• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Low Density Parity Check Coded Differential Amplitude and Pulse Position Modulation Free-Space Optical System for Turbulent Channel

    2017-05-09 03:03:44YinLiangHuaZhangLiminChenXiaopingLiuXuehongLin
    China Communications 2017年3期

    Yin Liang, Hua Zhang, Limin Chen*, Xiaoping Liu, Xuehong Lin

    1 School of Mechatronics Engineering, Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China 2 School of Information Engineering Nanchang University, Nanchang 330031, China

    3 Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, K1S 5B6, Canada

    4 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

    * The corresponding author, email: chenlimin@ncu.edu.cn.

    I. INTRODUCTION

    Free-space optical communication (FSO) is a green optical communication approach with higher energy efficiency, which has intrinsic properties of more simplified and rapid deployment than traditional optical fiber communication[1-3]. So it is more widely used in emergency communication[4] and is preliminary applied to short-range communication and emerging autonomous robot datalink[5]. Differential Amplitude and Pulse Position Modulation (DAPPM) is a combined modulation which not only inherits advantages of High efficiency from Pulse Position Modulation (PPM) and Pulse Amplitude Modulation (PAM)[6] but also improves the frequency efficiency from Pulse Position Modulation (PPM) and promotes energy ef ficiency from Amplitude shift keying (ASK)[7].Consequently, DAPPM lower energy cost for achieving same Bit-Error-Rate (BER). Substantially reducing the optical radiation power means longer working life of light source and associated optical devices. So it makes more sense to improve reliability of DAPPM for green FSO.

    Low-Density-Parity-Check (LDPC) is an enhanced linear block code with perfect net coding gain as well as relatively low decoding complexity[8]. Researches on PPM and forward error correction (FEC) are growing these years. TCM-PPM, LDPC-PPM and LDPC-MI-MO[9,10] were primarily concerned. A LDPC coded DAPPM FSO system show considerable BER performance improvement which has been verified by Monte Carlo simulation[11].However, a DAPPM FSO scheme with LDPC coding has been less concerned, and the optimal modification of classical DAPPM for confronting the strong turbulent is less investigated. To improve its efficiency and reliability, a novel DAPPM FSO together with LDPC codes was proposed and investigated. The innovation reflects on that a set of amplitude sequence values according to the specific time slot selection, and the selected time slot demapping rather than traditional ones such as {1, 2,…,N}. In this new system, BER at the same Eb/N0decreases, namely the transmit power can be saved for approaching the same BER, which is the essence of “Green” communication. Theoretical analysis shows well energy efficiency and decoding reliability, meanwhile, the Monte-Carlo simulation demonstrated its better BER performance over traditional scheme.

    This paper is organized as follows. Besides general introduction in Section 1, strong turbulent FSO channel is introduced for the modified DAPPM in Section 2. A partly equidifferent mapping method is proposed,and a novel green DAPPM FSO scheme is constructed based on optimal receiver. Optimization of partly equidifferent mapping and soft demodulation for subsequent LDPC decoder are derived in Section 3. How LDPC works in this system is described in Section 4. The proposed DAPPM FSO system is simulated, and simulation results and discussing are presented in Section 5. Finally the definite conclusion is brought in Section 6.

    II. MODELLING OF TURBULENT CHANNEL

    Considering the intensity fluctuation of the transmitted laser beam, the turbulent channel can be approximated by three kinds of probability models based on Rytov theory. That is,in strong turbulence, the probability density function (PDF) obeys negative exponential distribution with probability density function in (1) while in weak and moderate turbulence obey log-normal and gamma-gamma distribution with the corresponding PDF in (2) and (3)respectively, together with (4), (5) and (6) as supplementary specification[12,13].

    Under strong turbulence condition, the DAPPM received signal intensity follows the negative exponential distribution as shown in(1), in which I and I0stand for the intensity of the received signal and the transmitted signal respectively.

    The study for moderate and weak situations will be presented in the future research, due to the complexity of special hypergeometric functions as shown in (3) and (4). Here the negative exponential distribution corresponding area is scintillation index≥1. The index can be expressed by= exp()-1, whereequals 0.307k7/6L11/6,stands for the refractive index structure parameter, k for the wave number and L for transmission distance.

