• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫粉為硫源,多元醇輔助合成硫化鉬納米片

    2017-05-11 00:45:57鄒德春
    物理化學(xué)學(xué)報(bào) 2017年5期
    關(guān)鍵詞:二硫化鉬多元醇硫化

    王 輝 鄒德春,2,*

    (1中國(guó)科學(xué)院北京納米能源與系統(tǒng)研究所,國(guó)家納米科學(xué)中心,北京100083;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

    硫粉為硫源,多元醇輔助合成硫化鉬納米片

    王 輝1鄒德春1,2,*

    (1中國(guó)科學(xué)院北京納米能源與系統(tǒng)研究所,國(guó)家納米科學(xué)中心,北京100083;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

    本文以普通硫粉和鉬酸鈉為原料,通過(guò)兩相法在170-200°C下經(jīng)8 h制備得到二硫化鉬納米片,同時(shí)基于聚集-聚并模型提出其三步法生長(zhǎng)機(jī)理。其中,硫粉的再組裝保證了其向H2S的轉(zhuǎn)化,使鉬酸鈉得以還原,因此在本方法中起到關(guān)鍵作用。本法制備得到的硫化鉬納米片富含可能由于各種位錯(cuò)引起的未飽和硫原子,有利于其在催化加氫等領(lǐng)域的應(yīng)用。此外,由于二維過(guò)渡金屬硫族化合物結(jié)構(gòu)相似,所以本方法及其機(jī)理可能同樣適用于其他二維過(guò)渡金屬硫族化合物。本方法為綠色、便捷制備二硫化鉬納米片提供了一個(gè)選擇。

    二硫化鉬納米片;硫粉;聚集和聚并模型;乙二醇;兩相法

    1 Introduction

    Molybdenum disulfide(MoS2)nanosheets have received increasing attention as a promising materialfor Hydrogen evolution reaction(HER)catalysis,energy storage,and semiconductor device because of its excellent chemical,physical,optical and electrical properties and low cost during the last decades1-4. However,the HER activity of MoS2nanosheets,as has been reported by both experimentaland theoretical studies,are limited to the density per unit surface area and turnover frequency of catalytically active edge sites5-13.Therefore,many efforts have beendevoted to prepare MoS2nanosheets with abundantexposed edge sites13-25.However,the effective scale-up of MoS2nanosheets still remains a major challenge.

    Currently,four main approaches have been employed to obtain MoS2nanosheets in laboratories14-25,including micromechanical cleavage,chemical vapor deposition,Li ion intercalation,and liquid-phase exfoliation.The micromechanicalcleavage method is reported to have low yield and time-consuming14.Chemical vapor deposition method,in spite of good crystallinity of the resulting MoS2nanosheets also has the limitation of its high cost, poor transferability and complex manipulation15.The latter two methods can be achieved by taking advantage of the sandwiched S-Mo-S layer structure of MoS2thatare held togetherby weak van der Waals interaction.The interaction and hydration of lithium cations combined with the strong affinity of organic solvents or surfactants give rise to the exfoliation of MoS2in organic solvents16-20,whereas it is still challenging for effective scale-up because of expensive intercalating agents used,long reaction time (atleastseveraldays),strictstorage,high sensitivity to environmentconditions,and possible structure deformations.The liquidphase exfoliation of MoS2powder is achievable in appropriate organic solution or aqueous surfactants solution by means of sonication and centrifugation21-25.Nevertheless,both organic solvents and aqueous surfactant exfoliated MoS2usually show multilayer stacks with size as large as 200-400 nm,which results in the reducing number of active sites.Moreover,the dispersed concentrations of resulting MoS2nanosheets are generally too low to require large quantities of exfoliated MoS2nanosheets.Due to the aforementioned limitations of approaches to obtain MoS2nanosheets,a green,convenient,low-cost,and large-scale approach for preparing MoS2has been pursued for a long time.

    Herein,we reportthe preparation of MoS2nanosheets of with abundantactive sites by a revised one-pot,polyol-mediated method for the first time and propose a three-step growth mechanism of the MoS2nanosheets based on the aggregation and coalescence model.Compared with the aforementioned methods,this method is proved to be able to prepare scale-up MoS2nanosheets more easily without any hazardous chemicals in 8 h,in which only sulfur powder,polyol(ethylene glycol,diethylene glycol),and Na2MoO4were used.Meanwhile,the size of nanosheets could be adjusted by changing the polyol-to-water ratio.More importantly, the growth mechanism may be suitable for other transition metal dichalogenides(TMDCs).

    Fig.1(A)XRD patterns ofobtained MoS2nanosheets at170°C for 8 h(red line:after calcination in N2at 400°C for 4 h, black line:before calcination);(B)TEMimage of obtained MoS2nanosheets at 170°C for 8 h(color online)

    2 Experimental

    2.1 Chemicals and materials

    Ethylene glycol(EG,≥95%),diethylene glycol(DEG,≥99%),absolute ethyl alcohol(≥99.7%),sublimed sulfur(≥98%),Na2MoO4(≥99%)were purchased from Beijing Reagent Company.All chemicals were used as received,exceptfor sublimed sulfur slightly ground before use.Deionized(DI)water with a resistivity of 18.2 MΩ·cm was used as well,and MoS2syntheses were conducted in 50 mL PTFE-lined stainless autoclaves.

    2.2 Synthesis of MoS2nanosheets

    In a standard synthesis,0.14 g ground sublimed sulfur and 0.36 g Na2MoO4were added into a 50 mL PTFE-lined autoclave with 30 mL mixture of H2O and polyol.Then the autoclave was sealed and heated at170°C in an electric drying oven for 24 h.The final black products were precipitated with DI water and absolute ethyl alcohol by centrifugation at4000 rpm for 30 min thrice to wash out polyoland possible sulfur particles.The average yield is about 92%.

