adma.200304600

    (33)(a)Ye,Y.;Chen,J.;Ding,Q.;Lin,D.;Dong,R.;Yang,L.;Liu, J.Nanoscale 2013,5,5887.doi:10.1039/C3NR01273E (b)Wang,B.;Zhu,T.;Wu,H.B.;Xu,R.;Chen,J.S.;Lou,X. W.D.Nanoscale 2012,4,2145.doi:10.1039/C2NR11897A

    (34)Xuan,S.;Hao,L.;Jiang,W.;Gong,X.;Hu,Y.;Chen,Z. Nanotechnology 2007,18,035602.doi:0957-4484/18/3/035602

    (35)Wang,W.;Lu,C.;Ni,Y.;Su,M.;Xu,Z.Appl.Catal.B 2012, 127,28.doi:10.1016/j.apcatb.2012.08.002

    (36)Mullin,J.W.Crystallization,3rd ed.;Butterworth-Heinemaan: Oxford,1997.

    (38)(a)Gokulakrishnan,N.;Peru,G.;Rio,S.;Blach,J.;Léger,;B.; Grosso,D.;Monflier,E.;Ponchel,A.J.Mater.Chem.A 2014,2, 6641.doi:10.1039/C4TA00038B (b)Bleta,R.;Menuel,S.;Léger,B.;Da Costa,A.;Monflier,E.; Ponchel,A.RSC Adv.2014,4,8200.doi:10.1039/C3RA47765G

    (39)Brunauer,S.;Emmett,P.H.;Teller,E.J.Am.Chem.Soc.1938, 60,309.doi:10.1021/ja01269a023

    (40)Dong,F.;Liu,H.;Ho,W.K.;Fu,M.;Wu,Z.Chem.Eng.J. 2013,214,198.doi:10.1016/j.cej.2012.10.039

    (41)(a)Yang,Z.K.;Song,L.X.;Teng,Y.;Xia,J.J.Mater.Chem.A 2014,2,20004.doi:10.1039/C4TA04232H (b)Wang,Q.S.;Song,L.X.;Teng,Y.;Xia,J.;Zhao,L.;Ruan, M.M.RSC Adv.2015,5,80853.doi:10.1039/C5RA16571G

    (42)(a)Ye,L.;Zan,L.;Tian,L.;Peng,T.;Zhang,J.Chem.Commun. 2011,47,6951.doi:10.1039/C1CC11015B (b)He,R.A.;Cao,S.W.;Yu,J.G.Acta Phys.-Chim. Sin.2016,32,2841.[赫榮安,曹少文,余家國.物理化學學報, 2016,32,2841.]doi:10.3866/PKU.WHXB201611021

    (43)(a)Zhang,X.;Wang,X.B.;Wang,L.W.;Wang,W.K.;Long, L.L.;Li,W.W.;Yu,H.Q.ACS Appl.Mater.Interfaces 2014,6, 7766.doi:10.1021/am5010392 (b)Li,H.;Shang,J.;Ai,Z.;Zhang,L.J.Am.Chem.Soc.2015, 137,6393.doi:10.1021/jacs.5b03105

    (44)Yu,Y.;Cao,C.;Liu,H.;Li,P.;Wei,F.;Jiang,Y.;Song,W. J.Mater.Chem.A 2014,2,1677.doi:10.1039/C3TA14494A

    (45)Li,F.T.;Wang,Q.;Ran,J.;Hao,Y.J.;Wang,X.J.;Zhao,D.; Qiao,S.Z.Nanoscale 2015,7,1116.doi:10.1039/C4NR05451B

    (46)(a)Hu,J.;Xu,G.;Wang,J.;Lv,J.;Zhang,X.;Zheng,Z.;Xie, T.;Wu,Y.New J.Chem.2014,38,4913.doi:10.1039/ C4NJ00794H (b)Xiong,J.;Cheng,G.;Li,G.;Qin,F.;Chen,R.RSC Adv. 2011,1,1542.doi:10.1039/C1RA00335F

