• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Efficiency Optimization for D2D Communications Based on SCA and GP Method

    2017-05-09 03:03:23XiaozhengGaoHangchengHanKaiYangJianpingAn
    China Communications 2017年3期

    Xiaozheng Gao, Hangcheng Han, Kai Yang, Jianping An

    School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China.

    * The corresponding author, email: hanhangcheng@bit.edu.cn

    I. INTRODUCTION

    The exponential increase of wireless data has led to the emergence of a large number of wireless communication systems and networks[1-4]. Device-to-device (D2D) communications have been expected as one of key components for the LTE-Advanced systems [3-5].In D2D communications, two user equipments(UEs) are allowed to exchange data without base station (BS), which can not only increase the spectral efficiency (SE), but also improve the energy efficiency (EE) [1,4].

    Due to the data communication explosion,SE plays an essential role in the design of communication systems [6-9]. In order to improve the network throughput, the underlay mode, where D2D user equipment (DUE) uses non-orthogonal resource blocks (RBs) with cellular user equipment (CUE), is preferred when CUE is closer to the BS than DUEs [6]. As a result, the system must deal with much more severe interference than cellular networks, especially in full-duplex D2D systems [10]. Power control is an effective method to cope with the interference and guarantee the quality of service (QoS) of the users [8,9,11,12]. The au-thors of [8] proposed a power control scheme to deal with the interference and maximize the network throughput. In [9], joint mode selection, channel assignment, and power control are adopted to optimize the overall system throughput while guaranteeing the QoS of both D2D and cellular users. In [11], the authors presented two optimal power control schemes to maximize the sum rate and the minimal rate of all D2D links, respectively.

    An energy-efficient power control scheme is proposed in the paper for device-to-device (D2D) communications underlaying cellular networks,where multiple D2D pairs reuse the same resource blocks allocated to one cellular user.

    Apart from the network throughput, EE has also caught more and more attention due to the increasing power consumption of communication industry and little progress in improving the battery capacity of UEs [13–17]. The authors of [13] proposed a two-tier deployment of D2D communications to minimize the power consumption. In [14], the authors investigated the trade off between EE and SE in D2D underlaying cellular networks. The authors of[15] optimized the minimum weighted EE of D2D links in a single macro-cell, where the RBs can be reused by at most one D2D pair.In [16,17], the authors exploited interference temperature approach to improve EE in D2D underlaying communications and orthogonal frequency division multiple access systems with large-scale BS antennas, respectively.

    In addition, multiple D2D pairs sharing the same RBs can further improve the SE and frequency reuse factor [18-20]. In [18], the authors presented the bounds of the maximum network throughput in the scenario where one RB can be used by one CUE and multiple D2D pairs. Based on game theory, the authors of [19] proposed interference coordination strategies in a single-cell network, where there exists interference among D2D pairs due to the fact that RBs are reused by multiple D2D pairs. In [20], the authors investigated a model that multiple D2D pairs could share subchannels with multiple cellular users, and optimized the throughput of D2D pairs while satisfying the data rate requirements of cellular users.

    In this paper, we propose an EE-maximization power control scheme in the scenario where the same RBs can be reused by multiple D2D pairs. Compared with [8,9], we take the EE instead of the SE as the objective function.Compared with [15], in which at most only one D2D pair can share the same RBs with one CUE, we consider the scenario of multiple D2D pairs reusing the same RBs allocated to one CUE, which can further improve the SE and frequency reuse factor. We formulate the EE-maximization power control problem as a fractional programming (FP) problem, and then equivalently transform it into a series of parametric subtractive-form problems, which are still non-concave due to the existence of interference. Instead of using interference temperature method [16,17], in which extra constraints are added on the interferences to convert the non-concave problems into concave ones, we adopt successive convex approximation (SCA) and geometric programming (GP)method to obtain the solutions satisfying the Karush-Kuhn-Tucker (KKT) conditions of parametric subtractive-form problems. Extensive simulations are conducted to verify the effectiveness of the proposed scheme, and it is shown that SCA and GP method outperforms interference temperature method.

    The rest of the paper is organized as follows. Section II presents the system model.The EE-maximization power control scheme is proposed in Section III. Simulation results are shown in Section IV, and the paper is concluded in Section V.