    2.3 Characterization

    X-ray diffraction(XRD)patterns of the samples were recorded with Cu Kαradiation(Bruker/AXS D8 Advance,Netherlands). Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)images were obtained by Hitachi SU8020 (Japan)and FEI Tecnai G2 F20 S-TWIN TMP(U.S.A.),respectively.

    3 Results and discussion

    3.1 Synthesis of MoS2nanosheets

    Fig.1A shows that all the diffraction peaks of the MoS2nanosheets agree well with the hexagonal MoS2phase(JCPDS CARDNo.37-1492).These peaks are atapproximately 2θ=14.3°, 32.8°,39.5°,49.6°,58.3°,69.0°,which correspond to the(002),(100),(103),(105),(110),(201)crystalplanes,respectively.The high intensity of(002)peak implies the good stack of MoS2nanosheets.The broadened peaks(as black line shown)suggest the poor crystallinity of as-prepared sample.Fig.2B shows thatthe average length of as-prepared MoS2sheets are ca 150 nm with differentwidth,when reactat170°C for 8 h.The nanosheets are rich in unsaturated sulfur atoms due to the dislocations,which presentas tiny rings11,26,resulted from the random overlap of small nanoflakes composing nanosheets according to the aggregation and coalescence model27-35.Similar structure had been proved to be beneficial for the HER catalysis11,12,and Zhou et al.26has also provided a detailed classification for the dislocations.

    3.2 Effects of reaction temperature and holding time on the formation of MoS2nanosheets

    In our scheme,the reaction temperature plays a major role on the transformation of sulfur powder and the growth of MoS2nanosheets,and the holding time also matters much as it affects the density of unsaturated sulfur atoms.Generally,sublimed sulfur tends to aggregate into insoluble sulfur above 159°C in open or close systems and totally precipitate owing to their large size(ca 20μm).To avoid such case,the sublimed sulfur was ground for ca.10 min were used in our protocol.The transformation of sulfur powder(composed of S8)into low reactive liquid sulfur beads with appropriate holding temperatures in airtightautoclaves makes the preparation of MoS2nanosheets successful(detailed in Fig.S1 (Supporting Information(SI))).The liquid sulfur beads contains abundantlong free radicalchains(S8)nwhose reactivity decreased with enhancing reaction temperature,which can reach to a maximum atca.190°C36.The liquids beads spread evenly in the whole polyol at last and subsequently reacted with polyol gradually,generating H2S for reducing Na2MoO4.Therefore,a length nucleation occurred mainly due to the slow reaction between the low-activity(S8)nand polyol.For EG,the reaction begins at160°C and can be expressed as37:

    Fig.2 TEMimages of MoS2nanosheets prepared with differentholding time at 170°C for(A)8 h,(B)12 h,(C)16 h,(D)20 h The inseted images are selected area electron diffraction(SAED)patterns of the matching samples.

    Fig.2(A-D)shows the improved crystallinity of the as-prepared MoS2nanosheets with increasing holding time.When the holding time was less than 7 h,most of time no MoS2nanosheet was obtained,butgrey solutions.After 8 h,smaller black nanosheets with poor crystallinity appeared atthe bottom of the autoclave in a grey solution as shown in Fig.2A.Fig.2B shows thatmany ordered rings emerged after 12 h to reduce surface energy without obvious improvement in crystallinity.Fig.2C shows the crystal planes realign to reduce total system energy and crystal defects during the 12-16 h,which has been detailed by Wang38.At16-20 h,some regions with good crystallinity appeared as shown in Fig.2D,which can improve the electrical conductivity of MoS2nanosheets.

    3.3 Influence of polyoland volume ratio of polyolto water

    EG and DEG have been widely used in poyloy process as solvents,ruducing and stabilizer agents39,40to prepare various NPs such as metals,alloys,oxides,and Metal chalcogenides41-48due to their exellcent physical and chemical properties.Fig.3(A-F) shows thatthe MoS2nanosheets prepared with EG and DEG differ significantly in dispersity and length atthe same contiditon,which can be attribute to their different reducing powers and viscosities. As shown in Fig.3(A,C,F)the volume ratio of EG to water affects slightly on the size of as-prepared MoS2nanosheets,and the average allare ca 70-100 nm in length.The case can be attribuated to the dramatical decrease of EG viscosity when the temperature increased to 170-200°C.Moreover,every EG molecule only possess two hydrogen bond acceptors,therefore,the affinity of EG molecule on the MoS2nanosheets(or nanoflakes)is poor,giving rise to the free movementof MoS2nanosheets(or nanoflakes)at high temperature.In other words,the thermal energy of MoS2nanosheets is comparable to the aggregation barrier of the systems according Jolte′s stability hypothesis35,thus all the MoS2nanosheets have a similarly finalaverage size.However,as shown in Fig.3(B,D,F),the average size of the MoS2nanosheets prepared with DEG are roughly proportionalto the increasing volume ratio of DEGto water,which increased from ca.70 to 150 nm.The higher viscosity and more hydrogen bond accpetors(three)may accountfor the difference between the MoS2nanosheets prepared with EG and DEG.However,when the volume ratio of EG or DEG to water decreased to 1:4-1:5,high uniform MoS2nanospheres were obtained as Fig.3G(prepared with EG)and Fig.3H(prepared with DEG)show.