    (47)(a)Lagunas-Allué,L.;Martínez-Soria,M.T.;Sanz-Asensio,J.; Salvador,A.;Ferronato,C.;Chovelon,J.M.Appl.Catal.B 2010,98,122.doi:10.1016/j.apcatb.2010.05.020 (b)Zhuang,J.;Tian,Q.;Zhou,H.;Liu,Q.;Liu,P.;Zhong,H.J. Mater.Chem.2012,22,7036.doi:10.1039/C2JM16924J

    (48)(a)Kortüm,G.;Braun,W.;Herzog,G.Angew.Chem.Int.Ed. 1963,2,333.doi:10.1002/anie.196303331 (b)Sakthivel,S.;Kisch,H.Angew.Chem.Int.Ed.2003,42, 4908.doi:10.1002/anie.200351577

    (49)(a)Li,G.;Long,G.;Chen,W.;Hu,F.;Chen,Y.;Zhang,Q. Asian J.Org.Chem.2013,2,852.doi:10.1002/ajoc.201300095 (b)Cui,W.;Yuen,J.;Wudl,F.Macromolecules 2011,44,7869. doi:10.1021/ma2017293 (c)Leclerc,N.;Michaud,A.;Sirois,K.;Morin,J.F.;Leclerc, M.Adv.Funct.Mater.2006,16,1694.doi:10.1002/ adfm.200600171

    (50)(a)Fu,H.;Pan,C.;Yao,W.;Zhu,Y.J.Phys.Chem.B 2005, 109,22432.doi:10.1021/jp052995j (b)Zhao,Y.;Tan,X.;Yu,T.;Wang,S.Mater.Lett.2016,164, 243.doi:10.1016/j.matlet.2015.10.155

    (51)(a)Guo,Y.X.;Huang,H.W.;He,Y.;Tian,N.;Zhang,T.R.; Chu,P.K.;An,Q.;Zhang,Y.H.Nanoscale 2015,7,11702. doi:10.1039/C5NR02246K (b)Zhao,Y.;Yu,T.;Tan,X.;Xie,C.;Wang,S.Dalton Trans. 2015,44,20475.doi:10.1039/C5DT03315B

    Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance

    RUAN Mao-Mao1SONGLe-Xin1,*WANG Qing-Shan1,*XIAJuan2YANGZun1TENGYue1XU Zhe-Yuan1
    (1Department of Chemistry,University of Science and Technology of China,Hefei 230026,P.R.China;2Schoolof Chemistry and Chemical Engineering,Fuyang Normal College,Fuyang 236037,Anhui Province,P.R.China)

    This work reports a controlled green synthesis ofhighly monodisperse bismuth subcarbonate(BS) micropompons self-assembled by nanosheets using a simple and facile hydrothermalroute in which deionized water,bismuth nitrate pentahydrate(BNP),and urea were used as the solvent,bismuth source,and carbon source respectively.Trisodium citrate dihydrate(TCD)was used as a coordination agentto fabricate a complex precursor.The structure and morphology ofthe BS materials can be finely modulated by adjusting the initial concentration ratios ofthe reactants or the reaction time.The presence of TCD decreased the formation rate of BS due to a direct competitive interaction for the BiO+ions between a coordination equilibrium and a precipitation equilibrium.Urea played a crucialrole(e.g.,carbon source,alkaline source,morphology control agent,and crystalgrowth controlagent)in the formation ofthe BS microstructures.We obtained three kinds of BS crystals with preferred orientations along[001],[110],and[013]by adjusting the concentration of urea. Our synthesis approach has the advantages oflow cost,high reaction yields,monodisperse particles,controlled morphologies and orientations,and not requiring the use of organic solvents,templates,surfactants,hightemperatures,and long reaction times.Particularly,when compared with those reported by other investigators, the micropompon materialexhibited improved photocatalytic performance for Rhodamine B due to a unique microstructure(large specific surface area,high efficiency ofphotoelectric conversion,smallinterfacialchargetransfer resistance,and active{001}exposed facets).These results indicate a major advance in the controlled green synthesis and the application ofinorganic micro-and nano-materials.

