肖珊+阿勒滕齊齊格+姚華+蘇銀霞+王志強(qiáng)+馬琦+朱筠
[摘要] 目的 研究基因CDKAL1、CDKN2A/2B、FTO的單核苷酸多態(tài)性(SNPs)與維吾爾族2型糖尿病的關(guān)聯(lián)以及基因間的交互作用。 方法 通過病例-對(duì)照研究的方法,收集新疆醫(yī)科大學(xué)第一附屬醫(yī)院(以下簡(jiǎn)稱“我院”)2012年3月~2013年9月期間住院的維吾爾族2型糖尿病患者1000例作為病例組,選擇同期在我院進(jìn)行體檢的維吾爾族非糖尿病者1010例作為對(duì)照組。采用Sequenom MassARRAYRSNP技術(shù)檢測(cè)CDKAL1、CDKN2A/2B、FTO基因的7個(gè)SNPs位點(diǎn),最終納入研究的是所有位點(diǎn)均檢測(cè)成功的病例組879例和對(duì)照組895例。兩組各SNPs的基因型及等位基因頻率的比較采用χ2檢驗(yàn)。使用Logistic回歸分析各SNPs的遺傳模型。使用GMDR 0.9軟件分析各基因間交互作用。 結(jié)果 7個(gè)位點(diǎn)的基因型分布均符合Hardy-Weinberg平衡(P > 0.05)。位點(diǎn)rs10811661、rs7195539、rs8050136、rs9939609的基因型和位點(diǎn)rs8050136、rs9939609的等位基因分布在兩組間分布差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),兩位點(diǎn)的風(fēng)險(xiǎn)等位基因均是A。兩組間位點(diǎn)rs10811661、rs8050136、rs9939609的基因型分布在遺傳模型中差異有統(tǒng)計(jì)學(xué)意義(P < 0.05)。通過GMDR軟件進(jìn)行基因-基因交互作用分析,二階交互作用模型rs10811661-rs7195539為最佳模型,進(jìn)行1000次置換檢驗(yàn)后P=0.014。 結(jié)論 CDKAL1的基因多態(tài)性可能與維吾爾族2型糖尿病的發(fā)病風(fēng)險(xiǎn)無關(guān)。CDKN2A/2B(rs10811661)、FTO(rs7195539、rs8050136、rs9939609)的基因多態(tài)性可能與維吾爾族2型糖尿病的發(fā)病風(fēng)險(xiǎn)有關(guān),其中,rs8050136和rs9939609的等位基因A可能是維吾爾族2型糖尿病發(fā)病的風(fēng)險(xiǎn)等位基因。在維吾爾族2型糖尿病發(fā)病過程中CDKN2A/2B(rs10811661)與FTO(rs7195539)間可能存在交互作用。
[關(guān)鍵詞] 2型糖尿病;維吾爾族;基因多態(tài)性;交互作用
[中圖分類號(hào)] R587.1 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)03(c)-0016-07
Gene polymorphisms of CDKAL1, CDKN2A/2B, FTO association with type 2 diabetes mellitus and gene-gene interaction in Uygur Population
XIAO Shan1,3 Aleteng Qiqige1,3 YAO Hua2,3 SU Yinxia2,3 WANG Zhiqiang2,3 MA Qi2,3 ZHU Jun1,3▲
1.Department of Endocrinology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China; 2.Key Laboratory of Metabolic Disease in Xinjiang, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China; 3.Center of Prevention, Diagnosis, and Treatment of Diabetes, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China
[Abstract] Objective To investigate the relationship among single nucleotide polymorphisms of CDKAL1, CDKN2A/2B, FTO, and type 2 diabetes mellitus (T2DM) in Uygur, and further to analyze the possible gene-gene interaction. Methods A case-control study was designed. 1000 cases of hospitalized Uygur with T2DM were selected as cases group in the First Affiliated Hospital of Xinjiang Medical University from March 2012 to September 2013. 