• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫粉為硫源,多元醇輔助合成硫化鉬納米片

    2017-05-11 00:45:57鄒德春
    物理化學(xué)學(xué)報(bào) 2017年5期
    關(guān)鍵詞:二硫化鉬多元醇硫化

    王 輝 鄒德春,2,*

    (1中國(guó)科學(xué)院北京納米能源與系統(tǒng)研究所,國(guó)家納米科學(xué)中心,北京100083;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

    硫粉為硫源,多元醇輔助合成硫化鉬納米片

    王 輝1鄒德春1,2,*

    (1中國(guó)科學(xué)院北京納米能源與系統(tǒng)研究所,國(guó)家納米科學(xué)中心,北京100083;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

    本文以普通硫粉和鉬酸鈉為原料,通過(guò)兩相法在170-200°C下經(jīng)8 h制備得到二硫化鉬納米片,同時(shí)基于聚集-聚并模型提出其三步法生長(zhǎng)機(jī)理。其中,硫粉的再組裝保證了其向H2S的轉(zhuǎn)化,使鉬酸鈉得以還原,因此在本方法中起到關(guān)鍵作用。本法制備得到的硫化鉬納米片富含可能由于各種位錯(cuò)引起的未飽和硫原子,有利于其在催化加氫等領(lǐng)域的應(yīng)用。此外,由于二維過(guò)渡金屬硫族化合物結(jié)構(gòu)相似,所以本方法及其機(jī)理可能同樣適用于其他二維過(guò)渡金屬硫族化合物。本方法為綠色、便捷制備二硫化鉬納米片提供了一個(gè)選擇。

    二硫化鉬納米片;硫粉;聚集和聚并模型;乙二醇;兩相法

    1 Introduction

    Molybdenum disulfide(MoS2)nanosheets have received increasing attention as a promising materialfor Hydrogen evolution reaction(HER)catalysis,energy storage,and semiconductor device because of its excellent chemical,physical,optical and electrical properties and low cost during the last decades1-4. However,the HER activity of MoS2nanosheets,as has been reported by both experimentaland theoretical studies,are limited to the density per unit surface area and turnover frequency of catalytically active edge sites5-13.Therefore,many efforts have beendevoted to prepare MoS2nanosheets with abundantexposed edge sites13-25.However,the effective scale-up of MoS2nanosheets still remains a major challenge.

    Currently,four main approaches have been employed to obtain MoS2nanosheets in laboratories14-25,including micromechanical cleavage,chemical vapor deposition,Li ion intercalation,and liquid-phase exfoliation.The micromechanicalcleavage method is reported to have low yield and time-consuming14.Chemical vapor deposition method,in spite of good crystallinity of the resulting MoS2nanosheets also has the limitation of its high cost, poor transferability and complex manipulation15.The latter two methods can be achieved by taking advantage of the sandwiched S-Mo-S layer structure of MoS2thatare held togetherby weak van der Waals interaction.The interaction and hydration of lithium cations combined with the strong affinity of organic solvents or surfactants give rise to the exfoliation of MoS2in organic solvents16-20,whereas it is still challenging for effective scale-up because of expensive intercalating agents used,long reaction time (atleastseveraldays),strictstorage,high sensitivity to environmentconditions,and possible structure deformations.The liquidphase exfoliation of MoS2powder is achievable in appropriate organic solution or aqueous surfactants solution by means of sonication and centrifugation21-25.Nevertheless,both organic solvents and aqueous surfactant exfoliated MoS2usually show multilayer stacks with size as large as 200-400 nm,which results in the reducing number of active sites.Moreover,the dispersed concentrations of resulting MoS2nanosheets are generally too low to require large quantities of exfoliated MoS2nanosheets.Due to the aforementioned limitations of approaches to obtain MoS2nanosheets,a green,convenient,low-cost,and large-scale approach for preparing MoS2has been pursued for a long time.

    Herein,we reportthe preparation of MoS2nanosheets of with abundantactive sites by a revised one-pot,polyol-mediated method for the first time and propose a three-step growth mechanism of the MoS2nanosheets based on the aggregation and coalescence model.Compared with the aforementioned methods,this method is proved to be able to prepare scale-up MoS2nanosheets more easily without any hazardous chemicals in 8 h,in which only sulfur powder,polyol(ethylene glycol,diethylene glycol),and Na2MoO4were used.Meanwhile,the size of nanosheets could be adjusted by changing the polyol-to-water ratio.More importantly, the growth mechanism may be suitable for other transition metal dichalogenides(TMDCs).

    Fig.1(A)XRD patterns ofobtained MoS2nanosheets at170°C for 8 h(red line:after calcination in N2at 400°C for 4 h, black line:before calcination);(B)TEMimage of obtained MoS2nanosheets at 170°C for 8 h(color online)

    2 Experimental

    2.1 Chemicals and materials

    Ethylene glycol(EG,≥95%),diethylene glycol(DEG,≥99%),absolute ethyl alcohol(≥99.7%),sublimed sulfur(≥98%),Na2MoO4(≥99%)were purchased from Beijing Reagent Company.All chemicals were used as received,exceptfor sublimed sulfur slightly ground before use.Deionized(DI)water with a resistivity of 18.2 MΩ·cm was used as well,and MoS2syntheses were conducted in 50 mL PTFE-lined stainless autoclaves.

    2.2 Synthesis of MoS2nanosheets

    In a standard synthesis,0.14 g ground sublimed sulfur and 0.36 g Na2MoO4were added into a 50 mL PTFE-lined autoclave with 30 mL mixture of H2O and polyol.Then the autoclave was sealed and heated at170°C in an electric drying oven for 24 h.The final black products were precipitated with DI water and absolute ethyl alcohol by centrifugation at4000 rpm for 30 min thrice to wash out polyoland possible sulfur particles.The average yield is about 92%.