    Bismuth subcarbonate;Controlled green synthesis;Photocatalytic performance; Micropompons;Trisodium citrate dihydrate

    O643

    Voorhees,P.W.J.Stat.Phys.1985,38,231.

    10.1007/ BF01017860

    doi:10.3866/PKU.WHXB201702101

    Received:November 11,2016;Revised:February 10,2017;Published online:February 10,2017.

    *Corresponding authors.SONG Le-Xin,Email:solexin@ustc.edu.cn;Tel:+86-551-3492002.WANG Qing-Shan,Email:wqs056@mail.ustc.edu.cn. The projectwas supported by the Natural Science Foundation of Anhui Province,China(1508085MB30)and Fundamental Research Funds for the Central Universities,China(WK2060190052,WK6030000017).

    安徽省自然科學基金(1508085MB30)和中央高?;究蒲袑m椯Y金(WK2060190052,WK6030000017)資助項目?Editorialoffice ofActa Physico-Chimica Sinica

    猜你喜歡
    絨球化工學院阜陽
    小絨球的芭蕉信
    使固態(tài)化學反應100%完成的方法
    樹杈上的小絨球
    國家開放大學石油和化工學院學習中心列表
    第二屆淮河文化論壇在阜陽舉行
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    合肥至霍邱至阜陽高速公路今年開建
    安徽阜陽潁上:“產(chǎn)業(yè)花”結(jié)出“脫貧果”
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    關于把阜陽建成區(qū)域中心城市的思考
    超碰97精品在线观看| 宅男免费午夜| 亚洲色图综合在线观看| 亚洲av国产av综合av卡| 国产精品久久久人人做人人爽| a 毛片基地| 在线观看www视频免费| 999久久久国产精品视频| www.熟女人妻精品国产| 午夜福利免费观看在线| 狠狠婷婷综合久久久久久88av| 国产一区亚洲一区在线观看| 巨乳人妻的诱惑在线观看| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 亚洲成av片中文字幕在线观看| 亚洲精品国产区一区二| 王馨瑶露胸无遮挡在线观看| 国产麻豆69| 亚洲激情五月婷婷啪啪| 黄频高清免费视频| 看免费成人av毛片| 国产精品久久久av美女十八| 少妇 在线观看| 午夜91福利影院| av网站免费在线观看视频| 午夜福利乱码中文字幕| 亚洲av成人不卡在线观看播放网 | 熟妇人妻不卡中文字幕| 日日啪夜夜爽| 精品亚洲成a人片在线观看| 韩国精品一区二区三区| 久久久久久免费高清国产稀缺| 色播在线永久视频| 日本爱情动作片www.在线观看| 男女之事视频高清在线观看 | 18禁动态无遮挡网站| 两个人看的免费小视频| 国产成人系列免费观看| 亚洲av在线观看美女高潮| 性色av一级| 久热爱精品视频在线9| 不卡av一区二区三区| 亚洲欧美一区二区三区久久| 午夜福利视频精品| 91老司机精品| 久久热在线av| 一边亲一边摸免费视频| 午夜老司机福利片| 男人操女人黄网站| 中文字幕色久视频| 丰满迷人的少妇在线观看| 日韩成人av中文字幕在线观看| 国产99久久九九免费精品| 欧美中文综合在线视频| 一本—道久久a久久精品蜜桃钙片| 亚洲一码二码三码区别大吗| 青春草国产在线视频| 精品国产国语对白av| 亚洲情色 制服丝袜| 欧美亚洲 丝袜 人妻 在线| av在线观看视频网站免费| 精品国产一区二区久久| 欧美国产精品一级二级三级| 