    To conduct a Monte-Carlo simulation of green LDPC coded DAPPM FSO system,the channel effect must be most importantly considered. As for a random variable obeying negative exponential distribution, direct generation is available. Based on its inverse function, the random variable obeying negative exponential distribution is constructed by an equidistribution random variable x~U(0,1).The probability density function (PDF) fI(I)is integrated to be the cumulative distribution function FI(I), then its inverse function Finv(x)is obtained to calculate upper bound of channel output:

    Then the channel output I can be converted by the input signal intensity I0and the probability x.

    III. THE NOVEL DAPPM SCHEME

    Before an amplitude-modified DAPPM scheme is proposed, the reason why DAPPM is selected as the prototype of green modulation is explained here.

    Due to the high energy efficiency, M-ary PPM shows its advantage over traditional amplitude and phase modulation. The energy efficiency ηPPMis obviously higher than that of M-ary ASK and M-ary PSK.

    Here Ppand Parepresent the peak power and average power respectively. Higher ηPPMstands for larger peak power of the same average power so as to save energy. DAPPM is the evolutional version of PPM. The energy efficiency ηDAPPMis nearly the same with ηPPMbecause that of amplitude modulation is nearly 1 in high level (more than 4-ary) as follows,

    where A and M stand for the total number of mapping pulse amplitude and position.

    However, the frequency efficiency of DAPPM is A times as large as that of PPM, with only a little BER performance loss. That’s why it is selected as a modulation scheme. Notice that the modulation and demodulation are largely different from MASK and MPSK, the latter part of this section aimed at analyzing specific process of how the amplitude-modified DAPPM works and what it prepares for subsequent LDPC decoding.

    3.1 Modulation of green DAPPM

    To simplify the description, the rectangular non-return-to-zero (NRZ) shaped DAPPM baseband signal is expressed as:

    Notice that Trec(t) is a unit rectangular array with symbol width Tc=Ts/M while Ppis a modified power which makes the average power to be normalized. In the novel scheme of 4×4 and 4×8 green DAPPM (abbreviated to GDAPPM), the amplitude and position characteristic variable a and m are special valued as shown in table I. Here v is an optimized pa-rameter depended on modulation and channel models, the level interval d equals (4-v)/3. The amplitude set {0,v,v+d,v+2d,v+3d,4} is partly equidifferent to achieve lower erroneous decision probability.

    Table I Parartly equidifferent mapping rule of 4×4 and 4×8 gdappm

    Each value of a and m in a symbol stands for the amplitude and time slot index of a given time slot. Here a can be vx, vx+d, vx+2d and 4, d=(4-vx)/3, v1, v2stand for component amplitude value of 4×4 and 4×8 GDAPPM respectively. Because of relationship between the amplitude mapping and demodulation principle, the optimal value of vxwas discussed in section 3.2 comprehensively and critically.The bit sequence of each symbol x5x4x3x2x1are differential bits for GDAPPM mapping.Additionally, since there is similarity in 4×4 and 4×8 GDAPPM signals, the waveform SGDAPPM(t) of 4×4 GDAPPM signal is shown in Figure.1.

    The mapped baseband signal is modulated by an optical modulator and then transmitted into the strong turbulence channel. Among bits, the amplitude control bits x1, x2are vulnerable to be interfered. Gray mapping rules adopted here can effectively minimize the loss of nearby amplitude error decision so as to reduce bit- error rate as possible.

    Fig. 1 Waveform Array of 4×4 GDAPPM

    3.2 Demodulation of GDAPPM

    Now take 4×8 GDAPPM as an example to analyze the demodulation process, received GDAPPM signal is firstly demodulated to be an array of baseband signal rx=(rx1,rx2,…,rx8)by a corresponding matched filter bank. System initialization and the optimal coefficient vxsearching process are shown as Figure 2.As cooperative communication, the optimal amplitude coefficient vxis given by the initialization protocol. Following the similar process described in Figure 2, the time slot position of the pulse in a symbol interval is estimated by maximum likelihood criterion, and then the maximum matching output is demapped into bits or export to cascading decoder as soft values.

    The error probability of the GDAPPM detector would be analyzed as following. In the amplitude set {vx,vx+d,vx+2d,4}, the optimum of vxcan be found based on the statistics channel model. Considering that the pulse amplitude a may be interfered by turbulence-induced fading and additive white Gaussian noise (AWGN). The receiving signal x is modeled by the sum of xteand xtn, in which xteand xtnrespectively follows an exponential and a Gaussian distribution, so the correct-decision probability Pstep2can be worked out as follows:

    The sub-probability of Sstep22, Sstep23and Sstep24can be similarly calculated by replacing“v” as “v+d”, “v+2d” and “4” respectively.