    3.4 Growth mechanism

    The three-step formation proccess of MoS2nanosheets can be expressed as follows:the reassembly of ground sublimed sulfur, the reduction of Na2MoO4to MoS3nuclei,the formation of MoS2nanoflakes,and the formation of MoS2nanosheets(Fig.4).To takeEG as an example for further details.Before heating,mostof the ground sulfur powder floated on the interface of the mixture of water and EG.Atapproximate 100°C,the sulfur powder adsorbed on foams stemming from the boiling water was sprayed on the inner wallof autoclave because of the burstof foams.When the temperature reached to 120°C,the water and EGseparated with Na2MoO4in water,and the sulfur powder began to meltinto liquid beads.Then with the rising temperature,the high viscous liquids beads,which are insoluble in water,slipped into EG by gravity spread evenly in EG finally.At the critical polymerization temperature 159°C,the S8composing of liquid sulfur beads began to transfer into low active insoluble sulfur(S8)n.Meanwhile,EG surmounted the onsetpotentialof oxidation(160°C)40,and began to reactwith S8and(S8)n,followed by the generation of H2S.Increasing H2S then migrated to the water-EG interface gradually, which result in the reduction of Na2MoO4into MoO42-ions gradually(detailed in SI 2).By the aid of sub-criticalwater,the MoO42-

    ions transferred into MoS3nuclei49,50,which would be aggregated or coalesced due to van der Wall forces and violent collisions caused by Brownian movement because of the high density of MoS3nearby the water-EG interface33-35.The MoS3then was trapped in EG and decomposed into MoS2soon for their poor thermostability.As a result,the MoS2and NPs grew into MoS2nanofakes with poor crystallinity according to Kotov et al.28just as displayed in Fig.2A.Then,the nanofalkes grew larger gradually untilto the the maximalsize determined by the aggregation barrier ofthe system35.In the process,the crystallinity of MoS2nanosheets improved by the rearrange of atoms and specialcrystalplanes to reduce defects and the totalsystem energy,as elaborated in a latest research of Wang38.However,the crystallinity improvement of MoS2was limited by low reaction temperature,indacated by the discolations shown in Fig.2(B-D)and the smallwhite rings on the nanosheets shown in Fig.4.We speculated that the growth mechanism may be applicable to other TMDCs because of their similar structure and properties.

    Fig.3 MoS2nanosheets prepared with EG(A,C,E)and DEG(B,D,F)with different volume ratio of EG/DEG to water at 170°C heating for 8 h (A,B)1:1,(C,D)1:2,(E,F)1:3,(G,H)1:5

    Fig.4 Scheme of the three-step growth mechanism of MoS2nanosheets

    4 Conclusions

    MoS2nanosheets were successfully prepared with a novlonepot,two-phase method with sulfur powder and Na2MoO4at170-200°C for 8 h without transfer agents.The as-prepared MoS2nanosheets are rich in unsaturated S atoms thatare crucialto the HER ctatlysis.Moreover,a possible three-step growth mechansim was proposed,which may be employed for other TMDCs for their similar structures.We hope this facile,green,low-cost method may be an effective method to perpare scale-up TMDCs in the near future.

    Supporting Information:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)Radisavljevic,B.;Radenovic,A.;Brivio,J.;Giacometti,V.;Kis, A.Nat.Nanotechnol.2011,6,147.doi:10.1038/nnano.2010.279

    (2)Mark,K.F.;He,K.;Shan,J.;Heinz,T.F.Nat.Nanotechnol. 2012,7,494.doi:10.1038/nnano.2012.96

    (3)Splendiani,A.;Sun,L.;Zhang,Y.;Li,T.;Kim,J.;Chim,C.Y.; Galli,G.;Wang,F.Nano Lett.2010,10,1271.doi:10.1021/ nl903868w

    (4)Li,Y.;Wang,H.;Xie,L.;Liang,Y.;Hong,G.;Dai,H.J.Am.Chem.Soc.2011,133,7296.doi:10.1021/ja201269b

    (5)Dagge,M.;Chianelli,R.R.J.Catal.1994,149,414. doi:10.1006/jcat.1994.1308

    (6)Jaramillo,T.F.;Jorgensen,K.P.;Bonde,J.;Nielsen,J.H.; Horch,S.;Chorkendorff,I.Science 2007,317,100. doi:10.1126/science.1141483

    (7)Karunadasa,H.I.;Montalvo,E.;Sun,Y.;Majda,M.;Long,J. R.;Chang,C.J.Science 2002,335,698.doi:10.1126/ science.1215868

    (8)Benck,J.D.;Chen,Z.;Kuritzky,A.L.;Froman,A.J.; Jaramillo,T.F.ACS Catal.2012,2,1916.doi:10.1021/ cs300451q

    (9)Benchk,J.D.;Hellstern,T.R.;Kibsgaard,J.;Chakthranont,P.; Jaramillo,T.F.ACS Catal.2014,2,3957.doi:10.1021/ cs500923c

    (10)Kibsgarrd,J.;Chen,Z.;Beinecke,B.N.;Jaramillo,T.F.Nat. Mater.2012,11,963.doi:10.1038/nmat3439

    (11)Xie,J.;Zhang,J.;Li,S.;Grote,F.;Zhang,X.;Zhang,H.;Wang, R.;Lei,Y.;Pan,B.;Xie,Y.J.Am.Chem.Soc.2013,135,17881. doi:10.1021/ja408329q

    (12)Xie,J.;Zhang,H.;Li,S.;Wang,R.;Sun,X.;Zhou,M.;Zhou, J.;Lou,X.W.;Xie,Y.Angew.Chem.Int.Ed.2013,25,5807. doi:10.1039/C4SC02019G

    (13)Lee,Y.;Zhang,X.Q.;Zhang,W.;Chang,M.T.;Lin,C.T.; Chang,K.D.;Yu,Y.C.;Wang,J.T.;Chang,C.S.;Li,L.J.;Lin, T.W.Adv.Mat.2012,24,2320.doi:10.1002/adma.201104798

    (14)Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.; Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl. Acad.Sci.U.S.A.2005,102,10451.doi:10.1073/ pnas.0502848102