久久久久人妻精品一区果冻| 日本猛色少妇xxxxx猛交久久| 2018国产大陆天天弄谢| 啦啦啦在线观看免费高清www| 永久免费av网站大全| 免费在线观看完整版高清| 亚洲第一av免费看| 免费看av在线观看网站| 亚洲欧美清纯卡通| 99久久精品国产亚洲精品| 亚洲精品,欧美精品| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲精品第一综合不卡| 久久久久久久久免费视频了| 一边亲一边摸免费视频| 一级毛片 在线播放| 久久免费观看电影| 国产精品香港三级国产av潘金莲 | 大码成人一级视频| 日韩精品有码人妻一区| 国产免费福利视频在线观看| 国产又爽黄色视频| 日日摸夜夜添夜夜爱| 人人妻人人添人人爽欧美一区卜| 黄色一级大片看看| 国产欧美日韩一区二区三区在线| www日本在线高清视频| 99久久99久久久精品蜜桃| 青春草亚洲视频在线观看| 久久精品久久久久久噜噜老黄| 日韩一本色道免费dvd| 免费在线观看完整版高清| 少妇 在线观看| 精品少妇内射三级| 久久久久视频综合| 操出白浆在线播放| 精品国产乱码久久久久久小说| 在线天堂中文资源库| 亚洲国产精品成人久久小说| 大片免费播放器 马上看| 在线观看国产h片| 精品国产乱码久久久久久小说| 欧美激情极品国产一区二区三区| 女性被躁到高潮视频| 国产成人免费无遮挡视频| 亚洲欧洲国产日韩| 成人毛片60女人毛片免费| 欧美日韩亚洲综合一区二区三区_| 日本91视频免费播放| 亚洲成人手机| 亚洲自偷自拍图片 自拍| www日本在线高清视频| 国产精品一区二区在线不卡| 黄片播放在线免费| 亚洲一区中文字幕在线| 在线观看www视频免费| 丝袜喷水一区| 一本一本久久a久久精品综合妖精| 国产精品香港三级国产av潘金莲 | 欧美日韩视频精品一区| 黑丝袜美女国产一区| 午夜福利免费观看在线| 国产精品香港三级国产av潘金莲 | 久久综合国产亚洲精品| 国语对白做爰xxxⅹ性视频网站| 少妇 在线观看| 精品国产一区二区三区四区第35| 日韩,欧美,国产一区二区三区| 欧美人与善性xxx| 国产日韩欧美在线精品| 人人妻,人人澡人人爽秒播 | 久久久国产一区二区| 久久性视频一级片| 久久精品国产亚洲av高清一级| 在线天堂中文资源库| 乱人伦中国视频| 午夜精品国产一区二区电影| 在线观看www视频免费| kizo精华| 两个人免费观看高清视频| 久久久久久人妻| 另类精品久久| 中文乱码字字幕精品一区二区三区| 久久97久久精品| 中文字幕色久视频| 精品一区二区三区四区五区乱码 | 老司机在亚洲福利影院| 黄色视频在线播放观看不卡| 亚洲精品在线美女| 亚洲国产欧美日韩在线播放| 999精品在线视频| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 男女下面插进去视频免费观看| 国产伦人伦偷精品视频| 亚洲av日韩在线播放| 日韩一本色道免费dvd| 十八禁人妻一区二区| 观看av在线不卡| 操美女的视频在线观看| 一边亲一边摸免费视频| 欧美少妇被猛烈插入视频| 免费观看性生交大片5| 久久青草综合色| 99久久综合免费| 亚洲综合精品二区| 高清欧美精品videossex| 日韩免费高清中文字幕av| 亚洲精品日本国产第一区| 国产精品久久久久久精品电影小说| 欧美精品亚洲一区二区| 黄网站色视频无遮挡免费观看| 一区二区三区激情视频| 亚洲av综合色区一区| 三上悠亚av全集在线观看| 国产在线视频一区二区| 欧美精品一区二区大全| 日日撸夜夜添| 黄色怎么调成土黄色| 超碰成人久久| 三上悠亚av全集在线观看| 如何舔出高潮| 18禁动态无遮挡网站| 熟妇人妻不卡中文字幕| 一级a爱视频在线免费观看| 夜夜骑夜夜射夜夜干| 精品国产国语对白av| 在线亚洲精品国产二区图片欧美| 亚洲国产看品久久| 看十八女毛片水多多多| 51午夜福利影视在线观看| 天天躁夜夜躁狠狠久久av| 日韩一卡2卡3卡4卡2021年| 中文精品一卡2卡3卡4更新| 久久久久精品国产欧美久久久 | 亚洲av福利一区| 黄色毛片三级朝国网站| 久久久久久久精品精品| 久久久久久久久免费视频了| 免费不卡黄色视频| 国产一区亚洲一区在线观看| 激情五月婷婷亚洲| 免费久久久久久久精品成人欧美视频| 久久精品久久久久久噜噜老黄| 街头女战士在线观看网站| a级毛片在线看网站| 