    2.3 Characterization

    X-ray diffraction(XRD)patterns of the samples were recorded with Cu Kαradiation(Bruker/AXS D8 Advance,Netherlands). Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)images were obtained by Hitachi SU8020 (Japan)and FEI Tecnai G2 F20 S-TWIN TMP(U.S.A.),respectively.

    3 Results and discussion

    3.1 Synthesis of MoS2nanosheets

    Fig.1A shows that all the diffraction peaks of the MoS2nanosheets agree well with the hexagonal MoS2phase(JCPDS CARDNo.37-1492).These peaks are atapproximately 2θ=14.3°, 32.8°,39.5°,49.6°,58.3°,69.0°,which correspond to the(002),(100),(103),(105),(110),(201)crystalplanes,respectively.The high intensity of(002)peak implies the good stack of MoS2nanosheets.The broadened peaks(as black line shown)suggest the poor crystallinity of as-prepared sample.Fig.2B shows thatthe average length of as-prepared MoS2sheets are ca 150 nm with differentwidth,when reactat170°C for 8 h.The nanosheets are rich in unsaturated sulfur atoms due to the dislocations,which presentas tiny rings11,26,resulted from the random overlap of small nanoflakes composing nanosheets according to the aggregation and coalescence model27-35.Similar structure had been proved to be beneficial for the HER catalysis11,12,and Zhou et al.26has also provided a detailed classification for the dislocations.

    3.2 Effects of reaction temperature and holding time on the formation of MoS2nanosheets

    In our scheme,the reaction temperature plays a major role on the transformation of sulfur powder and the growth of MoS2nanosheets,and the holding time also matters much as it affects the density of unsaturated sulfur atoms.Generally,sublimed sulfur tends to aggregate into insoluble sulfur above 159°C in open or close systems and totally precipitate owing to their large size(ca 20μm).To avoid such case,the sublimed sulfur was ground for ca.10 min were used in our protocol.The transformation of sulfur powder(composed of S8)into low reactive liquid sulfur beads with appropriate holding temperatures in airtightautoclaves makes the preparation of MoS2nanosheets successful(detailed in Fig.S1 (Supporting Information(SI))).The liquid sulfur beads contains abundantlong free radicalchains(S8)nwhose reactivity decreased with enhancing reaction temperature,which can reach to a maximum atca.190°C36.The liquids beads spread evenly in the whole polyol at last and subsequently reacted with polyol gradually,generating H2S for reducing Na2MoO4.Therefore,a length nucleation occurred mainly due to the slow reaction between the low-activity(S8)nand polyol.For EG,the reaction begins at160°C and can be expressed as37:

    Fig.2 TEMimages of MoS2nanosheets prepared with differentholding time at 170°C for(A)8 h,(B)12 h,(C)16 h,(D)20 h The inseted images are selected area electron diffraction(SAED)patterns of the matching samples.

    Fig.2(A-D)shows the improved crystallinity of the as-prepared MoS2nanosheets with increasing holding time.When the holding time was less than 7 h,most of time no MoS2nanosheet was obtained,butgrey solutions.After 8 h,smaller black nanosheets with poor crystallinity appeared atthe bottom of the autoclave in a grey solution as shown in Fig.2A.Fig.2B shows thatmany ordered rings emerged after 12 h to reduce surface energy without obvious improvement in crystallinity.Fig.2C shows the crystal planes realign to reduce total system energy and crystal defects during the 12-16 h,which has been detailed by Wang38.At16-20 h,some regions with good crystallinity appeared as shown in Fig.2D,which can improve the electrical conductivity of MoS2nanosheets.

    3.3 Influence of polyoland volume ratio of polyolto water

    EG and DEG have been widely used in poyloy process as solvents,ruducing and stabilizer agents39,40to prepare various NPs such as metals,alloys,oxides,and Metal chalcogenides41-48due to their exellcent physical and chemical properties.Fig.3(A-F) shows thatthe MoS2nanosheets prepared with EG and DEG differ significantly in dispersity and length atthe same contiditon,which can be attribute to their different reducing powers and viscosities. As shown in Fig.3(A,C,F)the volume ratio of EG to water affects slightly on the size of as-prepared MoS2nanosheets,and the average allare ca 70-100 nm in length.The case can be attribuated to the dramatical decrease of EG viscosity when the temperature increased to 170-200°C.Moreover,every EG molecule only possess two hydrogen bond acceptors,therefore,the affinity of EG molecule on the MoS2nanosheets(or nanoflakes)is poor,giving rise to the free movementof MoS2nanosheets(or nanoflakes)at high temperature.In other words,the thermal energy of MoS2nanosheets is comparable to the aggregation barrier of the systems according Jolte′s stability hypothesis35,thus all the MoS2nanosheets have a similarly finalaverage size.However,as shown in Fig.3(B,D,F),the average size of the MoS2nanosheets prepared with DEG are roughly proportionalto the increasing volume ratio of DEGto water,which increased from ca.70 to 150 nm.The higher viscosity and more hydrogen bond accpetors(three)may accountfor the difference between the MoS2nanosheets prepared with EG and DEG.However,when the volume ratio of EG or DEG to water decreased to 1:4-1:5,high uniform MoS2nanospheres were obtained as Fig.3G(prepared with EG)and Fig.3H(prepared with DEG)show.