    (15)Zhan,Y.;Liu,Z.;Najmaei,S.;Ajayan,P.M.;Lou,J.Small 2012,10,966.doi:10.1002/smll.201102654

    (16)Bissessur,R.;Heising,J.;Hirpo,W.;Kanatzidis,M.Chem. Mater.1996,8,318.doi:10.1021/cm950378+

    (17)Danot,M.;Mansot,J.L.;Golub,A.S.;Protzenko,G.A.; Fabritchnyi,P.B.;Novikov,Y.N.;Rouxel,J.Mater.Res.Bull. 1994,29,833.doi:10.1016/0025-5408(94)90003-5

    (18)Golub,A.S.;Zubavichus,Y.V.;Slovokhotov,Y.L.;Novikov,Y. N.;Danot,M.Solid State Ionics 2000,128,151.doi:10.1016/ S0167-2738(99)00347-1

    (19)Tachibana,H.;Yamanaka,Y.;Sakai,H.;Abe,M.;Matsumoto, M.Chem.Mater.2000,12,854.doi:10.1021/cm990664b

    (20)Benavente,E.;Santa Ana,M.A.;Mendizabal,F.;Gonzalez,G. Coord.Chem.Rev.2002,224,87.doi:10.1016/S0010-8545(01) 00392-7

    (21)Coleman,J.;Lotya,M.;O?Neill,A.;Bergin,S.D.;King,P.J.; Khan,U.;Young,K.;Gaucher,A.;De,S.;Smith,R.J.;Shvets, I.V.;Arora,S.;Stanton,G.;Kim,H.Y.;Lee,K.;Kim,G.T.; Duesberg,G.S.;Hallam,T.;Boland,J.J.;Wang,J.J.;Donegan, J.F.;Grunlan,J.;Moriarty,G.;Shmeliov,A.;Nicholls,R.J.; Perkins,J.M.;Grieveson,E.M.;Theuwissen,K.;McComb,D. W.;Nellist,P.D.;Nicolosi,V.Science 2011,331,568. doi:10.1126/science.1194975

    (22)Zhou,K.G.;Mao,N.N.;Wang,H.X.;Peng,Y.;Zhang,H.L. Angew.Chem.Int.Ed.2011,50,10839.doi:10.1002/ ange.201105364

    (23)O′N(xiāo)eill,A.;Khan,Umar;Coleman,J.N.Chem.Mater.2012, 24,2414.doi:10.1021/cm301515z

    (24)Voiry,D.;Salehi,M.;Silva,R.;Fujita,T.;Chen,M.;Asefa,T.; Shenoy,V.B.;Eda,G.;Chhowalla,M.Nano Lett.2013,13, 6222.doi:10.1021/nl403661s

    (25)Jawaid,A.;Nepal,D.;Park,K.;Jespersen,M.;Qualley,A.; Mirau,P.;Drummy,L.F.;Vaia,R.A.Chem.Mater.2016,28, 337.doi:10.1021/acs.chemmater.5b04224

    (26)Zhou,W.;Zou,X.L.;Najmaei,S.;Zheng,L.;Shi,Y.M.;Kong, J.;Lou,J.;Ajayan,P.M.;Yakobson,B.I.;Idrobo,J.Nano Lett. 2013,13,2615.doi:10.1021/nl4007479

    (27)Kalsin,A.M.;Fialkowski,M.;Paszewski,M.;Smoukov,S.K.; Bishop,K.J.M.;Grzybowski,B.A.Science 2006,321,420. doi:10.1126/science.1125124

    (28)Tang,Z.Y.;Zhang,Z.L.;Wang,Y.;Glotzer,S.C.;Kotov,N.A. Science 2006,314,274.doi:10.1126/science.1128045

    (29)Glotzer,S.C.;Solomon,M.J.Nat.Mater.2007,6,557. doi:10.1038/nmat1949

    (30)Min,Y.J.;Akbulut,M.;Kristiansen,K.;Golan,Y.;Israelachvili, J.Nat.Mater.2008,7,527.doi:10.1038/nmat2206

    (31)Schliehe,C.;Juarez,B.H.;Pelletier,M.;Jander,S.;Greshnykh, D.;Nagel,M.;Meyer,A.;Foerster,S.;Kornowski,A.;Klinke, C.;Weller,H.Science 2010,329,550.doi:10.1126/ science.1188035

    (32)Xia,Y.S.;Nguyen,T.D.;Yang,M.;Lee,B.;Santos,A.; Podsiadlo,P.;Tang,Z.Y.;Glotzer,S.C.;Kotov,N.A.Nat. Nanotechnol.2011,6,580.doi:10.1038/nnano.2011.121

    (33)Plote,J.;Erler,R.;Thunemann,A.F.;Emmerling,F.;Kraehnert, R.Chem.Commun.2010,46,9209.doi:10.1039/C0CC03238G

    (34)Polte,J.;Ahner,T.T.;Delissen,F.;Sokolov,S.;Emmerling,F.; Thunemann,A.F.;Kraehnert,R.J.Am.Chem.Soc.2010,132, 1296.doi:10.1021/ja906506j

    (36)Fairbrother,F.;Gee,G.;Merrall,G.T.J.Polym.Sci.1955,16, 459.doi:10.1002/pol.1955.120168231

    (37)Zheng,Y.;Cheng,Y.;Wang,Y.;Zhou,L.;Bao,F.;Jia,C. J.Phys.Chem.B 2006,110(16),8284.doi:10.1021/jp060351l

    (38)Fei,L.F.;Lei,S.J.;Zhang,W.B.;Lu,W.;Lin,Z.Y.;Lam,C. H.;Chai,Y.;Wang,Y.Nat.Commun.2016,7,1.doi:10.1038/ ncomms12206

    (39)Yue,H.R.;Zhao,Y.J.;Gong,J.L.Chem.Soc.Rev.2012,41, 4218.doi:10.1039/C2CS15359A