1010 Uygur without diabetes mellitus (DM) who did physical examination during the same time in the same hospital were selected as the control group. Seven SNPs in CDKAL1, CDKN2A/2B and FTO were tested using the technology of Sequenom MassARRAYRSNP. Finally the cases, in which all the loci were successfully detected, were 879 in cases group and 895 in control group. Chi-square was used to analyze the distribution of genotype and allele. Logistic regression analysis was used to analyze the genetic models. Gene-gene interaction was analyzed by Generalized Multifactor Dimensionality Reduction 0.9 software. Results The genotype distributions of the 7 loci were in accordance with Hardy-Weinberg equilibrium (P > 0.05). Genotype distributions of rs10811661, rs7195539, rs8050136, rs9939609 and allele frequencies of rs8050136, rs9939609 were significantly different between cases group and control group (all P < 0.05). The risk allele was A in loci rs8050136 and rs9939609. The genotype distributions of rs10811661, rs8050136, and rs9939609 differed significantly in genetic models (P < 0.05). In the GMDR analysis, the second-order interaction of rs10811661-rs7195539 was the best model, after the 1000 times replacement tests, P=0.014. Conclusion The gene polymorphism in CDKAL1 may be unrelated with T2DM. The polymorphisms in CDKN2A/2B (rs10811661) and FTO (rs7195539, rs8050136, rs9939609) may be associated with T2DM, and A allele of rs8050136 and rs9939609 are likely risk alleles for T2DM in Uygur. There is potential interaction among CDKN2A/2B (rs10811661)-FTO (rs7195539) in the pathogenesis of T2DM in Uygur population.
[Key words] Type 2 diabetes; Uygur; Gene polymorphisms; Interaction
目前糖尿?。―M)的患病率呈快速上升的趨勢(shì),成為繼心腦血管疾病、腫瘤之后另一個(gè)嚴(yán)重危害人民健康的重要慢性非傳染性疾病。2010年中國疾病預(yù)防控制中心和中華醫(yī)學(xué)會(huì)內(nèi)分泌學(xué)分會(huì)應(yīng)用世界衛(wèi)生組織(WHO)1999年的診斷標(biāo)準(zhǔn)發(fā)現(xiàn)我國DM患病率為9.7%,再次證實(shí)我國可能已成為DM患病人數(shù)最多的國家,若同時(shí)以糖化血紅蛋白(HbA1c)≥6.5%作為DM診斷標(biāo)準(zhǔn)之一,則其患病率為11.6%[1]。新疆位于亞歐大陸中部,占全國陸地總面積的1/6,是一個(gè)多民族聚居的地區(qū),其中維吾爾族約占總?cè)丝诘?6%。2012年Yang等[2]通過流行病學(xué)調(diào)查發(fā)現(xiàn),維吾爾族T2DM的患病率為6.23%,這些維吾爾族DM患者中僅有35%清楚DM診斷,7.3%使用降糖藥物,3.13%血糖控制達(dá)標(biāo)。以上數(shù)據(jù)均說明維吾爾族DM防治工作刻不容緩。