    II. SYSTEM MODEL

    In this paper, we consider a single-cell network, where M pairs of DUEs reuse K RBs allocated to one CUE, as illustrated in Fig. 1.Since uplink RBs are preferred for D2D communications [21], we treat the CUE and the BS as a virtual D2D pair, in which the CUE and the BS correspond to the D2D transmitter and D2D receiver, respectively. For the sake of brevity, we denote the virtual D2D pair as the zeroth D2D pair [23].

    We consider both large-scale fading and small-scale fading. Thus, the channel vector between the transmitter of the m'-th D2D pair and the receiver of the m-th D2D pair on the k-th RB can be expressed as

    Fig. 1 Single cell scenario with one CUE and multiple D2D pairs

    The power consumption of D2D communications is made up with two parts: the transmission power consumption and average circuit power consumption [22]. Therefore,the power consumption of the m-th D2D pair can be denoted as

    And the EE of the network, which is defined as the ratio of the total throughput over the total power consumption [22], is expressed as

    III. EE-MAXIMIZATION POWER CONTROL SCHEME

    In this section, we will investigate the EE-maximization power control scheme for D2D communications. Taking the minimum data rate requirement and the maximum allowed transmit power into consideration, the EE-maximization problem can be formulated as

    In the following, we will develop a twoloop iterative algorithm to solve the original EE-maximization problemIn the outer

    Algorithm 1 Outer Loop of Deriving based on Dinkelbach Method

    Algorithm 1 Outer Loop of Deriving based on Dinkelbach Method

    1. Initialize tolerance, iteration number , and .2. repeat 3.4. Solve with to obtain the optimal solution .5.with .6. until .

    Algorithm 2 Inner Loop of Solvingwith Givenbased on SCA and GP Method

    Algorithm 2 Inner Loop of Solvingwith Givenbased on SCA and GP Method

    1. Set tolerance , iteration number , and initial values .2. repeat 3.4. Update the parameters , based on (16a) and (16b),respectively.5. Solve and with using interior-point method.6. until to obtain the solution.

    3.1 Outer loop

    3.2 Inner loop

    For the sake of brevity, we introduce auxiliary variablesandandis transformed as:

    Based on Jensen’s inequality, namely, the arithmetic mean is greater than or equal to the geometric mean for any set of positives [26],we have

    Table I Simulation parameters

    Table II The value of versus iteration times in Algorithm 1

    Table II The value of versus iteration times in Algorithm 1

    M=2, K=3 M=5, K=7 M=9, K=12 Once 2.264e6 5.395e6 7.753e6 Twice 2.524e6 5.917e6 8.124e6 3 Times 2.525e6 5.918e6 8.126e6 4 Times 2.525e6 5.918e6 8.127e6

    Table III The value ofversus iteration times in Algorithm 2

    Table III The value ofversus iteration times in Algorithm 2

    M=2, K=3 M=5, K=7 M=9, K=12 Once 1.673e7 7.784e7 1.572e8 Twice 1.715e7 7.797e7 1.592e8 3 Times 1.716e7 7.798e7 1.615e8 4 Times 1.716e7 7.799e7 1.623e8 5 Times 1.716e7 7.799e7 1.624e8

    IV. SIMULATION RESULTS

    In this section, we consider a single-cell network, in which the BS is located in the center and UEs are uniformly distributed. The default parameters of simulations are summarized in Table I. Here, we first illustrate the convergence of the algorithms, and then present the system performance versus some parameters including D2D pair number, RB number, D2D link distance, and maximum allowed transmit power.

    The convergence behaviors of Algorithms 1 and 2 are examined in Tables II and III, respectively. Table II illustrates the convergence speeds of the outer loops of three snapshots.From Table II, we find that the outer loop converges to the optimal solution within 3 or 4 times. The inner loops withof three snapshots are presented in Table III, indicating that the inner loop also converges very fast.From Tables II and III, we can conclude that the iteration times do not increase significantly with the increase of D2D pairs and RBs.

    The impacts of D2D pair number M on the average EE and average network throughput are shown in Figs. 2 and 3, respectively. On the one hand, it is obvious that the average EE decreases with M due to the fact that increasing D2D pair would aggravate the interference among D2D pairs. On the other hand, we find that the average network throughput increases with M. The larger the M, the higher the reuse factor, and hence the larger the network throughput. We also observe that the average EE and the average network throughput are improved with the increase of RBs due to increased frequency diversity.