    (40)Biacchi,A.J.;Schaak,R.E.ACS Nano 2011,5,8089. doi:10.1021/nn2026758

    (41)Fifvet,F.;Lagier,J.P.;Blin,B.Solid State Ionics 1989,32,198.doi:10.1016/0167-2738(89)90222-1

    (42)Silvert,P.V.;Tekaia-Elhsissen,K.Solid State Ionics 1995,82, 53.doi:10.1016/0167-2738(95)00198-F

    (43)Bonet,F.;Delmas,V.;Grugeon,S.;Urina,H.R.;Silvert,P.Y.; Tekaia-Elhsissen,K.Nano Structured Material1999,11,1277. doi:10.1016/S0965-9773(99)00419-5

    (44)Schmitt,P.;Brem,N.;Schunk,S.;Feldmann,C.Adv.Funct. Mater.2011,21,3037.doi:10.1002/adfm.201100655

    (45)Feldmann,C.Adv.Funct.Mater.2003,13,101.doi:10.1002/ adfm.200390014

    (46)Sun,Y.G.;Xia,Y.N.Science 2002,298,2176.doi:10.1126/ science.1077229

    (47)Chen,J.Y.;Herricks,T.;Geissler,M.;Xia,Y.N.J.Am.Chem. Soc.2004,126,10854.doi:10.1021/ja0468224

    (48)Rusitskiy,A.;Xia,Y.N.J.Am.Chem.Soc.2016,138,3161. doi:10.1021/jacs.5b13163

    (49)Akiya,N.;Savage,P.E.Chem.Rev.2002,102,2725. doi:10.1021/cr000668w

    (50)Erickson,B.E.;Helz,G.R.Geochim.Cosmochim.Ac.2000, 64,1149.doi:10.1016/S0016-7037(99)00423-8

    Polyol-Mediated Synthesis of MoS2Nanosheets Using Sulfur Powder as the Sulfur Source

    WANGHui1ZOU De-Chun1,2,*
    (1Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,National Center for Nanoscience and Technology, Beijing 100083,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    MoS2nanosheets are prepared with sulfur powder and Na2MoO4by a one-pottwo-phase method at170-200°C for 8 h.In addition,a three-step growth mechanism based on the aggregation and coalescence modelis proposed.The reassembly ofsulfur powder ensures the transformation from sulfur powder to H2S to reduce Na2MoO4and plays a key role in the successfulpreparation of MoS2nanosheets.The as-prepared MoS2nanosheets are rich in unsaturated sulfur atoms,probably resulting from the dislocation cores of the MoS2nanosheets,which have been found to be beneficialfor hydrogen evolution reaction catalysis.The method and growth mechanism adopted in this study may be applied to other transition metaldichalogenides for similar structures.The facile and green method provides an alternative for the preparation of MoS2nanosheets.

    MoS2nanosheet;Sulfur powder;Aggregation and coalescence model;Ethylene glycol; Two-phase method

    O643;O611.4

    Polte,J.CrystEngComm 2015,17,6809.

    10.1039/ c5ce01014d

    doi:10.3866/PKU.WHXB201702081

    Received:November23,2016;Revised:February 6,2017;Published online:February 8,2017.

    *Corresponding author.Email:dczou@pku.edu.cn;Tel:+86-10-62759799.

    The projectwas supported by the“Thousand Talents”P(pán)rogram of China for Pioneering Researchers and Innovative Teams,National Natural Science Foundation of China(51573004,91333107),and Natural Science Foundation of Beijing,China(Z160002).

    國(guó)家頂尖千人計(jì)劃,國(guó)家自然科學(xué)基金(51573004,91333107)及北京市自然科學(xué)基金(Z160002)資助項(xiàng)目?Editorialoffice of Acta Physico-Chimica Sinica