亚洲精品,欧美精品| 波多野结衣一区麻豆| 别揉我奶头~嗯~啊~动态视频 | a级毛片黄视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩另类电影网站| 国产精品久久久久久精品古装| 国产精品蜜桃在线观看| 黑人巨大精品欧美一区二区蜜桃| 日韩视频在线欧美| 国产成人午夜福利电影在线观看| 久久久欧美国产精品| 十八禁网站网址无遮挡| 色94色欧美一区二区| 大话2 男鬼变身卡| 日韩av不卡免费在线播放| 在线观看免费日韩欧美大片| 看非洲黑人一级黄片| 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 黑人欧美特级aaaaaa片| 最近中文字幕高清免费大全6| 男男h啪啪无遮挡| 亚洲一区中文字幕在线| 另类精品久久| av线在线观看网站| 男人添女人高潮全过程视频| a级片在线免费高清观看视频| 成年人免费黄色播放视频| 欧美日韩一区二区视频在线观看视频在线| av网站免费在线观看视频| 如日韩欧美国产精品一区二区三区| 视频区图区小说| 精品午夜福利在线看| 搡老乐熟女国产| 夜夜骑夜夜射夜夜干| 99久久人妻综合| av视频免费观看在线观看| 久久婷婷青草| 精品国产乱码久久久久久男人| 亚洲美女黄色视频免费看| xxx大片免费视频| 久久97久久精品| 亚洲熟女毛片儿| videos熟女内射| 久久av网站| av.在线天堂| 国产 一区精品| 精品第一国产精品| 亚洲成人一二三区av| 国产在视频线精品| 黄色 视频免费看| 日韩电影二区| 亚洲精品美女久久av网站| 国产女主播在线喷水免费视频网站| 99热国产这里只有精品6| 夫妻午夜视频| 精品国产国语对白av| 蜜桃国产av成人99| 青春草视频在线免费观看| 亚洲成av片中文字幕在线观看| 欧美激情高清一区二区三区 | 国产免费视频播放在线视频| 韩国av在线不卡| 日本欧美视频一区| 岛国毛片在线播放| 国产精品久久久久久人妻精品电影 | 亚洲色图综合在线观看| 亚洲欧美激情在线| 日本欧美视频一区| 精品少妇黑人巨大在线播放| 欧美激情高清一区二区三区 | 97精品久久久久久久久久精品| 国产精品久久久久久精品古装| 精品亚洲成国产av| 欧美黄色片欧美黄色片| 久久免费观看电影| 亚洲美女视频黄频| 精品一区二区免费观看| av在线播放精品| 麻豆精品久久久久久蜜桃| 巨乳人妻的诱惑在线观看| 日韩熟女老妇一区二区性免费视频| 久久人妻熟女aⅴ| 极品人妻少妇av视频| 久久97久久精品| 另类精品久久| 亚洲精品美女久久久久99蜜臀 | 成人毛片60女人毛片免费| 久久久精品94久久精品| 欧美国产精品va在线观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情高清一区二区三区 | 麻豆乱淫一区二区| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 欧美另类一区| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 超色免费av| 亚洲,一卡二卡三卡| 久久久久久人人人人人| 亚洲第一青青草原| 99香蕉大伊视频| 好男人视频免费观看在线| 999久久久国产精品视频| 亚洲,欧美精品.| 亚洲av成人精品一二三区| 免费日韩欧美在线观看| 精品人妻一区二区三区麻豆| 亚洲第一区二区三区不卡| 国产黄频视频在线观看| 又粗又硬又长又爽又黄的视频| 韩国av在线不卡| av.在线天堂| 欧美精品av麻豆av| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 天美传媒精品一区二区| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 亚洲成国产人片在线观看| 亚洲熟女毛片儿| 精品酒店卫生间| 777米奇影视久久| 亚洲精品在线美女| 男女之事视频高清在线观看 | 欧美日韩福利视频一区二区| av国产久精品久网站免费入址| 国产毛片在线视频| 一本—道久久a久久精品蜜桃钙片| 九色亚洲精品在线播放| 99国产综合亚洲精品| 欧美日韩视频高清一区二区三区二| 午夜影院在线不卡| 在线观看免费午夜福利视频| 