    3.4 Growth mechanism

    The three-step formation proccess of MoS2nanosheets can be expressed as follows:the reassembly of ground sublimed sulfur, the reduction of Na2MoO4to MoS3nuclei,the formation of MoS2nanoflakes,and the formation of MoS2nanosheets(Fig.4).To takeEG as an example for further details.Before heating,mostof the ground sulfur powder floated on the interface of the mixture of water and EG.Atapproximate 100°C,the sulfur powder adsorbed on foams stemming from the boiling water was sprayed on the inner wallof autoclave because of the burstof foams.When the temperature reached to 120°C,the water and EGseparated with Na2MoO4in water,and the sulfur powder began to meltinto liquid beads.Then with the rising temperature,the high viscous liquids beads,which are insoluble in water,slipped into EG by gravity spread evenly in EG finally.At the critical polymerization temperature 159°C,the S8composing of liquid sulfur beads began to transfer into low active insoluble sulfur(S8)n.Meanwhile,EG surmounted the onsetpotentialof oxidation(160°C)40,and began to reactwith S8and(S8)n,followed by the generation of H2S.Increasing H2S then migrated to the water-EG interface gradually, which result in the reduction of Na2MoO4into MoO42-ions gradually(detailed in SI 2).By the aid of sub-criticalwater,the MoO42-

    ions transferred into MoS3nuclei49,50,which would be aggregated or coalesced due to van der Wall forces and violent collisions caused by Brownian movement because of the high density of MoS3nearby the water-EG interface33-35.The MoS3then was trapped in EG and decomposed into MoS2soon for their poor thermostability.As a result,the MoS2and NPs grew into MoS2nanofakes with poor crystallinity according to Kotov et al.28just as displayed in Fig.2A.Then,the nanofalkes grew larger gradually untilto the the maximalsize determined by the aggregation barrier ofthe system35.In the process,the crystallinity of MoS2nanosheets improved by the rearrange of atoms and specialcrystalplanes to reduce defects and the totalsystem energy,as elaborated in a latest research of Wang38.However,the crystallinity improvement of MoS2was limited by low reaction temperature,indacated by the discolations shown in Fig.2(B-D)and the smallwhite rings on the nanosheets shown in Fig.4.We speculated that the growth mechanism may be applicable to other TMDCs because of their similar structure and properties.

    Fig.3 MoS2nanosheets prepared with EG(A,C,E)and DEG(B,D,F)with different volume ratio of EG/DEG to water at 170°C heating for 8 h (A,B)1:1,(C,D)1:2,(E,F)1:3,(G,H)1:5

    Fig.4 Scheme of the three-step growth mechanism of MoS2nanosheets

    4 Conclusions

    MoS2nanosheets were successfully prepared with a novlonepot,two-phase method with sulfur powder and Na2MoO4at170-200°C for 8 h without transfer agents.The as-prepared MoS2nanosheets are rich in unsaturated S atoms thatare crucialto the HER ctatlysis.Moreover,a possible three-step growth mechansim was proposed,which may be employed for other TMDCs for their similar structures.We hope this facile,green,low-cost method may be an effective method to perpare scale-up TMDCs in the near future.

    Supporting Information:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)Radisavljevic,B.;Radenovic,A.;Brivio,J.;Giacometti,V.;Kis, A.Nat.Nanotechnol.2011,6,147.doi:10.1038/nnano.2010.279

    (2)Mark,K.F.;He,K.;Shan,J.;Heinz,T.F.Nat.Nanotechnol. 2012,7,494.doi:10.1038/nnano.2012.96

    (3)Splendiani,A.;Sun,L.;Zhang,Y.;Li,T.;Kim,J.;Chim,C.Y.; Galli,G.;Wang,F.Nano Lett.2010,10,1271.doi:10.1021/ nl903868w

    (4)Li,Y.;Wang,H.;Xie,L.;Liang,Y.;Hong,G.;Dai,H.J.Am.Chem.Soc.2011,133,7296.doi:10.1021/ja201269b

    (5)Dagge,M.;Chianelli,R.R.J.Catal.1994,149,414. doi:10.1006/jcat.1994.1308

    (6)Jaramillo,T.F.;Jorgensen,K.P.;Bonde,J.;Nielsen,J.H.; Horch,S.;Chorkendorff,I.Science 2007,317,100. doi:10.1126/science.1141483

    (7)Karunadasa,H.I.;Montalvo,E.;Sun,Y.;Majda,M.;Long,J. R.;Chang,C.J.Science 2002,335,698.doi:10.1126/ science.1215868

    (8)Benck,J.D.;Chen,Z.;Kuritzky,A.L.;Froman,A.J.; Jaramillo,T.F.ACS Catal.2012,2,1916.doi:10.1021/ cs300451q

    (9)Benchk,J.D.;Hellstern,T.R.;Kibsgaard,J.;Chakthranont,P.; Jaramillo,T.F.ACS Catal.2014,2,3957.doi:10.1021/ cs500923c

    (10)Kibsgarrd,J.;Chen,Z.;Beinecke,B.N.;Jaramillo,T.F.Nat. Mater.2012,11,963.doi:10.1038/nmat3439

    (11)Xie,J.;Zhang,J.;Li,S.;Grote,F.;Zhang,X.;Zhang,H.;Wang, R.;Lei,Y.;Pan,B.;Xie,Y.J.Am.Chem.Soc.2013,135,17881. doi:10.1021/ja408329q

    (12)Xie,J.;Zhang,H.;Li,S.;Wang,R.;Sun,X.;Zhou,M.;Zhou, J.;Lou,X.W.;Xie,Y.Angew.Chem.Int.Ed.2013,25,5807. doi:10.1039/C4SC02019G

    (13)Lee,Y.;Zhang,X.Q.;Zhang,W.;Chang,M.T.;Lin,C.T.; Chang,K.D.;Yu,Y.C.;Wang,J.T.;Chang,C.S.;Li,L.J.;Lin, T.W.Adv.Mat.2012,24,2320.doi:10.1002/adma.201104798