2型糖尿?。═2DM)是由遺傳和環(huán)境因素共同作用的復(fù)雜疾病,其中,遺傳因素在T2DM的發(fā)病過程中扮演著至關(guān)重要的角色。全基因組關(guān)聯(lián)研究(genome-wide association studies,GWAS)通過尋找整個(gè)基因組的遺傳差異成功確定與T2DM有很強(qiáng)關(guān)聯(lián)的基因位點(diǎn),位點(diǎn)數(shù)由2006年的3個(gè)增加至目前的大約70個(gè)[3],其中包括CDKAL1、CDKN2A/2B、FTO 3個(gè)基因的易感位點(diǎn)。目前HapMap計(jì)劃已經(jīng)提供了漢族人群、歐洲人群等不同種族全基因組SNPs基因型數(shù)據(jù),但以上3個(gè)基因在維吾爾族人群中尚未進(jìn)行驗(yàn)證。本研究通過分析維吾爾族各單核苷酸多態(tài)性(single nucleotide polymorphisms,SNPs)與T2DM的關(guān)聯(lián),以及基因間的交互作用,為將來進(jìn)一步揭示維吾爾族T2DM的分子發(fā)病機(jī)制奠定基礎(chǔ)。
1 資料與方法
1.1 一般資料
選擇2012年3月~2013年9月在新疆醫(yī)科大學(xué)第一附屬醫(yī)院(以下簡(jiǎn)稱“我院”)住院的維吾爾族T2DM患者1000例作為病例組,選擇同期在我院體檢的無DM、無血緣關(guān)系的維吾爾族1010例作為對(duì)照組。最終納入研究的是所有位點(diǎn)均檢測(cè)成功的病例組879例,其中,男543例,女336例,年齡21~83歲,平均(51.3±9.7)歲;對(duì)照組895例,其中,男571例,女324例,年齡21~79歲,平均(50.4±9.9)歲。病例組及對(duì)照組年齡及性別構(gòu)成差異無統(tǒng)計(jì)學(xué)意義(P > 0.05),具有可比性。參加本研究之前,所有調(diào)查對(duì)象均填寫了知情同意書,研究方案已得到我院倫理委員會(huì)批準(zhǔn)。DM的診斷符合1999年WHO的糖尿病診斷標(biāo)準(zhǔn)[4]或既往已明確診斷為T2DM。
1.2 方法
所有調(diào)查對(duì)象均抽取靜脈抗凝血4 mL,分裝至EP管中,置于-80℃冰箱保存,以備提取DNA。
使用北京百泰克生物技術(shù)有限公司的核酸自動(dòng)提取儀提取外周血DNA,具體操作步驟參照核酸自動(dòng)提取儀的使用方法進(jìn)行。提取出DNA后,經(jīng)1%瓊脂糖凝膠電泳儀進(jìn)行檢測(cè),估計(jì)濃度和DNA降解程度。質(zhì)檢合格的DNA A260/A280比值(OD值)為1.8~2.0,電泳圖中條帶好,且濃度大于50 ng/μL方可使用。隨后樣本轉(zhuǎn)移至96孔板,-20℃儲(chǔ)存?zhèn)溆谩?/p>
選取CDKAL1、CDKN2A/2B、FTO基因的7個(gè)研究熱點(diǎn)SNPs進(jìn)行研究,包括rs10946398、rs7754840、rs10811661、rs3088440、rs7195539、rs8050136、rs9939609。SNPs的檢測(cè)均由北京博奧生物有限公司進(jìn)行,采用Sequenom MassARRAYRSNP技術(shù)檢測(cè),本研究的基因分型成功率和準(zhǔn)確率>98%。
1.3 統(tǒng)計(jì)學(xué)方法
采用SPSS 21.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)算對(duì)照組的Hardy-Weinberg平衡判斷樣本的群體代表性。兩組各SNPs基因型及等位基因頻率的比較采用χ2檢驗(yàn)。使用Logistic回歸分析維吾爾族T2DM各SNPs的共顯性、加性、顯性及隱性遺傳模型。使用GMDR 0.9軟件分析各基因間交互作用,選擇交叉驗(yàn)證一致性及測(cè)試平衡準(zhǔn)確性均較高的模型作為最佳模型。以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 維吾爾族各SNPs在兩組間的分布
7個(gè)位點(diǎn)對(duì)照組的基因型分布均符合Hardy-Weinberg平衡(P > 0.05),具有群體代表性,進(jìn)行進(jìn)一步統(tǒng)計(jì)分析。兩組間各SNPs基因型及等位基因的分布、遺傳模型Logistic回歸分析結(jié)果顯示,位點(diǎn)rs10946398、rs7754840、rs3088440的基因型和等位基因分布在兩組間差異無統(tǒng)計(jì)學(xué)意義(P > 0.05)。位點(diǎn)rs10811661、rs7195539、rs8050136、rs9939609的基因型分布和位點(diǎn)rs8050136、rs9939609的等位基因分布在兩組間差異有統(tǒng)計(jì)學(xué)(P < 0.05),兩位點(diǎn)的風(fēng)險(xiǎn)等位基因均是A,OR值分別為1.198(95%CI 1.037~1.384)、1.238(95%CI 1.075~1.427)。