    Fig. 4 shows the impact of D2D link distance on the average EE. We find that the average EE decreases significantly with the increase of D2D link distance. The larger the D2D link distance, the higher the transmit power is needed to compensate for the pathloss, and hence the lower the EE. It is shown that the average EE decreases more than 70% in all scenarios with the increase of D2D link distance d from 5 m to 30 m. In addition, we compared the average EE of our proposed approach with that of interference temperature method, in which extra constraints are added on the interferences to transform the non-concave problems into concave ones [16, 17]. It is noticeable that the average EE of our proposed approach outperforms that of interference temperature method due to the fact that the latter method cannot converge to the KKT solution of

    F ig. 2 Average EE versus D2D pair number

    Fi g. 3 Average network throughput versus D2D pair number

    V. CONCLUSION

    Fig. 4 Average EE versus D2D link distance (M = 3)

    Fig. 5 Average EE versus maximum allowed transmit power (M = 5)

    In this paper, we have investigated the EE-maximization power control scheme for D2D communications underlaying cellular networks, where multiple D2D pairs reuse the same RBs allocated to one CUE. We formulated the EE-maximizaiton problem as a non-concave FP problem, and then developed a two-loop iterative algorithm, in which the outer loop is based on Dinkelbach method and the inner loop is based on SCA and GP method, to address the problem. Simulation results have demonstrated the effectiveness of the proposed scheme, and also revealed the basic relationship between different parameters and system performance, which could provide useful guidance to energy-efficient power control in D2D communications.

    ACKNOWLEDGEMENTS

    This work was partly supported by National Natural Science Foundation of China (No.61501028) and Beijing Institute of Technology Research Fund Program for Young Scholars.

    [1] K. Doppler, M. Rinne, C. Wijting,et al., “Device-to-device communication as an underlay to LTE-advanced networks,”IEEE Commun.Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009.

    [2] Z. Zhang, K. Long, J. Wang,et al., “On swarm intelligence inspired self-organized networking:its bionic mechanisms, designing principles and optimization approaches,”IEEE Commun. Surv.Tut., vol. 16, no. 1, pp. 513-537, 1st Quart. 2014.

    [3] G. Fodor, E. Dahlman, G. Mildh,et al., “Design aspects of network assisted device-to-device communications,”IEEE Commun. Mag., vol. 50,no. 3, pp. 170-177, Mar. 2012.

    [4] S. Y. Lien, C. C. Chien, F. M. Tseng,et al., “3GPP device-to-device communications for beyond 4G cellular networks,”IEEE Commun. Mag., vol.54, no. 3, pp. 29-35, Mar. 2016.

    [5] 3GPP TR 23.703 V12.0.0, “Study on architecture enhancements to support proximity-based services,” Mar. 2014.

    [6] Z. Liu, T. Peng, S. Xiang,et al., “Mode selection for device-to-device (D2D) communication under LTE-advanced networks,” inProc. IEEE ICC,pp. 5563-5567, Jun. 2012.

    [7] Z. Zhang, K. Long and J. Wang, “Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey,”IEEE Wireless Commun., vol. 20, no. 2, pp. 36-42, Apr.2013.

    [8] C. H. Yu, O. Tirkkonen, K. Doppler,et al., “Power optimization of device-to-device communication underlaying cellular communication,” inProc. IEEE ICC, pp. 1-5, Jun. 2009.

    [9] G. Yu, L. Xu, D. Feng,et al., “Joint mode selection and resource allocation for device-to-device communications,”IEEE Trans. Commun., vol. 62,no. 11, pp. 3814-3824, Nov. 2014.

    [10] Z. Zhang, K. Long, A. V. Vasilakos,et al., “Full-duplex wireless communications: challenges, solutions and future research directions,”Proceedings of the IEEE, vol. 104, no. 7, pp. 1369-1409,Jul. 2016.

    [11] Y. Ren, F. Liu, Z. Liu,et al., “Power control in D2D-based vehicular communication networks,”IEEE Trans. Veh. Technol., vol. 64, no. 12, pp.5547-5562, Dec. 2015.

    [12] Z. Zhang, X. Chai, K. Long,et al., “Full-duplex techniques for 5G networks: self-interference cancellation, protocol design and relay selection,”IEEE Commun. Mag., vol. 53, no. 5, pp.128-137, May 2015.

    [13] Y. A. Sambo, M. Z. Shakir, K. A. Qaraqe,et al.,“Energy efficiency improvements in HetNets by exploiting device-to-device communications,”inProc. European Signal Processing Conference(EUSIPCO), pp. 151–155, Sep. 2014.