    (14)Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.; Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl. Acad.Sci.U.S.A.2005,102,10451.doi:10.1073/ pnas.0502848102

    (15)Zhan,Y.;Liu,Z.;Najmaei,S.;Ajayan,P.M.;Lou,J.Small 2012,10,966.doi:10.1002/smll.201102654

    (16)Bissessur,R.;Heising,J.;Hirpo,W.;Kanatzidis,M.Chem. Mater.1996,8,318.doi:10.1021/cm950378+

    (17)Danot,M.;Mansot,J.L.;Golub,A.S.;Protzenko,G.A.; Fabritchnyi,P.B.;Novikov,Y.N.;Rouxel,J.Mater.Res.Bull. 1994,29,833.doi:10.1016/0025-5408(94)90003-5

    (18)Golub,A.S.;Zubavichus,Y.V.;Slovokhotov,Y.L.;Novikov,Y. N.;Danot,M.Solid State Ionics 2000,128,151.doi:10.1016/ S0167-2738(99)00347-1

    (19)Tachibana,H.;Yamanaka,Y.;Sakai,H.;Abe,M.;Matsumoto, M.Chem.Mater.2000,12,854.doi:10.1021/cm990664b

    (20)Benavente,E.;Santa Ana,M.A.;Mendizabal,F.;Gonzalez,G. Coord.Chem.Rev.2002,224,87.doi:10.1016/S0010-8545(01) 00392-7

    (21)Coleman,J.;Lotya,M.;O?Neill,A.;Bergin,S.D.;King,P.J.; Khan,U.;Young,K.;Gaucher,A.;De,S.;Smith,R.J.;Shvets, I.V.;Arora,S.;Stanton,G.;Kim,H.Y.;Lee,K.;Kim,G.T.; Duesberg,G.S.;Hallam,T.;Boland,J.J.;Wang,J.J.;Donegan, J.F.;Grunlan,J.;Moriarty,G.;Shmeliov,A.;Nicholls,R.J.; Perkins,J.M.;Grieveson,E.M.;Theuwissen,K.;McComb,D. W.;Nellist,P.D.;Nicolosi,V.Science 2011,331,568. doi:10.1126/science.1194975

    (22)Zhou,K.G.;Mao,N.N.;Wang,H.X.;Peng,Y.;Zhang,H.L. Angew.Chem.Int.Ed.2011,50,10839.doi:10.1002/ ange.201105364

    (23)O′N(xiāo)eill,A.;Khan,Umar;Coleman,J.N.Chem.Mater.2012, 24,2414.doi:10.1021/cm301515z

    (24)Voiry,D.;Salehi,M.;Silva,R.;Fujita,T.;Chen,M.;Asefa,T.; Shenoy,V.B.;Eda,G.;Chhowalla,M.Nano Lett.2013,13, 6222.doi:10.1021/nl403661s

    (25)Jawaid,A.;Nepal,D.;Park,K.;Jespersen,M.;Qualley,A.; Mirau,P.;Drummy,L.F.;Vaia,R.A.Chem.Mater.2016,28, 337.doi:10.1021/acs.chemmater.5b04224

    (26)Zhou,W.;Zou,X.L.;Najmaei,S.;Zheng,L.;Shi,Y.M.;Kong, J.;Lou,J.;Ajayan,P.M.;Yakobson,B.I.;Idrobo,J.Nano Lett. 2013,13,2615.doi:10.1021/nl4007479

    (27)Kalsin,A.M.;Fialkowski,M.;Paszewski,M.;Smoukov,S.K.; Bishop,K.J.M.;Grzybowski,B.A.Science 2006,321,420. doi:10.1126/science.1125124

    (28)Tang,Z.Y.;Zhang,Z.L.;Wang,Y.;Glotzer,S.C.;Kotov,N.A. Science 2006,314,274.doi:10.1126/science.1128045

    (29)Glotzer,S.C.;Solomon,M.J.Nat.Mater.2007,6,557. doi:10.1038/nmat1949

    (30)Min,Y.J.;Akbulut,M.;Kristiansen,K.;Golan,Y.;Israelachvili, J.Nat.Mater.2008,7,527.doi:10.1038/nmat2206

    (31)Schliehe,C.;Juarez,B.H.;Pelletier,M.;Jander,S.;Greshnykh, D.;Nagel,M.;Meyer,A.;Foerster,S.;Kornowski,A.;Klinke, C.;Weller,H.Science 2010,329,550.doi:10.1126/ science.1188035

    (32)Xia,Y.S.;Nguyen,T.D.;Yang,M.;Lee,B.;Santos,A.; Podsiadlo,P.;Tang,Z.Y.;Glotzer,S.C.;Kotov,N.A.Nat. Nanotechnol.2011,6,580.doi:10.1038/nnano.2011.121

    (33)Plote,J.;Erler,R.;Thunemann,A.F.;Emmerling,F.;Kraehnert, R.Chem.Commun.2010,46,9209.doi:10.1039/C0CC03238G

    (34)Polte,J.;Ahner,T.T.;Delissen,F.;Sokolov,S.;Emmerling,F.; Thunemann,A.F.;Kraehnert,R.J.Am.Chem.Soc.2010,132, 1296.doi:10.1021/ja906506j

    (36)Fairbrother,F.;Gee,G.;Merrall,G.T.J.Polym.Sci.1955,16, 459.doi:10.1002/pol.1955.120168231

    (37)Zheng,Y.;Cheng,Y.;Wang,Y.;Zhou,L.;Bao,F.;Jia,C. J.Phys.Chem.B 2006,110(16),8284.doi:10.1021/jp060351l