兩組間位點(diǎn)rs10811661基因型分布在共顯性、加性和隱性模型中差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),OR值分別為1.484(95%CI 1.010~2.183)、1.230(95%CI 1.057~1.431)、1.276(95%CI 1.057~1.541)。兩組間位點(diǎn)rs8050136基因型分布在共顯性、加性和顯性模型中差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),OR值分別為1.472(95%CI 1.045~2.072)、1.196(95%CI 1.035~1.382)、1.220(95%CI 1.012~1.470)。兩組間位點(diǎn)rs9939609基因型分布在共顯性、加性、顯性和隱性模型中差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),OR值分別為1.224(95%CI 1.004~1.492)、1.513(95%CI 1.106~2.070)、1.228(95%CI 1.069~1.411)、1.279(95%CI 1.061~1.542)、1.377(95%CI 1.021~1.858)。見表1。
2.2 各SNPs之間基因-基因交互作用
將各SNPs位點(diǎn)按照共顯性模型賦值。通過GMDR軟件進(jìn)行基因-基因交互作用分析結(jié)果顯示,二階交互作用模型rs10811661-rs7195539為最佳模型,其交叉驗(yàn)證一致性為10/10,測(cè)試平衡準(zhǔn)確性最高為0.5483,且P=0.011,進(jìn)行1000次置換檢驗(yàn)后P=0.014,見表2。圖1為最佳模型的基因-基因間交互作用圖。
3 討論
在過去的近10年,GWAS成為確定與復(fù)雜疾病有關(guān)聯(lián)的常見基因變異的首選方法。GWAS中陸續(xù)發(fā)現(xiàn)了很多與T2DM相關(guān)的易感基因,包括CDKN2A/2B[5]、CDKAL1[5]和FTO[6]。本研究首次在維吾爾族人群分析CDKN2A/2B、CDKAL1和FTO這三個(gè)基因與T2DM的關(guān)聯(lián)。
CDK5調(diào)節(jié)亞基相關(guān)蛋白1樣因子1(CDK5 regulatory subunit associated protein 1-like 1,CDKAL1)基因,目前的生理學(xué)功能仍然是個(gè)謎,顧名思義,該基因的氨基酸序列與CDK5調(diào)節(jié)相關(guān)蛋白1高度類似,該蛋白做為CDK5調(diào)節(jié)亞基p35和p39的結(jié)合蛋白而被發(fā)現(xiàn)[7]。目前發(fā)現(xiàn),CDKAL1基因有5個(gè)SNPs與T2DM有關(guān),包括rs4712523、rs10946398、rs7754840、rs7756992、rs9465871。以上所有的SNPs均位于CDKAL1上6p22.3區(qū)域的5號(hào)內(nèi)含子,為非編碼的SNPs[8]。Stancakova等[9]在芬蘭男性受試者進(jìn)行的病例-對(duì)照研究中發(fā)現(xiàn)位點(diǎn)rs7754840與芬蘭男性T2DM有關(guān)聯(lián)。Zeggini等[10]在英國的研究發(fā)現(xiàn),rs10946398與T2DM的關(guān)聯(lián)很引人注目,P值=8.4×10-5,OR值=1.14(95%CI 1.07~1.22)。本研究未發(fā)現(xiàn)CDKAL1基因的常見易感位點(diǎn)rs10946398、rs7754840與維吾爾族T2DM的發(fā)病風(fēng)險(xiǎn)有關(guān)聯(lián)。
細(xì)胞周期素依賴性蛋白激酶抑制因子2A/2B(cyclin-dependent kinase inhibitor 2A/2B,CDKN2A/2B)基因,CDKN2A和CDKN2B位于染色體9p21,是兩個(gè)鄰近的細(xì)胞周期蛋白依賴性激酶抑制基因。CDKN2A和CDKN2B分別編碼CDK抑制劑p16INK4a和p15IN K4b,抑制CDK4和CDK6的活性。在包括歐洲和亞洲的多項(xiàng)研究[11-19]中均證實(shí)了rs10811661多態(tài)性與T2DM有關(guān)聯(lián)。然而也有部分研究[15,20-22]未發(fā)現(xiàn)rs10811661多態(tài)性與T2DM的關(guān)聯(lián)。本研究中位點(diǎn)rs10811661的基因型分布在兩組間存在統(tǒng)計(jì)學(xué)差異,提示rs10811661基因多態(tài)性可能與維吾爾族T2DM發(fā)病風(fēng)險(xiǎn)有關(guān)聯(lián)。同時(shí),其基因型分布在共顯性、加性和隱性模型中均有統(tǒng)計(jì)學(xué)差異,OR值分別為1.484、1.230、1.276,提示TT基因型攜帶者發(fā)生T2DM的風(fēng)險(xiǎn)增加。迄今為止多項(xiàng)研究關(guān)注的均是CDKN2A/2B基因位點(diǎn)rs3088440的多態(tài)性與惡性腫瘤發(fā)病的相關(guān)性,包括其SNP增加唾液腺癌[23]和黑色素瘤[24]的發(fā)病風(fēng)險(xiǎn),與宮頸癌[25]和分化型甲狀腺癌[26]發(fā)病無關(guān)聯(lián)。既往尚未進(jìn)行該位點(diǎn)與T2DM相關(guān)性的研究。本研究發(fā)現(xiàn),位點(diǎn)rs3088440的基因型及等位基因分布在兩組間差異均無統(tǒng)計(jì)學(xué)意義,提示其與維吾爾族T2DM發(fā)病風(fēng)險(xiǎn)無關(guān)。