    [14] Z. Zhou, M. Dong, K. Ota,et al., “Energy efficiency and spectral efficiency tradeoff in device-to-device (D2D) communications,”IEEE Wirel. Commun. Lett., vol. 3, no. 5, pp. 485-488,Oct. 2014.

    [15] T. D. Hoang, L. B. Le and T. Le-Ngoc, “Energy-efficient resource allocation for D2D communications in cellular networks,”IEEE Trans. Veh. Tech-nol., vol. 65, no. 9, pp. 6972-6986, Sep. 2016.

    [16] K. Yang, S. Martin, C. Xing,et al., ”Energy-effi-cient power control for device-to-device communications,”IEEE J. Sel. Areas Commun., vol.34, no. 12, pp. 3208-3220, Dec. 2016.

    [17] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas,”IEEE Trans. Wireless Commun., vol. 11, no. 9, pp.3292-3304, Sep. 2012.

    [18] M. Ni, L. Zheng, F. Tong,et al., “A geometrical-based throughput bound analysis for device-to-device communications in cellular networks,”IEEE J. Sel. Areas Commun., vol. 33, no.1, pp. 100-110, Jan. 2015.

    [19] R. Yin, G. Yu, H. Zhang,et al., “Pricing-based interference coordination for D2D communications in cellular networks,”IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1519-1532, Mar.2015.

    [20] W. Zhao and S. Wang, “Resource sharing scheme for device-to-device communication underlaying cellular networks,”IEEE Trans. Commun., vol. 63, no. 12, pp. 4838-4848, Dec. 2015.

    [21] D. Feng, L. Lu, Y. Yuan-Wu,et al., “Device-to-device communications underlaying cellular networks,”IEEE Trans. Commun., vol. 61, no. 8, pp.3541-3551, Aug. 2013.

    [22] C. Xiong, G. Y. Li, S. Zhang,et al., “Energy-effi-cient resource allocation in OFDMA networks,”IEEE Trans. Commun., vol. 60, no. 12, pp. 3767-3778, Dec. 2012.

    [23] K. Yang, J. Wu, X. Gao,et al., “Energy-efficient power control for device-to-device communications with max-min fairness,” inProc. IEEE Veh.Technol. Conf., pp. 1-6, Sep. 2016.

    [24] W. Dinkelbach, “On nonlinear fractional programming,”Management Science, vol. 13, no. 7,pp. 492-498, Mar. 1967.

    [25] B. R. Marks and G. P. Wright, “A general inner approximation algorithm for non-convex mathematical programs,”O(jiān)per. Res., vol. 26, no. 4,pp. 681–683, Jul. 1978.

    [26] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge University Press, 2004.

    [27] S. Boyd, S. J. Kim, L. Vandenberghe,et al., “A tutorial on geometric programming,”O(jiān)ptim. Eng.,vol. 8, no. 1, pp. 67-127, Mar. 2007.