    (38)Fei,L.F.;Lei,S.J.;Zhang,W.B.;Lu,W.;Lin,Z.Y.;Lam,C. H.;Chai,Y.;Wang,Y.Nat.Commun.2016,7,1.doi:10.1038/ ncomms12206

    (39)Yue,H.R.;Zhao,Y.J.;Gong,J.L.Chem.Soc.Rev.2012,41, 4218.doi:10.1039/C2CS15359A

    (40)Biacchi,A.J.;Schaak,R.E.ACS Nano 2011,5,8089. doi:10.1021/nn2026758

    (41)Fifvet,F.;Lagier,J.P.;Blin,B.Solid State Ionics 1989,32,198.doi:10.1016/0167-2738(89)90222-1

    (42)Silvert,P.V.;Tekaia-Elhsissen,K.Solid State Ionics 1995,82, 53.doi:10.1016/0167-2738(95)00198-F

    (43)Bonet,F.;Delmas,V.;Grugeon,S.;Urina,H.R.;Silvert,P.Y.; Tekaia-Elhsissen,K.Nano Structured Material1999,11,1277. doi:10.1016/S0965-9773(99)00419-5

    (44)Schmitt,P.;Brem,N.;Schunk,S.;Feldmann,C.Adv.Funct. Mater.2011,21,3037.doi:10.1002/adfm.201100655

    (45)Feldmann,C.Adv.Funct.Mater.2003,13,101.doi:10.1002/ adfm.200390014

    (46)Sun,Y.G.;Xia,Y.N.Science 2002,298,2176.doi:10.1126/ science.1077229

    (47)Chen,J.Y.;Herricks,T.;Geissler,M.;Xia,Y.N.J.Am.Chem. Soc.2004,126,10854.doi:10.1021/ja0468224

    (48)Rusitskiy,A.;Xia,Y.N.J.Am.Chem.Soc.2016,138,3161. doi:10.1021/jacs.5b13163

    (49)Akiya,N.;Savage,P.E.Chem.Rev.2002,102,2725. doi:10.1021/cr000668w

    (50)Erickson,B.E.;Helz,G.R.Geochim.Cosmochim.Ac.2000, 64,1149.doi:10.1016/S0016-7037(99)00423-8

    Polyol-Mediated Synthesis of MoS2Nanosheets Using Sulfur Powder as the Sulfur Source

    WANGHui1ZOU De-Chun1,2,*
    (1Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,National Center for Nanoscience and Technology, Beijing 100083,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    MoS2nanosheets are prepared with sulfur powder and Na2MoO4by a one-pottwo-phase method at170-200°C for 8 h.In addition,a three-step growth mechanism based on the aggregation and coalescence modelis proposed.The reassembly ofsulfur powder ensures the transformation from sulfur powder to H2S to reduce Na2MoO4and plays a key role in the successfulpreparation of MoS2nanosheets.The as-prepared MoS2nanosheets are rich in unsaturated sulfur atoms,probably resulting from the dislocation cores of the MoS2nanosheets,which have been found to be beneficialfor hydrogen evolution reaction catalysis.The method and growth mechanism adopted in this study may be applied to other transition metaldichalogenides for similar structures.The facile and green method provides an alternative for the preparation of MoS2nanosheets.

    MoS2nanosheet;Sulfur powder;Aggregation and coalescence model;Ethylene glycol; Two-phase method

    O643;O611.4

    Polte,J.CrystEngComm 2015,17,6809.

    10.1039/ c5ce01014d

    doi:10.3866/PKU.WHXB201702081

    Received:November23,2016;Revised:February 6,2017;Published online:February 8,2017.

    *Corresponding author.Email:dczou@pku.edu.cn;Tel:+86-10-62759799.

    The projectwas supported by the“Thousand Talents”P(pán)rogram of China for Pioneering Researchers and Innovative Teams,National Natural Science Foundation of China(51573004,91333107),and Natural Science Foundation of Beijing,China(Z160002).

    國(guó)家頂尖千人計(jì)劃,國(guó)家自然科學(xué)基金(51573004,91333107)及北京市自然科學(xué)基金(Z160002)資助項(xiàng)目?Editorialoffice of Acta Physico-Chimica Sinica