脂肪量及肥胖相關(guān)基因(fat mass and obesity-associated,F(xiàn)TO),是2007年由Frayling等[27]研究白色人種時(shí)發(fā)現(xiàn)的脂肪量與肥胖相關(guān)基因,它定位于染色體16q12.2上,全長(zhǎng)約430 kb,包含9個(gè)外顯子、8個(gè)內(nèi)含子。既往有關(guān)FTO的研究中尚未針對(duì)位點(diǎn)rs7195539進(jìn)行過研究。位點(diǎn)rs8050136及rs9939609與T2DM的關(guān)聯(lián)在多個(gè)研究中均得到證實(shí),但研究結(jié)果不一致。部分研究[27-31]認(rèn)為上述位點(diǎn)的SNP與T2DM的關(guān)聯(lián)是通過BMI介導(dǎo)的,但部分研究[32-35]認(rèn)為上述位點(diǎn)SNP與T2DM的關(guān)聯(lián)是獨(dú)立于BMI的。本研究中位點(diǎn)rs7195539、rs8050136、rs9939609的基因型分布在兩組間差異有統(tǒng)計(jì)學(xué)意義,提示其SNP可能與維吾爾族T2DM的發(fā)病風(fēng)險(xiǎn)有關(guān)聯(lián)。位點(diǎn)rs8050136、rs9939609的等位基因分布在兩組間差異有統(tǒng)計(jì)學(xué)意義,兩位點(diǎn)的風(fēng)險(xiǎn)等位基因均是A,OR值分別為1.198、1.238,提示rs8050136、rs9939609上攜帶等位基因A的維吾爾族發(fā)生T2DM的風(fēng)險(xiǎn)是增加的。兩組間位點(diǎn)rs8050136的基因型分布在共顯性、加性、顯性模型中差異有統(tǒng)計(jì)學(xué)意義,OR值分別為1.472、1.196、1.220;兩組間位點(diǎn)rs9939609的基因型分布在共顯性、加性、顯性、隱性中差異均有統(tǒng)計(jì)學(xué)意義,OR值分別為1.224、1.513、1.228、1.279、1.377,提示位點(diǎn)rs8050136上攜帶基因型CA或AA的維吾爾族較攜帶CC者、位點(diǎn)rs9939609上攜帶基因型TA或AA的維吾爾族較攜帶TT者發(fā)生T2DM的風(fēng)險(xiǎn)增加。
多因子降維法(multifactor dimensionality reduction,MDR)是近年來發(fā)展起來的一種非參數(shù)、無需遺傳模式的高階交互作用分析方法[36],被成功應(yīng)用于在多發(fā)性硬化、T2DM等疾病的病因研究中[37]。但由于該法不能用于數(shù)量性狀的研究,為此Lou等[38]在2007年提出了一種基于MDR基本原理的擴(kuò)展方法——廣義多因子降維法(generalized multifactor dimensionality,GMDR),又稱基于計(jì)分的多因子降維法。該法可以通過將廣義線性模型的概念引入到MDR中,使其不但能夠分析連續(xù)變量,且能夠納入?yún)f(xié)變量,從而控制協(xié)變量引起的干擾,提高預(yù)測(cè)的準(zhǔn)確度。通過GMDR軟件進(jìn)行基因-基因交互作用分析,二階交互作用模型rs10811661-rs7195539為最佳模型,提示在維吾爾族T2DM發(fā)病過程中,rs10811661-rs7195539間可能存在交互作用。
綜上所述,CDKAL1的基因多態(tài)性可能與維吾爾族T2DM的發(fā)病風(fēng)險(xiǎn)無關(guān)。CDKN2A/2B(rs10811661)、FTO(rs7195539、rs8050136、rs9939609)的基因多態(tài)性可能與維吾爾族T2DM的發(fā)病風(fēng)險(xiǎn)有關(guān),其中rs8050136和rs9939609的等位基因A可能是維吾爾族T2DM發(fā)病的風(fēng)險(xiǎn)等位基因。在維吾爾族T2DM發(fā)病過程中CDKN2A/2B(rs10811661)-FTO(rs7195539)間可能存在交互作用。
[參考文獻(xiàn)]
[1] Xu Y,Wang L,He J,et al. Prevalence and control of diabetes in Chinese adults [J]. JAMA,2013,310(9):948-959.