    猜你喜歡
    二硫化鉬多元醇硫化
    兩性離子聚合物/多元醇復(fù)合井壁強(qiáng)化劑的研制與作用機(jī)理
    二硫化鉬基異質(zhì)結(jié)催化劑可見(jiàn)光降解有機(jī)污染物的研究進(jìn)展
    熱壓法制備二硫化鉬陶瓷靶材工藝研究
    二硫化鉬改性鋁合金活塞微弧氧化膜層的研究
    懸臂式硫化罐的開(kāi)發(fā)設(shè)計(jì)
    巴斯夫推出全新聚醚多元醇產(chǎn)品 幫助減少車(chē)內(nèi)揮發(fā)性有機(jī)化合物
    上海建材(2017年2期)2017-07-21 14:02:10
    簡(jiǎn)述輸送膠帶硫化粘接方法
    鋁合金微弧氧化制備含二硫化鉬的減磨膜層
    硫化砷渣的無(wú)害化處理研究
    蓖麻油基多元醇改性聚氨酯膠黏劑的研究
    99热全是精品| 欧美日韩视频精品一区| 久久精品国产亚洲av天美| 亚洲av电影在线观看一区二区三区 | 免费人成在线观看视频色| 国产av国产精品国产| 日本色播在线视频| 成人亚洲精品一区在线观看 | 男插女下体视频免费在线播放| 日韩强制内射视频| xxx大片免费视频| 纵有疾风起免费观看全集完整版| 成人亚洲欧美一区二区av| 久久鲁丝午夜福利片| 精品少妇黑人巨大在线播放| 日韩在线高清观看一区二区三区| 黄色视频在线播放观看不卡| 中国国产av一级| 深爱激情五月婷婷| 久久影院123| 国产精品三级大全| 一边亲一边摸免费视频| 爱豆传媒免费全集在线观看| 26uuu在线亚洲综合色| 亚洲成人中文字幕在线播放| 精品人妻视频免费看| 中文字幕av成人在线电影| 伦理电影大哥的女人| 免费大片黄手机在线观看| 精品少妇黑人巨大在线播放| 色综合色国产| 久久鲁丝午夜福利片| 黄色一级大片看看| 亚洲精品乱码久久久v下载方式| 王馨瑶露胸无遮挡在线观看| 亚洲av电影在线观看一区二区三区 | 日韩强制内射视频| 欧美国产精品一级二级三级 | 男人爽女人下面视频在线观看| 国产片特级美女逼逼视频| 在线免费十八禁| 国产 精品1| 51国产日韩欧美| 少妇人妻精品综合一区二区| 超碰97精品在线观看| 免费看日本二区| 国产精品久久久久久久久免| 91精品国产九色| 人人妻人人看人人澡| 黄色欧美视频在线观看| 欧美变态另类bdsm刘玥| 天天一区二区日本电影三级| 白带黄色成豆腐渣| 一级毛片黄色毛片免费观看视频| av在线蜜桃| 亚洲精品亚洲一区二区| 3wmmmm亚洲av在线观看| 亚洲av成人精品一二三区| 少妇人妻 视频| 中国三级夫妇交换| 又粗又硬又长又爽又黄的视频| 少妇的逼好多水| 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 91在线精品国自产拍蜜月| 在线观看免费高清a一片| 嫩草影院入口| 日本一二三区视频观看| 熟女人妻精品中文字幕| 久久精品夜色国产| 久热久热在线精品观看| 精品人妻一区二区三区麻豆| 亚洲人成网站高清观看| 看黄色毛片网站| 十八禁网站网址无遮挡 | 精品久久久精品久久久| 亚洲成人久久爱视频| a级毛色黄片| 丝瓜视频免费看黄片| 成年女人在线观看亚洲视频 | 日韩强制内射视频| 女人十人毛片免费观看3o分钟| 国产在视频线精品| 国产成人aa在线观看| 免费看av在线观看网站| 欧美成人午夜免费资源| 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜添av毛片| 成人免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线 | 国产高清不卡午夜福利| 边亲边吃奶的免费视频| 亚洲精品乱码久久久久久按摩| 自拍偷自拍亚洲精品老妇| 少妇人妻久久综合中文| 肉色欧美久久久久久久蜜桃 | 美女cb高潮喷水在线观看| 国产精品国产三级国产专区5o| 香蕉精品网在线| 真实男女啪啪啪动态图| 精品视频人人做人人爽| 不卡视频在线观看欧美| 美女脱内裤让男人舔精品视频| av在线蜜桃| 哪个播放器可以免费观看大片| 各种免费的搞黄视频| 97在线视频观看| 国产精品爽爽va在线观看网站| 91在线精品国自产拍蜜月| 91精品伊人久久大香线蕉| 国产精品嫩草影院av在线观看| 久久精品久久久久久久性| 亚洲人成网站在线播| 伊人久久国产一区二区| 亚洲人成网站在线观看播放| 搞女人的毛片| 精品酒店卫生间| 亚洲第一区二区三区不卡| 中文字幕av成人在线电影| 亚洲欧洲国产日韩| 亚洲最大成人av| 王馨瑶露胸无遮挡在线观看| 午夜激情福利司机影院| 国产爽快片一区二区三区| 精品人妻一区二区三区麻豆| 日韩在线高清观看一区二区三区| 日韩,欧美,国产一区二区三区| 免费观看av网站的网址| av国产免费在线观看| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 亚洲精品久久午夜乱码| 国产精品爽爽va在线观看网站| 一级a做视频免费观看| 少妇的逼好多水| 国产黄片视频在线免费观看| 老司机影院成人| 午夜精品国产一区二区电影 | 少妇高潮的动态图| 在线观看av片永久免费下载| 99久久精品热视频| 国产高清国产精品国产三级 | 亚洲精品国产av成人精品| 99热这里只有是精品在线观看| 99久久人妻综合| 欧美高清成人免费视频www| 亚洲成色77777| 日韩人妻高清精品专区| 看非洲黑人一级黄片| 男女边吃奶边做爰视频| 一区二区三区免费毛片| 欧美3d第一页| 一级毛片aaaaaa免费看小| 五月开心婷婷网| 中文字幕av成人在线电影| 日韩不卡一区二区三区视频在线| 男女边吃奶边做爰视频| 精品久久久精品久久久| 青春草国产在线视频| 又黄又爽又刺激的免费视频.| 日韩在线高清观看一区二区三区| 精品国产一区二区三区久久久樱花 | 18禁在线无遮挡免费观看视频| 乱系列少妇在线播放| 性色av一级| 夜夜爽夜夜爽视频| 国产精品.久久久| 国产永久视频网站| 欧美日韩精品成人综合77777| 国产一区二区亚洲精品在线观看| 亚洲婷婷狠狠爱综合网| a级毛色黄片| 成年女人在线观看亚洲视频 | 一二三四中文在线观看免费高清| 国产精品久久久久久精品电影小说 | 一区二区三区四区激情视频| 国产人妻一区二区三区在| 免费黄频网站在线观看国产| av在线亚洲专区| 亚洲精品aⅴ在线观看| av国产免费在线观看| 亚洲精品国产色婷婷电影| 国产片特级美女逼逼视频| 新久久久久国产一级毛片| 国产伦理片在线播放av一区| 在线天堂最新版资源| av免费观看日本| 搡老乐熟女国产| 久久久久精品性色| 日日啪夜夜爽| 欧美人与善性xxx| 亚洲av中文av极速乱| 国产欧美另类精品又又久久亚洲欧美| 欧美zozozo另类| 狂野欧美激情性bbbbbb| 欧美一级a爱片免费观看看| .