    猜你喜歡
    二硫化鉬多元醇硫化
    兩性離子聚合物/多元醇復(fù)合井壁強(qiáng)化劑的研制與作用機(jī)理
    二硫化鉬基異質(zhì)結(jié)催化劑可見(jiàn)光降解有機(jī)污染物的研究進(jìn)展
    熱壓法制備二硫化鉬陶瓷靶材工藝研究
    二硫化鉬改性鋁合金活塞微弧氧化膜層的研究
    懸臂式硫化罐的開(kāi)發(fā)設(shè)計(jì)
    巴斯夫推出全新聚醚多元醇產(chǎn)品 幫助減少車(chē)內(nèi)揮發(fā)性有機(jī)化合物
    上海建材(2017年2期)2017-07-21 14:02:10
    簡(jiǎn)述輸送膠帶硫化粘接方法
    鋁合金微弧氧化制備含二硫化鉬的減磨膜層
    硫化砷渣的無(wú)害化處理研究
    蓖麻油基多元醇改性聚氨酯膠黏劑的研究
    精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 老熟妇乱子伦视频在线观看| 脱女人内裤的视频| 日本三级黄在线观看| 脱女人内裤的视频| 成人av一区二区三区在线看| 91麻豆精品激情在线观看国产| 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| xxx96com| 亚洲欧美日韩另类电影网站| 波多野结衣av一区二区av| 亚洲av日韩精品久久久久久密| 久久性视频一级片| 黄色a级毛片大全视频| 欧美精品亚洲一区二区| 一a级毛片在线观看| 久久精品91蜜桃| 亚洲av电影在线进入| 性少妇av在线| 我的亚洲天堂| 久久久久久国产a免费观看| 又黄又粗又硬又大视频| 好看av亚洲va欧美ⅴa在| 欧美av亚洲av综合av国产av| 村上凉子中文字幕在线| 精品久久久久久久毛片微露脸| 男女之事视频高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 咕卡用的链子| 日本在线视频免费播放| 亚洲第一青青草原| 午夜免费鲁丝| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 久久 成人 亚洲| 久久亚洲精品不卡| 欧美大码av| 日韩欧美免费精品| 18禁观看日本| 女警被强在线播放| 香蕉久久夜色| 中出人妻视频一区二区| 91国产中文字幕| 日本a在线网址| 日韩 欧美 亚洲 中文字幕| tocl精华| 欧美不卡视频在线免费观看 | 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| АⅤ资源中文在线天堂| 色综合站精品国产| 久久亚洲真实| 欧美亚洲日本最大视频资源| 色av中文字幕| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 在线观看66精品国产| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 精品午夜福利视频在线观看一区| 色精品久久人妻99蜜桃| 国产精品二区激情视频| 精品久久久久久,| 妹子高潮喷水视频| 国语自产精品视频在线第100页| 精品久久久久久久久久免费视频| 欧美一级毛片孕妇| 非洲黑人性xxxx精品又粗又长| 中国美女看黄片| 久久久精品欧美日韩精品| 久久性视频一级片| 久久精品国产亚洲av高清一级| 黑人欧美特级aaaaaa片| 欧美黑人精品巨大| 亚洲精品国产区一区二| 99riav亚洲国产免费| 黄色视频不卡| 亚洲精品久久成人aⅴ小说| 好男人电影高清在线观看| 色哟哟哟哟哟哟| 国产精品国产高清国产av| 精品久久久久久久人妻蜜臀av | 可以在线观看毛片的网站| 18禁观看日本| 制服人妻中文乱码| 国产熟女午夜一区二区三区| 国产成人欧美| 高清毛片免费观看视频网站| 国产精品日韩av在线免费观看 | 精品国产美女av久久久久小说| 久久久久久人人人人人| 午夜免费成人在线视频| 自线自在国产av| 国产野战对白在线观看| 日本 av在线| 97人妻精品一区二区三区麻豆 | 亚洲精品av麻豆狂野| 不卡一级毛片| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清 | 久久国产精品人妻蜜桃| 精品午夜福利视频在线观看一区| 亚洲第一欧美日韩一区二区三区| 欧美色视频一区免费| 俄罗斯特黄特色一大片| 日韩欧美一区视频在线观看| 手机成人av网站| 久久热在线av| 色播亚洲综合网| 99国产极品粉嫩在线观看| 久久青草综合色| 1024视频免费在线观看| 亚洲国产看品久久| 国产精品久久久久久亚洲av鲁大| 日本在线视频免费播放| 视频在线观看一区二区三区| 一级片免费观看大全| 女人高潮潮喷娇喘18禁视频| svipshipincom国产片| 99在线人妻在线中文字幕| 老汉色∧v一级毛片| 一级毛片高清免费大全| 啦啦啦观看免费观看视频高清 | 亚洲精品久久成人aⅴ小说| 中文字幕另类日韩欧美亚洲嫩草| 久99久视频精品免费| 最新美女视频免费是黄的| www日本在线高清视频| 色老头精品视频在线观看| 精品日产1卡2卡| 午夜久久久久精精品| e午夜精品久久久久久久| 桃色一区二区三区在线观看| 高潮久久久久久久久久久不卡| 欧美日韩瑟瑟在线播放| 欧美+亚洲+日韩+国产| 黄片小视频在线播放| 日本a在线网址| av片东京热男人的天堂| 亚洲色图综合在线观看| 久热爱精品视频在线9| 男女午夜视频在线观看| 国产午夜精品久久久久久| 又大又爽又粗| 人人妻人人澡人人看| 丁香六月欧美| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 日日干狠狠操夜夜爽| 精品日产1卡2卡| 亚洲欧美精品综合一区二区三区| 久久精品人人爽人人爽视色| 色尼玛亚洲综合影院| 少妇粗大呻吟视频| 亚洲精华国产精华精| 中文字幕最新亚洲高清| 成人亚洲精品av一区二区| 久久久精品国产亚洲av高清涩受| 一区二区日韩欧美中文字幕| 免费在线观看影片大全网站| 欧美日韩精品网址| 可以免费在线观看a视频的电影网站| 午夜亚洲福利在线播放| 精品乱码久久久久久99久播| 亚洲五月色婷婷综合| 精品久久久久久成人av| 亚洲欧美日韩高清在线视频| 亚洲欧美激情在线| av天堂在线播放| 国产高清激情床上av| 亚洲九九香蕉| 一个人观看的视频www高清免费观看 | 精品午夜福利视频在线观看一区| 男女之事视频高清在线观看| 国内精品久久久久久久电影| 久久久久久久久中文| 国产精品综合久久久久久久免费 | 后天国语完整版免费观看| 久久人人爽av亚洲精品天堂| 亚洲欧美日韩另类电影网站| 丁香六月欧美| 精品久久久久久成人av| 一进一出抽搐动态| 久久久精品国产亚洲av高清涩受| 久久精品91无色码中文字幕| 亚洲性夜色夜夜综合| 