    欧美日韩亚洲综合一区二区三区_| 精品一区二区三区视频在线观看免费| 日韩精品免费视频一区二区三区| 精品免费久久久久久久清纯| 成年免费大片在线观看| 香蕉久久夜色| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 成人手机av| 欧美日韩亚洲国产一区二区在线观看| 欧美不卡视频在线免费观看 | 久久久久久国产a免费观看| 亚洲成av人片免费观看| 啦啦啦观看免费观看视频高清| 国产亚洲av高清不卡| 国产又色又爽无遮挡免费看| 成人午夜高清在线视频 | 精品国产一区二区三区四区第35| 免费女性裸体啪啪无遮挡网站| 99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 欧美成人午夜精品| 91麻豆精品激情在线观看国产| 亚洲五月天丁香| 可以免费在线观看a视频的电影网站| 精品一区二区三区av网在线观看| 日韩国内少妇激情av| 欧美一区二区精品小视频在线| 国产成年人精品一区二区| www.www免费av| 国内久久婷婷六月综合欲色啪| 美女国产高潮福利片在线看| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 亚洲精品国产一区二区精华液| 99国产精品一区二区三区| 午夜影院日韩av| 亚洲狠狠婷婷综合久久图片| 国产成人欧美在线观看| 日本熟妇午夜| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 人人妻人人澡人人看| 可以在线观看毛片的网站| 亚洲精品国产区一区二| 午夜激情福利司机影院| 十八禁人妻一区二区| 高清毛片免费观看视频网站| 桃红色精品国产亚洲av| 很黄的视频免费| 校园春色视频在线观看| 国产精品一区二区免费欧美| 色播在线永久视频| 日本熟妇午夜| 不卡一级毛片| 婷婷精品国产亚洲av在线| 在线观看一区二区三区| 亚洲精品美女久久av网站| 欧美激情高清一区二区三区| 禁无遮挡网站| 欧美一级毛片孕妇| 丁香六月欧美| 天天一区二区日本电影三级| 日韩中文字幕欧美一区二区| 悠悠久久av| 久久中文看片网| 亚洲av成人av| 欧美性猛交黑人性爽| 国产伦人伦偷精品视频| 精品免费久久久久久久清纯| 国产高清有码在线观看视频 | 欧美午夜高清在线| 午夜福利免费观看在线| 亚洲黑人精品在线| 日韩有码中文字幕| 少妇的丰满在线观看| 午夜免费鲁丝| 亚洲一区中文字幕在线| 高清毛片免费观看视频网站| 欧美中文日本在线观看视频| 国产精品 欧美亚洲| 波多野结衣巨乳人妻| 亚洲专区国产一区二区| 变态另类丝袜制服| 国产97色在线日韩免费| 国产精品1区2区在线观看.| 他把我摸到了高潮在线观看| 国产极品粉嫩免费观看在线| 国产伦在线观看视频一区| 久久久国产欧美日韩av| 中亚洲国语对白在线视频| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷成人综合色麻豆| 国产黄a三级三级三级人| 久99久视频精品免费| 亚洲中文日韩欧美视频| www.自偷自拍.com| 人成视频在线观看免费观看| 人人澡人人妻人| 国产一区二区三区视频了| 国产午夜精品久久久久久| 操出白浆在线播放| 女性被躁到高潮视频| 午夜a级毛片| 麻豆av在线久日| 最近最新中文字幕大全电影3 | 精品久久久久久久末码| 怎么达到女性高潮| 国产av在哪里看| 91av网站免费观看| 黄色丝袜av网址大全| 亚洲精品在线美女| 亚洲无线在线观看| 欧美中文综合在线视频| 午夜视频精品福利| 搡老妇女老女人老熟妇| 亚洲精品国产一区二区精华液| 色综合婷婷激情| 亚洲性夜色夜夜综合| www.www免费av| 国产成人欧美在线观看| 国产精品野战在线观看| 黄网站色视频无遮挡免费观看| 午夜影院日韩av| 哪里可以看免费的av片| 国产亚洲欧美98| 激情在线观看视频在线高清| 变态另类丝袜制服| 亚洲avbb在线观看| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 欧美中文综合在线视频| 丝袜在线中文字幕| 国产精品av久久久久免费| 欧美另类亚洲清纯唯美| 身体一侧抽搐| 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 欧美日韩黄片免| 亚洲无线在线观看| 成人国语在线视频| 一级毛片女人18水好多| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 久久久久久国产a免费观看| 久久午夜亚洲精品久久| 99热这里只有精品一区 | 美女大奶头视频| 久久久精品欧美日韩精品| 99在线视频只有这里精品首页| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产日韩欧美精品在线观看 | 成人免费观看视频高清| 熟女少妇亚洲综合色aaa.| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站 | av天堂在线播放| 国产高清有码在线观看视频 | 国产熟女xx| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 韩国av一区二区三区四区| 一a级毛片在线观看| 青草久久国产| av电影中文网址| 久久婷婷人人爽人人干人人爱| 国产熟女午夜一区二区三区| 国产精品98久久久久久宅男小说| 一个人免费在线观看的高清视频| 欧美日韩亚洲国产一区二区在线观看| 精品电影一区二区在线| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 男女下面进入的视频免费午夜 | 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 欧美一级a爱片免费观看看 | 精品久久久久久久末码| 亚洲一区二区三区不卡视频| 99热只有精品国产| 久久草成人影院| 欧美三级亚洲精品| 免费搜索国产男女视频| 国产激情偷乱视频一区二区| 1024香蕉在线观看| 亚洲欧美精品综合久久99| 久久精品91蜜桃| 亚洲九九香蕉| 夜夜躁狠狠躁天天躁| 2021天堂中文幕一二区在线观 | 嫩草影视91久久| 免费搜索国产男女视频| 91九色精品人成在线观看| 在线永久观看黄色视频| 国产97色在线日韩免费| 一区二区三区高清视频在线| 国产精品 国内视频| 黄色毛片三级朝国网站| 他把我摸到了高潮在线观看| 亚洲成国产人片在线观看| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放 | 国产野战对白在线观看| 一区二区三区精品91| 在线观看舔阴道视频| 国产91精品成人一区二区三区| 免费在线观看亚洲国产| 黄色 视频免费看| а√天堂www在线а√下载| 亚洲欧美日韩高清在线视频| 色综合亚洲欧美另类图片| 精品一区二区三区四区五区乱码| 宅男免费午夜| e午夜精品久久久久久久| 久久国产精品影院| 亚洲精品中文字幕一二三四区| 啦啦啦观看免费观看视频高清| 美女免费视频网站| 久久久精品国产亚洲av高清涩受| 国产激情欧美一区二区| 欧美三级亚洲精品| 十八禁网站免费在线| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 免费看美女性在线毛片视频| 国产精品电影一区二区三区| 国产欧美日韩一区二区三| 久久这里只有精品19| 国产精品1区2区在线观看.| 一个人免费在线观看的高清视频| 国内精品久久久久精免费| 美女免费视频网站| e午夜精品久久久久久久| 亚洲国产高清在线一区二区三 | 免费在线观看日本一区| 一进一出好大好爽视频| 99久久精品国产亚洲精品| 一区二区三区激情视频| 麻豆av在线久日| av电影中文网址| 亚洲精品美女久久久久99蜜臀| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 最近最新免费中文字幕在线| 欧美一级a爱片免费观看看 | 少妇裸体淫交视频免费看高清 | 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久 | 午夜福利18| 在线观看午夜福利视频| 黄色a级毛片大全视频| 久久精品人妻少妇| 国产欧美日韩一区二区精品| av免费在线观看网站| 亚洲狠狠婷婷综合久久图片| 国产1区2区3区精品| 草草在线视频免费看| 国产视频内射| 老司机靠b影院| 久久亚洲真实| 在线十欧美十亚洲十日本专区| 啦啦啦 在线观看视频| 欧美另类亚洲清纯唯美| 一级a爱片免费观看的视频| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2 | 亚洲中文字幕一区二区三区有码在线看 | 身体一侧抽搐| 国产精华一区二区三区| 一级黄色大片毛片| 久久人妻福利社区极品人妻图片| 精品久久久久久久人妻蜜臀av| 久久天堂一区二区三区四区| 国产激情久久老熟女| 波多野结衣高清无吗| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 国产真人三级小视频在线观看| 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 精品一区二区三区av网在线观看| 亚洲精品久久成人aⅴ小说| 欧美丝袜亚洲另类 | 亚洲五月色婷婷综合| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 日韩三级视频一区二区三区| 精品一区二区三区av网在线观看| 黄片小视频在线播放| 国产激情久久老熟女| 亚洲成人精品中文字幕电影| 日韩一卡2卡3卡4卡2021年| 国产99白浆流出| 中国美女看黄片| 欧美国产精品va在线观看不卡| 露出奶头的视频| 亚洲欧美日韩高清在线视频| 国产一卡二卡三卡精品| 