91老司机精品| h视频一区二区三区| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 中文字幕另类日韩欧美亚洲嫩草| 久久99热这里只频精品6学生| 一区福利在线观看| bbb黄色大片| 性色av一级| 国产成人精品久久二区二区91 | 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 一级毛片我不卡| 国产伦理片在线播放av一区| 精品一区二区三区四区五区乱码 | 国产老妇伦熟女老妇高清| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人综合另类久久久| 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 久久影院123| 国产一区有黄有色的免费视频| 99精品久久久久人妻精品| 国产 精品1| 亚洲国产日韩一区二区| 久久久精品94久久精品| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 9热在线视频观看99| 亚洲成色77777| 亚洲免费av在线视频| 一区二区三区激情视频| 欧美激情高清一区二区三区 | 中文字幕人妻丝袜一区二区 | 免费黄频网站在线观看国产| 国产极品粉嫩免费观看在线| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 一本—道久久a久久精品蜜桃钙片| 一区二区三区激情视频| 飞空精品影院首页| 免费高清在线观看日韩| 黑人欧美特级aaaaaa片| 欧美黑人精品巨大| 亚洲国产av新网站| 欧美日韩精品网址| 黄色视频不卡| 欧美另类一区| 精品亚洲成a人片在线观看| 最新的欧美精品一区二区| av卡一久久| 丝袜喷水一区| 1024视频免费在线观看| 国精品久久久久久国模美| 欧美av亚洲av综合av国产av | 国产激情久久老熟女| 免费黄色在线免费观看| 欧美黄色片欧美黄色片| 99热网站在线观看| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 在线观看免费日韩欧美大片| 中文字幕高清在线视频| 亚洲成人手机| 丝袜喷水一区| 别揉我奶头~嗯~啊~动态视频 | 99精国产麻豆久久婷婷| 91老司机精品| 亚洲精品久久成人aⅴ小说| 精品一区二区免费观看| 美女视频免费永久观看网站| 亚洲精品自拍成人| 亚洲精品国产av成人精品| 深夜精品福利| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品国产三级专区第一集| 天天躁日日躁夜夜躁夜夜| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美中文字幕日韩二区| 女性生殖器流出的白浆| 男女国产视频网站| 老熟女久久久| 欧美精品一区二区免费开放| 日本欧美国产在线视频| 亚洲av日韩精品久久久久久密 | 十八禁网站网址无遮挡| 人人妻人人澡人人爽人人夜夜| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 国产av精品麻豆| 91老司机精品| 999久久久国产精品视频| 亚洲av日韩在线播放| 搡老岳熟女国产| 国产成人av激情在线播放| 久久久精品区二区三区| 肉色欧美久久久久久久蜜桃| √禁漫天堂资源中文www| 蜜桃国产av成人99| 人成视频在线观看免费观看| 丁香六月欧美| 久久天堂一区二区三区四区| 亚洲欧美成人综合另类久久久| 下体分泌物呈黄色| 香蕉丝袜av| 日日爽夜夜爽网站| 亚洲色图综合在线观看| 美女午夜性视频免费| 久久精品久久久久久噜噜老黄| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说| 免费久久久久久久精品成人欧美视频| 丝袜在线中文字幕| 婷婷色麻豆天堂久久| 老司机深夜福利视频在线观看 | 夫妻午夜视频| 高清在线视频一区二区三区| 中文欧美无线码| av国产久精品久网站免费入址| 午夜福利,免费看| 久久久精品94久久精品| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 一边摸一边抽搐一进一出视频| 国产欧美亚洲国产| 