老汉色av国产亚洲站长工具| 亚洲成人免费电影在线观看| 免费在线观看日本一区| 人妻久久中文字幕网| 别揉我奶头~嗯~啊~动态视频| 中文字幕色久视频| 最近最新免费中文字幕在线| 国产精品日韩av在线免费观看 | 欧美国产精品va在线观看不卡| 国产精品98久久久久久宅男小说| 成年版毛片免费区| 999久久久国产精品视频| 九色亚洲精品在线播放| 性色av乱码一区二区三区2| 久久久水蜜桃国产精品网| 少妇粗大呻吟视频| 亚洲成人久久性| 两个人免费观看高清视频| 国产免费av片在线观看野外av| av欧美777| av视频在线观看入口| 99久久综合精品五月天人人| 一边摸一边抽搐一进一出视频| 亚洲欧美日韩无卡精品| 亚洲av熟女| 麻豆av在线久日| 久久亚洲精品不卡| 一个人观看的视频www高清免费观看 | 久久欧美精品欧美久久欧美| 成人免费观看视频高清| 精品熟女少妇八av免费久了| 脱女人内裤的视频| 欧美一区二区精品小视频在线| 国产午夜精品久久久久久| 日韩有码中文字幕| 男男h啪啪无遮挡| 韩国精品一区二区三区| 99国产综合亚洲精品| 女人被狂操c到高潮| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 国产精品久久视频播放| 九色国产91popny在线| www日本在线高清视频| 亚洲男人天堂网一区| 欧美丝袜亚洲另类 | 免费在线观看黄色视频的| 757午夜福利合集在线观看| 亚洲熟妇中文字幕五十中出| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 99香蕉大伊视频| 国产精品1区2区在线观看.| 国产一区二区三区在线臀色熟女| 欧美国产日韩亚洲一区| 亚洲av五月六月丁香网| 亚洲成人国产一区在线观看| 欧美av亚洲av综合av国产av| 多毛熟女@视频| 中文字幕色久视频| 麻豆一二三区av精品| 午夜福利18| 老汉色av国产亚洲站长工具| 在线观看免费日韩欧美大片| 最新美女视频免费是黄的| 变态另类成人亚洲欧美熟女 | 日韩大码丰满熟妇| 人妻久久中文字幕网| 国产在线精品亚洲第一网站| 此物有八面人人有两片| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一av免费看| 18禁裸乳无遮挡免费网站照片 | 美女 人体艺术 gogo| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 国产成人精品久久二区二区91| 高清在线国产一区| 欧美日韩黄片免| videosex国产| 叶爱在线成人免费视频播放| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 国产精品国产高清国产av| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 国产精品永久免费网站| 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 午夜a级毛片| 国产区一区二久久| 国内精品久久久久精免费| 亚洲电影在线观看av| 满18在线观看网站| 咕卡用的链子| 国产精品精品国产色婷婷| 成人欧美大片| 丝袜在线中文字幕| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 日日夜夜操网爽| 韩国精品一区二区三区| 日日干狠狠操夜夜爽| 久久午夜综合久久蜜桃| 日韩免费av在线播放| 最近最新中文字幕大全免费视频| 91大片在线观看| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 亚洲精品在线观看二区| 两个人免费观看高清视频| 午夜福利在线观看吧| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 97人妻精品一区二区三区麻豆 | 两性夫妻黄色片| aaaaa片日本免费| 手机成人av网站| 久久精品国产清高在天天线| 中文字幕人妻熟女乱码| 中文字幕精品免费在线观看视频| 亚洲第一av免费看| 丝袜人妻中文字幕| 亚洲成人免费电影在线观看| 一区二区三区精品91| 亚洲色图av天堂| 日日干狠狠操夜夜爽| av电影中文网址| 亚洲人成77777在线视频| 国产精品野战在线观看| 成人免费观看视频高清| 免费一级毛片在线播放高清视频 | 久久 成人 亚洲| 一二三四社区在线视频社区8| 久久伊人香网站| 一a级毛片在线观看| 精品久久蜜臀av无| 午夜福利欧美成人| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 成熟少妇高潮喷水视频| 亚洲精品久久成人aⅴ小说| 精品午夜福利视频在线观看一区| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 999久久久国产精品视频| 久久香蕉激情| 好男人电影高清在线观看| 99精品久久久久人妻精品| 999精品在线视频| 国产av又大| 欧美日韩黄片免| 久久九九热精品免费| 午夜两性在线视频| tocl精华| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 日韩免费av在线播放| 99精品久久久久人妻精品| 国产成人精品在线电影| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦免费观看视频1| 老司机午夜福利在线观看视频| 色在线成人网| 久久精品国产99精品国产亚洲性色 | 久久香蕉国产精品| 色播在线永久视频| 国产亚洲精品久久久久5区| 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 精品国产乱码久久久久久男人| 咕卡用的链子| а√天堂www在线а√下载| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区黑人| 97人妻天天添夜夜摸| 亚洲精华国产精华精| 久热爱精品视频在线9| 1024视频免费在线观看| 国产午夜福利久久久久久| 桃红色精品国产亚洲av| 悠悠久久av| 亚洲人成电影免费在线| 国产av在哪里看| 国内精品久久久久久久电影| 成人三级黄色视频| 欧美日韩亚洲国产一区二区在线观看| 午夜a级毛片| 国产精品永久免费网站| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 国产精品av久久久久免费| 一本大道久久a久久精品| 18禁美女被吸乳视频| 免费在线观看视频国产中文字幕亚洲| 满18在线观看网站| 精品不卡国产一区二区三区| 国产av又大| 日韩免费av在线播放| 久久久精品国产亚洲av高清涩受| 