高清在线国产一区| 色综合亚洲欧美另类图片| 老司机福利观看| 91成人精品电影| 99精品久久久久人妻精品| 熟女电影av网| 视频在线观看一区二区三区| 午夜激情av网站| 一夜夜www| 国产亚洲精品综合一区在线观看 | 可以在线观看的亚洲视频| 国产精品亚洲一级av第二区| 久久天躁狠狠躁夜夜2o2o| 搞女人的毛片| 制服丝袜大香蕉在线| 精品国产国语对白av| 美女高潮到喷水免费观看| 我的亚洲天堂| 国产精品一区二区三区四区久久 | avwww免费| 可以免费在线观看a视频的电影网站| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看影片大全网站| 久久久国产成人免费| 亚洲精品在线美女| 国产av又大| 欧美三级亚洲精品| tocl精华| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 午夜两性在线视频| 一本久久中文字幕| 夜夜看夜夜爽夜夜摸| 最近最新免费中文字幕在线| 侵犯人妻中文字幕一二三四区| 满18在线观看网站| 岛国在线观看网站| 国产成人精品久久二区二区91| 国产精品亚洲美女久久久| 天天添夜夜摸| 欧美乱色亚洲激情| 欧美成人性av电影在线观看| 少妇熟女aⅴ在线视频| 午夜亚洲福利在线播放| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 亚洲专区字幕在线| 欧美成人性av电影在线观看| 亚洲色图av天堂| 最近最新中文字幕大全免费视频| 手机成人av网站| 国产成人精品久久二区二区91| 天天一区二区日本电影三级| 久久久久久久精品吃奶| 国产黄片美女视频| 日韩高清综合在线| 在线观看www视频免费| 男人的好看免费观看在线视频 | 亚洲国产欧洲综合997久久, | 中文字幕另类日韩欧美亚洲嫩草| 国产精品乱码一区二三区的特点| 久久久久久久精品吃奶| 一级a爱视频在线免费观看| 一个人观看的视频www高清免费观看 | 91国产中文字幕| 亚洲 欧美 日韩 在线 免费| 俺也久久电影网| 女同久久另类99精品国产91| 成年人黄色毛片网站| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 韩国精品一区二区三区| 亚洲一区高清亚洲精品| 亚洲国产看品久久| 亚洲第一电影网av| 在线永久观看黄色视频| 人人澡人人妻人| 国产主播在线观看一区二区| 免费在线观看亚洲国产| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 成年版毛片免费区| 久久精品成人免费网站| 妹子高潮喷水视频| 18禁黄网站禁片午夜丰满| 此物有八面人人有两片| 亚洲免费av在线视频| 亚洲自拍偷在线| 国产成人欧美在线观看| 国产主播在线观看一区二区| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影 | 日韩视频一区二区在线观看| 熟妇人妻久久中文字幕3abv| 日韩av在线大香蕉| 亚洲成人免费电影在线观看| 久久九九热精品免费| 精品不卡国产一区二区三区| 久久中文字幕一级| 久久青草综合色| 99在线人妻在线中文字幕| 看片在线看免费视频| 亚洲中文av在线| 精品高清国产在线一区| 欧美日韩亚洲综合一区二区三区_| 国产伦一二天堂av在线观看| 满18在线观看网站| 国产亚洲精品久久久久久毛片| 俺也久久电影网| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码| 美女大奶头视频| 亚洲精品国产一区二区精华液| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看 | 精品午夜福利视频在线观看一区| 久久精品aⅴ一区二区三区四区| 中文在线观看免费www的网站 | 在线观看免费午夜福利视频| av中文乱码字幕在线| 亚洲免费av在线视频| 中文字幕人成人乱码亚洲影| 最新美女视频免费是黄的| 免费高清视频大片| 欧美乱码精品一区二区三区| 两个人视频免费观看高清| 欧美日韩精品网址| 国产色视频综合| 动漫黄色视频在线观看| 无人区码免费观看不卡| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 日韩有码中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 法律面前人人平等表现在哪些方面| 一进一出好大好爽视频| 欧美最黄视频在线播放免费| 精品国产乱码久久久久久男人| 成人国产综合亚洲| 午夜福利视频1000在线观看| 亚洲全国av大片| 国产视频内射| 男女做爰动态图高潮gif福利片| 黑人欧美特级aaaaaa片| 久久久久久国产a免费观看| 一本综合久久免费| 18美女黄网站色大片免费观看| 国产一级毛片七仙女欲春2 | 精品国产美女av久久久久小说| 欧美一级a爱片免费观看看 | 