免费av中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 交换朋友夫妻互换小说| 国产一区二区 视频在线| 精品亚洲乱码少妇综合久久| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| av不卡在线播放| 在线精品无人区一区二区三| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 超碰97精品在线观看| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 五月开心婷婷网| 综合色丁香网| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 欧美人与善性xxx| 国产片内射在线| 久久久精品免费免费高清| 国产精品三级大全| av线在线观看网站| 少妇被粗大猛烈的视频| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 老司机深夜福利视频在线观看 | 精品少妇内射三级| 99国产综合亚洲精品| 嫩草影院入口| 美女高潮到喷水免费观看| 亚洲色图综合在线观看| 亚洲精华国产精华液的使用体验| 久久精品国产亚洲av高清一级| 亚洲av电影在线观看一区二区三区| 日韩欧美一区视频在线观看| 国产男人的电影天堂91| videos熟女内射| 国产一区二区三区av在线| 久久精品久久久久久久性| 国产极品天堂在线| 日韩一区二区三区影片| av在线观看视频网站免费| 麻豆精品久久久久久蜜桃| 制服诱惑二区| 黄色 视频免费看| 中文欧美无线码| 国产一级毛片在线| 免费观看a级毛片全部| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 国产在线一区二区三区精| 99久久精品国产亚洲精品| 日本91视频免费播放| 最新在线观看一区二区三区 | 婷婷色综合www| 天天操日日干夜夜撸| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| 人妻人人澡人人爽人人| 亚洲人成77777在线视频| 一级毛片我不卡| 99国产精品免费福利视频| av在线播放精品| 亚洲成人av在线免费| 婷婷色综合www| 高清黄色对白视频在线免费看| 久热爱精品视频在线9| 亚洲精品,欧美精品| 狂野欧美激情性bbbbbb| av有码第一页| 十八禁人妻一区二区| 精品少妇一区二区三区视频日本电影 | 一个人免费看片子| 成年女人毛片免费观看观看9 | 久久久精品国产亚洲av高清涩受| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 精品国产超薄肉色丝袜足j| 亚洲精品,欧美精品| 免费看av在线观看网站| 国产 一区精品| 国产亚洲av高清不卡| 国产精品 国内视频| 九色亚洲精品在线播放| 满18在线观看网站| 日韩免费高清中文字幕av| 在线天堂最新版资源| 最近手机中文字幕大全| 在线看a的网站| 亚洲欧美中文字幕日韩二区| 母亲3免费完整高清在线观看| 欧美精品亚洲一区二区| 又大又爽又粗| 日韩中文字幕欧美一区二区 | www日本在线高清视频| 亚洲成色77777| 又黄又粗又硬又大视频| 亚洲精品视频女| 国产精品蜜桃在线观看| 少妇人妻久久综合中文| 丝瓜视频免费看黄片| 久久久国产一区二区| 尾随美女入室| 亚洲 欧美一区二区三区| 精品国产露脸久久av麻豆| 免费在线观看视频国产中文字幕亚洲 | 久久久精品94久久精品| 久久av网站| 丁香六月欧美| 免费高清在线观看日韩| 色婷婷久久久亚洲欧美| 男的添女的下面高潮视频| 久久人人爽人人片av| 亚洲人成电影观看| 亚洲精品国产av蜜桃| 亚洲免费av在线视频| 国产成人午夜福利电影在线观看| xxxhd国产人妻xxx| 欧美日韩综合久久久久久| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| 欧美乱码精品一区二区三区| 肉色欧美久久久久久久蜜桃| 2021少妇久久久久久久久久久| 男女免费视频国产| 啦啦啦视频在线资源免费观看| 成年人免费黄色播放视频| 一区二区三区四区激情视频| 91精品三级在线观看| 日本av手机在线免费观看| 国产成人一区二区在线| 黄片播放在线免费|