亚洲国产毛片av蜜桃av| svipshipincom国产片| 两个人免费观看高清视频| 午夜久久久久精精品| 一区福利在线观看| tocl精华| 国产黄a三级三级三级人| 国产成人精品久久二区二区91| 国产精品秋霞免费鲁丝片| 免费一级毛片在线播放高清视频 | 日韩视频一区二区在线观看| 久久久久久亚洲精品国产蜜桃av| 午夜日韩欧美国产| 男人舔女人下体高潮全视频| av视频在线观看入口| 国产精品久久电影中文字幕| 亚洲专区字幕在线| 亚洲精品在线观看二区| 两个人视频免费观看高清| 精品久久蜜臀av无| 激情在线观看视频在线高清| 国产男靠女视频免费网站| 久久亚洲真实| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 9色porny在线观看| 丁香欧美五月| 国产成人影院久久av| 国产在线精品亚洲第一网站| 丝袜在线中文字幕| 国产精品,欧美在线| 久久性视频一级片| 法律面前人人平等表现在哪些方面| 搞女人的毛片| 久热这里只有精品99| a在线观看视频网站| 久久青草综合色| 999久久久国产精品视频| 中亚洲国语对白在线视频| 亚洲va日本ⅴa欧美va伊人久久| 男女下面进入的视频免费午夜 | 在线视频色国产色| 国产极品粉嫩免费观看在线| 身体一侧抽搐| 日本a在线网址| 精品国产国语对白av| 99re在线观看精品视频| 日韩高清综合在线| 国产精品亚洲美女久久久| 精品久久久久久久毛片微露脸| 国产精品一区二区免费欧美| av天堂在线播放| 三级毛片av免费| 一区二区三区高清视频在线| 99久久精品国产亚洲精品| 99re在线观看精品视频| xxx96com| 视频区欧美日本亚洲| 搞女人的毛片| 久久久久九九精品影院| 神马国产精品三级电影在线观看 | 国产成人av教育| 国产成人系列免费观看| 亚洲第一电影网av| 在线天堂中文资源库| 久久精品国产综合久久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲色图av天堂| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 欧美丝袜亚洲另类 | 亚洲色图综合在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器 | 十八禁人妻一区二区| 午夜福利高清视频| 桃色一区二区三区在线观看| 在线永久观看黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| av天堂在线播放| 欧美日韩福利视频一区二区| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 看免费av毛片| 午夜a级毛片| 欧美日韩福利视频一区二区| 美女国产高潮福利片在线看| 亚洲熟妇熟女久久| 性欧美人与动物交配| 不卡一级毛片| 黄频高清免费视频| 亚洲精品国产色婷婷电影| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 久久青草综合色| 亚洲国产精品999在线| 给我免费播放毛片高清在线观看| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 久久精品aⅴ一区二区三区四区| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 最近最新免费中文字幕在线| 亚洲中文日韩欧美视频| 亚洲av美国av| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 欧美乱色亚洲激情| 欧美激情极品国产一区二区三区| 亚洲avbb在线观看| 精品国产超薄肉色丝袜足j| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 精品免费久久久久久久清纯| 久久久久久久久免费视频了| 十八禁网站免费在线| 黄色毛片三级朝国网站| 99热只有精品国产| 国产精品一区二区免费欧美| 乱人伦中国视频| 麻豆国产av国片精品| 亚洲 欧美 日韩 在线 免费| 午夜福利在线观看吧| 又黄又粗又硬又大视频| 日本免费a在线| 一本综合久久免费| 少妇裸体淫交视频免费看高清 | 国产一区二区三区综合在线观看| 国产人伦9x9x在线观看| 少妇被粗大的猛进出69影院| 国产精品久久电影中文字幕| av有码第一页| 久热爱精品视频在线9| 国产麻豆69| 亚洲精品久久成人aⅴ小说| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 成人免费观看视频高清| 亚洲专区国产一区二区| 国内精品久久久久久久电影| 欧美老熟妇乱子伦牲交| 亚洲自偷自拍图片 自拍| 十八禁人妻一区二区| 久久人人精品亚洲av| 久久热在线av| 51午夜福利影视在线观看| 老司机靠b影院| 亚洲欧美精品综合久久99| 亚洲熟妇熟女久久| 国语自产精品视频在线第100页| 18禁黄网站禁片午夜丰满| 午夜福利一区二区在线看| 久久精品国产综合久久久| 亚洲五月婷婷丁香| 国产精品久久久av美女十八| 午夜免费鲁丝| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 国产aⅴ精品一区二区三区波| 久久人妻福利社区极品人妻图片| 一本综合久久免费| 色播亚洲综合网| 久久伊人香网站| 免费在线观看影片大全网站| 久久精品人人爽人人爽视色| 99国产精品一区二区三区| 免费搜索国产男女视频| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 亚洲精品久久国产高清桃花| 亚洲熟女毛片儿| 久久香蕉激情| 亚洲自拍偷在线| 色尼玛亚洲综合影院| 国产一区二区三区综合在线观看| 9191精品国产免费久久| 国产成人精品无人区| 激情视频va一区二区三区| 日本vs欧美在线观看视频| 色综合亚洲欧美另类图片| 看片在线看免费视频| 极品教师在线免费播放| 曰老女人黄片| 久久精品成人免费网站| 老汉色∧v一级毛片| 欧美色视频一区免费| 午夜福利高清视频| 亚洲成国产人片在线观看| av中文乱码字幕在线| 精品久久久久久久毛片微露脸| 又黄又爽又免费观看的视频| 两性夫妻黄色片| 午夜影院日韩av| 日本在线视频免费播放| 亚洲精品美女久久av网站| 9191精品国产免费久久| 大型av网站在线播放| 在线观看免费视频日本深夜| 一本久久中文字幕| 91字幕亚洲| 中文字幕高清在线视频| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 99国产精品一区二区三区| 两个人视频免费观看高清| 一级黄色大片毛片| 亚洲人成电影免费在线| 亚洲国产精品999在线| 大码成人一级视频| 国产蜜桃级精品一区二区三区|