[2] Yang YN,Xie X,Ma YT,et al. Type 2 diabetes in Xinjiang Uygur autonomous region,China [J]. PLoS One,2012,7(4):e35270.
[3] Kato N. Insights into the genetic basis of type 2 diabetes [J]. J Diabetes Investig,2013,4(3):233-244.
[4] Puavilai G,Chanprasertyotin S,Sriphrapradaeng A. Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance:1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus(ADA),1998 WHO consultation criteria,and 1985 WHO criteria. World Health Organization [J]. Diabetes Res Clin Pract,1999,44(1):21-26.
[5] Saxena R,Voight BF,Lyssenko V,et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels [J]. Science,2007,316(5829):1331-1336.
[6] Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology [J]. Nat Rev Genet,2007,8(9):657-662.
[7] Ching YP,Pang AS,Lam WH,et al. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor [J]. J Biol Chem,2002,277(18):15237-15240.
[8] 花巍,竇昊穎,黃海超,等.細(xì)胞周期素依賴性激酶5調(diào)節(jié)亞單位相關(guān)蛋白1類似物1基因多態(tài)性與2型糖尿病相關(guān)性的研究進(jìn)展[J].中國慢性病預(yù)防與控制,2012, 20(4):471-474.
[9] Stancakova A,Pihlajamaki J,Kuusisto J,et al. Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance [J]. J Clin Endocrinol Metab,2008,93(5):1924-1930.
[10] Zeggini E,Weedon MN,Lindgren CM,et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes [J]. Science,2007,316(5829):1336-1341.
[11] Han X,Luo Y,Ren Q,et al. Implication of genetic variants near SLC30A8,HHEX,CDKAL1,CDKN2A/B,IGF2BP2,F(xiàn)TO,TCF2,KCNQ1,and WFS1 in Type 2 Diabetes in a Chinese population [J]. BMC Medical Genetics,2010,11(1):81.
[12] Qian Y,Lu F,Dong M,et al. Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in han chinese:a case-control study [J]. PLoS One,2015,10(1):e116537.
[13] Chen G,Xu Y,Lin Y,et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population [J]. J Diabetes,2013,5(2):136-145.
[14] Gamboa-Melendez MA,Huerta-Chagoya A,Moreno-Macias H,et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population [J]. Diabetes,2012,61(12):3314-3321.
[15] Wen J,Ronn T,Olsson A,et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B,CDKAL1,and TCF7L2 as susceptibility genes in a Han Chinese cohort [J]. PLoS One,2010,5(2):e9153.
[16] Hu C,Zhang R,Wang C,et al. PPARG,KCNJ11,CDKAL1,CDKN2A-CDKN2B,IDE-KIF11-HHEX,IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population [J]. PLoS One,2009,4(10):e7643.