国产精品久久| 亚洲成人中文字幕在线播放| 久久精品综合一区二区三区| 亚洲婷婷狠狠爱综合网| 欧美3d第一页| 久久精品熟女亚洲av麻豆精品| 欧美日韩综合久久久久久| 三级经典国产精品| 国产高清不卡午夜福利| 26uuu在线亚洲综合色| 国产高清国产精品国产三级 | 五月天丁香电影| 干丝袜人妻中文字幕| 日韩一区二区视频免费看| 久久女婷五月综合色啪小说 | 视频中文字幕在线观看| 国产黄色视频一区二区在线观看| 国产成人a区在线观看| 色综合色国产| 国产精品福利在线免费观看| 一级毛片电影观看| 亚洲av免费高清在线观看| 亚洲av在线观看美女高潮| 99re6热这里在线精品视频| 2021天堂中文幕一二区在线观| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| 免费黄网站久久成人精品| 十八禁网站网址无遮挡 | 亚洲国产成人一精品久久久| 国产伦在线观看视频一区| 亚洲av欧美aⅴ国产| 日韩av免费高清视频| 亚洲av免费高清在线观看| 一级爰片在线观看| 亚洲电影在线观看av| 亚洲熟女精品中文字幕| 亚洲精品色激情综合| 国产亚洲精品久久久com| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 一级二级三级毛片免费看| 熟女人妻精品中文字幕| 天堂网av新在线| 成年女人看的毛片在线观看| 国产精品久久久久久精品电影| 嫩草影院入口| 亚洲精品乱码久久久v下载方式| 少妇高潮的动态图| 婷婷色综合大香蕉| 啦啦啦中文免费视频观看日本| 男人狂女人下面高潮的视频| 中国美白少妇内射xxxbb| freevideosex欧美| 久久久久久国产a免费观看| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 日日啪夜夜撸| 久久ye,这里只有精品| 人妻系列 视频| 免费av观看视频| 国产精品成人在线| 亚洲精品国产色婷婷电影| 99热6这里只有精品| 另类亚洲欧美激情| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 麻豆乱淫一区二区| 在线播放无遮挡| 久久99精品国语久久久| 我要看日韩黄色一级片| 日韩 亚洲 欧美在线| 少妇的逼水好多| 国产精品偷伦视频观看了| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 97人妻精品一区二区三区麻豆| 久久6这里有精品| 亚洲久久久久久中文字幕| h日本视频在线播放| 看非洲黑人一级黄片| 性色avwww在线观看| 在线观看一区二区三区激情| 制服丝袜香蕉在线| xxx大片免费视频| 国产精品久久久久久精品电影小说 | 久久6这里有精品| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 婷婷色综合大香蕉| 69av精品久久久久久| 久久久久久久久久久丰满| 你懂的网址亚洲精品在线观看| 爱豆传媒免费全集在线观看| 美女cb高潮喷水在线观看| 国产高清三级在线| 久久热精品热| 日韩强制内射视频| 久久精品久久久久久久性| 亚洲最大成人中文| 五月伊人婷婷丁香| 欧美成人a在线观看| 国产 一区 欧美 日韩| 国产免费福利视频在线观看| 九色成人免费人妻av| 久久精品国产亚洲网站| 搞女人的毛片| 亚洲av成人精品一二三区| 日本一二三区视频观看| 联通29元200g的流量卡| 天天躁夜夜躁狠狠久久av| 观看美女的网站| 国产91av在线免费观看| 人体艺术视频欧美日本| 99久久中文字幕三级久久日本| 日本一二三区视频观看| 免费少妇av软件| 1000部很黄的大片| 国产视频首页在线观看| 国产精品久久久久久久久免| 老司机影院毛片| 国产男人的电影天堂91| 成年人午夜在线观看视频| 久久久精品免费免费高清| 汤姆久久久久久久影院中文字幕| 免费观看性生交大片5| 中文在线观看免费www的网站| 22中文网久久字幕| 久久久精品欧美日韩精品| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 少妇 在线观看| 日本-黄色视频高清免费观看| 亚洲欧洲国产日韩| 日本欧美国产在线视频| 国产在线男女| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 国产午夜精品一二区理论片| 神马国产精品三级电影在线观看| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 免费观看av网站的网址| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 国产午夜福利久久久久久| 国国产精品蜜臀av免费| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 国产精品人妻久久久影院| 韩国av在线不卡| 黄色配什么色好看| 大码成人一级视频| 韩国高清视频一区二区三区| 女人久久www免费人成看片| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 天天一区二区日本电影三级| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 在线精品无人区一区二区三 | 亚洲怡红院男人天堂| 精品人妻熟女av久视频| 内射极品少妇av片p| 大码成人一级视频| 婷婷色av中文字幕| 国产精品久久久久久久电影| 国产男女内射视频| 久久久久久久大尺度免费视频| av在线蜜桃| 国产一区二区亚洲精品在线观看| 秋霞在线观看毛片| 三级经典国产精品| 免费电影在线观看免费观看| 精品人妻熟女av久视频| 亚洲国产日韩一区二区| 丰满人妻一区二区三区视频av| 水蜜桃什么品种好| 黄色一级大片看看| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 国产成人精品久久久久久| 免费大片18禁| 亚洲天堂国产精品一区在线| 亚洲一区二区三区欧美精品 | 久久精品国产亚洲av涩爱| 亚洲国产精品专区欧美| 国产美女午夜福利| av福利片在线观看| 精品一区在线观看国产| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 免费观看无遮挡的男女| 一级毛片aaaaaa免费看小| 欧美日韩精品成人综合77777| 亚洲精品日本国产第一区| 欧美激情久久久久久爽电影| 久久人人爽人人爽人人片va| 超碰97精品在线观看| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| 男人添女人高潮全过程视频| 欧美bdsm另类| 亚洲成人久久爱视频| 