欧美一级毛片孕妇| 久久精品国产清高在天天线| 精品久久久久久久人妻蜜臀av| 免费观看人在逋| 欧美日韩精品网址| 亚洲一卡2卡3卡4卡5卡精品中文| 无遮挡黄片免费观看| 国内久久婷婷六月综合欲色啪| 一二三四社区在线视频社区8| 精品卡一卡二卡四卡免费| 亚洲av熟女| 亚洲熟女毛片儿| 欧美人与性动交α欧美精品济南到| 午夜福利在线在线| 国产成人啪精品午夜网站| 免费在线观看完整版高清| 99国产精品99久久久久| 欧美成人性av电影在线观看| 精品国产超薄肉色丝袜足j| 黄色片一级片一级黄色片| 亚洲欧美日韩无卡精品| 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 无限看片的www在线观看| 久久精品91无色码中文字幕| 国产精品综合久久久久久久免费| 久久久久国产一级毛片高清牌| 1024香蕉在线观看| 精品卡一卡二卡四卡免费| 日韩av在线大香蕉| 99久久久亚洲精品蜜臀av| 最新在线观看一区二区三区| 午夜免费观看网址| 99久久99久久久精品蜜桃| 国产精品久久久久久人妻精品电影| 国产一级毛片七仙女欲春2 | 精品乱码久久久久久99久播| 国产亚洲精品av在线| 久久亚洲真实| 日韩免费av在线播放| 久久久国产成人精品二区| 他把我摸到了高潮在线观看| 亚洲中文日韩欧美视频| 日本 欧美在线| 久久久久久人人人人人| 人妻久久中文字幕网| 亚洲久久久国产精品| 国产精品亚洲美女久久久| www.www免费av| 此物有八面人人有两片| svipshipincom国产片| 女生性感内裤真人,穿戴方法视频| 天天一区二区日本电影三级| 后天国语完整版免费观看| 免费看a级黄色片| 精品久久久久久久久久久久久 | 久久人妻av系列| 天天添夜夜摸| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 少妇被粗大的猛进出69影院| 午夜日韩欧美国产| 这个男人来自地球电影免费观看| 99国产极品粉嫩在线观看| 欧洲精品卡2卡3卡4卡5卡区| 女性生殖器流出的白浆| 成年版毛片免费区| 人人妻人人澡人人看| 久热这里只有精品99| 麻豆一二三区av精品| 夜夜爽天天搞| 自线自在国产av| 亚洲国产精品久久男人天堂| 久久久久久国产a免费观看| 白带黄色成豆腐渣| 可以在线观看的亚洲视频| av欧美777| 看片在线看免费视频| 男女视频在线观看网站免费 | 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| 日韩一卡2卡3卡4卡2021年| 欧美午夜高清在线| 好看av亚洲va欧美ⅴa在| 大香蕉久久成人网| 亚洲自拍偷在线| 欧美久久黑人一区二区| 18禁美女被吸乳视频| 黄色 视频免费看| 亚洲av电影不卡..在线观看| 国产亚洲欧美在线一区二区| 婷婷精品国产亚洲av| 国产精品美女特级片免费视频播放器 | 欧美不卡视频在线免费观看 | 91在线观看av| 在线观看免费日韩欧美大片| 亚洲国产精品sss在线观看| 精品国产乱子伦一区二区三区| 国产高清有码在线观看视频 | 国产又色又爽无遮挡免费看| 久久 成人 亚洲| av超薄肉色丝袜交足视频| 亚洲全国av大片| 久久久久精品国产欧美久久久| 淫秽高清视频在线观看| 熟女电影av网| 99久久综合精品五月天人人| 国产黄a三级三级三级人| 欧美精品亚洲一区二区| 日本撒尿小便嘘嘘汇集6| 99热只有精品国产| 757午夜福利合集在线观看| 操出白浆在线播放| 香蕉av资源在线| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久人妻精品电影| 夜夜看夜夜爽夜夜摸| 亚洲人成伊人成综合网2020| 精品乱码久久久久久99久播| 国产精品乱码一区二三区的特点| 欧美日韩一级在线毛片| 午夜福利欧美成人| 成人精品一区二区免费| 桃红色精品国产亚洲av| 97人妻精品一区二区三区麻豆 | 国产91精品成人一区二区三区| 又黄又粗又硬又大视频| 欧美日韩一级在线毛片| 在线永久观看黄色视频| 亚洲专区字幕在线| 中文字幕人妻熟女乱码| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 亚洲色图 男人天堂 中文字幕| 久久国产精品男人的天堂亚洲| 久久久久久久久中文| 久久九九热精品免费| 午夜a级毛片| 日韩成人伦理影院| 老司机影院成人| 婷婷色综合大香蕉| 中文字幕av在线有码专区| 午夜福利视频1000在线观看| 少妇被粗大猛烈的视频| 18+在线观看网站| 99久国产av精品国产电影| 日本 av在线| 亚洲性久久影院| 成人性生交大片免费视频hd| 免费av毛片视频| 亚洲最大成人中文| 国产中年淑女户外野战色| 国产精品人妻久久久影院| 三级经典国产精品| 啦啦啦啦在线视频资源| 精品久久久久久久久av| 中文亚洲av片在线观看爽| 午夜精品国产一区二区电影 | 欧美成人一区二区免费高清观看| 色在线成人网|