[17] Takeuchi F,Serizawa M,Yamamoto K,et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population [J]. Diabetes,2009,58(7):1690-1699.
[18] Lee YH,Kang ES,Kim SH,et al. Association between polymorphisms in SLC30A8,HHEX,CDKN2A/B,IGF2BP2,F(xiàn)TO,WFS1,CDKAL1,KCNQ1 and type 2 diabetes in the Korean population [J]. J Hum Genet,2008,53(11-12):991-998.
[19] Cauchi S,Meyre D,Durand E,et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value [J]. PLoS One,2008,3(5):e2031.
[20] Herder C,Rathmann W,Strassburger K,et al. Variants of the PPARG,IGF2BP2,CDKAL1,HHEX,and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies [J]. Horm Metab Res,2008,40(10):722-726.
[21] Hubacek JA,Neskudla T,Klementova M,et al. Tagging rs10811661 variant at CDKN2A/2B locus is not associated with type 2 diabetes mellitus in Czech population [J]. Folia Biol(Praha),2013,59(4):168-171.
[22] Nemr R,Almawi AW,Echtay A,et al. Replication study of common variants in CDKAL1 and CDKN2A/2B genes associated with type 2 diabetes in Lebanese Arab population [J]. Diabetes Res Clin Pract,2012,95(2):e37-e40.
[23] Jin L,Xu L,Song X,et al. Genetic variation in MDM2 and p14ARF and susceptibility to salivary gland carcinoma [J]. PLoS One,2012,7(11):e49361.
[24] Maccioni L,Rachakonda P,Bermejo J,et al. Variants at the 9p21 locus and melanoma risk [J]. BMC Cancer,2013,13(1):325.
[25] Chansaenroj J,Theamboonlers A,Junyangdikul P,et al. Polymorphisms in TP53(rs1042522),p16(rs11515 and rs3088440)and NQO1(rs1800566)genes in Thai cervical cancer patients with HPV 16 infection [J]. Asian Pac J Cancer Prev,2013,14(1):341-346.
[26] Zhang F,Xu L,Wei Q,et al. Significance of MDM2 and P14 ARF polymorphisms in susceptibility to differentiated thyroid carcinoma [J]. Surgery,2013,153(5):711-717.
[27] Frayling TM,Timpson NJ,Weedon MN,et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J]. Science,2007,316(5826):889-894.
[28] Zeggini E,Weedon MN,Lindgren CM,et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes [J]. Science,2007,316(5829):1336-1341.
[29] Andreasen CH,Stender-Petersen KL,Mogensen MS,et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation [J]. Diabetes,2008,57(1):95-101.
[30] Scott LJ,Mohlke KL,Bonnycastle LL,et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants [J]. Science,2007,316(5829):1341-1345.
[31] Tan JT,Dorajoo R,Seielstad M,et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore [J]. Diabetes,2008,57(10):2851-2857.
[32] Yajnik CS,Janipalli CS,Bhaskar S,et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians [J]. Diabetologia,2009,52(2):247-252.
[33] Hertel JK,Johansson S,Sonestedt E,et al. FTO,type 2 diabetes,and weight gain throughout adult life:a meta-analysis of 41,504 subjects from the Scandinavian HUNT,MDC,and MPP studies [J]. Diabetes,2011,60(5):1637-1644.
[34] Horikoshi M,Hara K,Ito C,et al. Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population [J]. Diabetologia,2007,50(12):2461-2466.
[35] Qian Y,Liu S,Lu F,et al. Genetic variant in fat mass and obesity-associated gene associated with type 2 diabetes risk in Han Chinese [J]. BMC Genetics,2013,14(1):86.
[36] Ritchie MD,Hahn LW,Roodi N,et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer [J]. Am J Hum Genet,2001,69(1):138-147.
[37] 唐迅,李娜,陳大方,等.多因子降維法分析基因-基因交互作用的應(yīng)用進(jìn)展[J].中華流行病學(xué)雜志,2007,28(9):918-921.
[38] Lou XY,Chen GB,Yan L,et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence [J]. Am J Hum Genet,2007,80(6):1125-1137.
(收稿日期:2016-11-20 本文編輯:程 銘)