免费av不卡在线播放| 日韩强制内射视频| 国产综合懂色| 国产极品天堂在线| 一级毛片我不卡| 日韩欧美一区视频在线观看 | 一级爰片在线观看| 免费观看a级毛片全部| 日韩亚洲欧美综合| 亚洲最大成人中文| 色哟哟·www| 日日啪夜夜爽| 街头女战士在线观看网站| 婷婷色综合www| 伊人久久精品亚洲午夜| 国产国拍精品亚洲av在线观看| 国产爽快片一区二区三区| 亚洲av中文av极速乱| 久久国内精品自在自线图片| 人人妻人人爽人人添夜夜欢视频 | 狠狠精品人妻久久久久久综合| 在线观看av片永久免费下载| 丰满少妇做爰视频| 日韩在线高清观看一区二区三区| 中国三级夫妇交换| 晚上一个人看的免费电影| 久久精品人妻少妇| 久久久久九九精品影院| 99re6热这里在线精品视频| 国产一区二区亚洲精品在线观看| 国产久久久一区二区三区| 国产极品天堂在线| 热99国产精品久久久久久7| 岛国毛片在线播放| 亚洲最大成人av| 久久久精品免费免费高清| 亚洲伊人久久精品综合| 日产精品乱码卡一卡2卡三| 蜜臀久久99精品久久宅男| 丝袜美腿在线中文| 国产成人一区二区在线| 精品午夜福利在线看| 国产91av在线免费观看| freevideosex欧美| 国内精品宾馆在线| 国产精品一区二区在线观看99| 亚洲最大成人av| 中文字幕久久专区| 国产精品av视频在线免费观看| 51国产日韩欧美| 制服丝袜香蕉在线| 国产免费一区二区三区四区乱码| 97超碰精品成人国产| 欧美精品国产亚洲| 又爽又黄a免费视频| 精品人妻视频免费看| 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 少妇裸体淫交视频免费看高清| 日韩一区二区视频免费看| 在线观看三级黄色| av黄色大香蕉| 又大又黄又爽视频免费| 久久99热这里只有精品18| 99热全是精品| 国产精品一区二区性色av| 精品久久久久久久末码| 国产伦理片在线播放av一区| 中文精品一卡2卡3卡4更新| 99热这里只有精品一区| 在线观看av片永久免费下载| 2021少妇久久久久久久久久久| 老司机影院毛片| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 亚洲内射少妇av| 天堂网av新在线| www.色视频.com| 午夜精品国产一区二区电影 | 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 亚洲综合色惰| 丝瓜视频免费看黄片| 日韩中字成人| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 亚洲国产精品成人久久小说| 成年女人看的毛片在线观看| 亚洲婷婷狠狠爱综合网| 伦理电影大哥的女人| 深爱激情五月婷婷| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 日本三级黄在线观看| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 亚洲成人精品中文字幕电影| 久久久久性生活片| 日韩av不卡免费在线播放| 大香蕉97超碰在线| av天堂中文字幕网| 欧美成人a在线观看| 内射极品少妇av片p| 男女国产视频网站| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 国产成人精品一,二区| 18禁裸乳无遮挡动漫免费视频 | 少妇被粗大猛烈的视频| 性色av一级| 国产午夜精品久久久久久一区二区三区| 少妇 在线观看| 男人舔奶头视频| 下体分泌物呈黄色| 欧美三级亚洲精品| 大片免费播放器 马上看| 不卡视频在线观看欧美| 久久久久久久精品精品| 伦精品一区二区三区| 久久人人爽av亚洲精品天堂 | 赤兔流量卡办理| 夫妻午夜视频| a级一级毛片免费在线观看| 黑人高潮一二区| 免费少妇av软件| 大码成人一级视频| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 中文在线观看免费www的网站| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 国产伦精品一区二区三区视频9| 亚洲精品国产av蜜桃| 精品久久久久久久久亚洲| 女人被狂操c到高潮| 国产极品天堂在线| 性色av一级| 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| 成人黄色视频免费在线看| 成年免费大片在线观看| 一区二区三区精品91| 免费看av在线观看网站| 免费观看a级毛片全部| 免费看日本二区| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 欧美极品一区二区三区四区| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| 少妇被粗大猛烈的视频| 国产91av在线免费观看| 视频区图区小说| 精品人妻一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女av电影| 一级毛片久久久久久久久女| 99re6热这里在线精品视频| 国产高清有码在线观看视频| 国产成人精品福利久久| 毛片一级片免费看久久久久| 欧美区成人在线视频| 国产在视频线精品| 永久免费av网站大全| 最近的中文字幕免费完整| 亚洲精品,欧美精品| 成人二区视频| 免费播放大片免费观看视频在线观看| 九九爱精品视频在线观看| 精品一区二区免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 一边亲一边摸免费视频| 久久久欧美国产精品| 少妇裸体淫交视频免费看高清| 欧美激情国产日韩精品一区| 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 久久久久网色| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 精品国产乱码久久久久久小说| 成年av动漫网址| 七月丁香在线播放| 精品一区二区三卡| 嫩草影院精品99| 99re6热这里在线精品视频| 亚洲婷婷狠狠爱综合网| 一级毛片黄色毛片免费观看视频| 亚洲国产色片| 蜜臀久久99精品久久宅男| 国产v大片淫在线免费观看| 精品久久久久久电影网| 日韩视频在线欧美| 国产精品爽爽va在线观看网站| 欧美激情国产日韩精品一区| 亚洲国产精品成人综合色| 国产高清不卡午夜福利| 男人和女人高潮做爰伦理| 男人舔奶头视频| 欧美成人精品欧美一级黄| 亚洲怡红院男人天堂| 国产探花在线观看一区二区| 免费大片18禁| 国产男女超爽视频在线观看| 久久久久网色| freevideosex欧美| 亚洲久久久久久中文字幕|