    After estimating the pulse position, the correct decision probability of demapping amplitude can be derived, which is denoted by Pstep3.Notice that decision threshold VT1, VT2, VT3can be set as follows respectively based on maximum posteriori probability principle:

    Accordingly, Pstep3can be expressed as follows:

    The sub-probability Sstep32, Sstep33and Sstep34can be similarly worked out by replacing “v”as “v+d ”, “v+2d ” and “4” respectively .

    By applying the formula for whole error probability (21) and adopting a sequence searching algorithm from 0 to 4 for the cost function of the minimum error probability, the optimum v* is obtained. For instance, in 4×8 GDAPPM with σ2=1, the value of v* is 0.36,meanwhile in case of 4×4 DAPPM, the optimal value of v* changes to 0.12.

    All above the hard demodulation for GDAPPM FSO is discussed. When LDPC coding is employed, the hard demodulation needs to be replaced by a soft demodulation with log-likelihood-ratio (LLR) [14,15].

    It is common sense that outputs of log-softvalue LLR of xk,k=1,2,3,4,5 in each symbol can be deduced assuming that binary source is equiprobability and independent. Moreover, in the strong turbulent scene, the channel is considered to be symmetric, that means, the BER performance is the same when the transmitter and receiver exchange their position:

    Assuming large numbers of photoelectron to be received, a normal distribution can be employed to compute the photoelectron counts so as to calculate the probability of received current[16]. The Channel Soft Value can be described by a normal random variable with mean of and variance σ2as shown by the following equation (23).

    Following the mapping rule given in Table I, the least signification bits x1, x2map to pulse amplitude and the most significant bits x3, x4,x5map to pulse position. Obviously each bit is independent to the other bits, so the posterior probabilities can be computed respectively.

    The LLRs of pulse position mapping bits x3, x4and x5can be obtained by an approximate approach in considering (22):

    Fig. 2 Optimization of partly equidifferent mapping parameter

    On the other hand, the LLRs of pulse amplitude mapping bits x1and x2, can be deduced according to the time slot which gets the maximum level. Notice that “N” successively takes a value from the set of mapping amplitude{0.36, 1.57, 2.78, 4} in the following formulas.

    In strong turbulence condition, the intensity fluctuation of transmitting optical signal obeys negative exponential distribution. The posterior probability is considered to be calculated as follows:

    IV. LDPC CODING AND DECODING

    LDPC coding is the most popular FEC approach in recent years. It present excellent BER performance as well as relatively low decoding complexity in traditional optical fiber and wireless communication systems [17-23].But it also needs proof for FSO conditions.Here a LDPC coding and decoding is adopted to enhance the BER performance of GDAPPM FSO system and its basic principle are mentioned as follows.

    The general coding method of LDPC includes three steps. Firstly, bit stream of message source is shaped into 1×j row vectors δi, where j equals the column number of generator matrix G which can be obtained by transforming parity check matrix H. Finally the shaped vectors δican be encoded into coded bits δenby matrix multiplication δen=δi×G.Based on LLRs computed following the procedures described in section 3.2, a 5-procedure LLR-BP algorithm is described as follows.

    1. Initialization for variable node vml(calibration equation indexes of each calibration equation), information node qmltransmitting to check nodes uml(variable indexes of each calibration equation) and the maximum iterating times kiter:

    2. The horizontal step: check nodes umlupdating as

    3. The vertical step for variable nodes vmlupdating as

    4. The posterior probability vlupdating as

    5. Bit decision: If vl>0, the bit decision is 0. Otherwise the bit decision 1 is made. Asiteration index up to kitertimes,make final bit decision as the decoding result,otherwise begin the next iteration from the second procedure.

    V. SYSTEM SIMULATION

    After analyzing the channel model, Modula-tion and Forward Error Correction, The whole structure of the LDPC-GDAPPM FSO system is presented in Figure 3. As is designed above,the binary source, encoder, GDAPPM mapper,optical modulator and corresponding recovery modules together constructed the entire simulation system. At first, 0-1 distribution source bits δs(n) are generated from a signal source module, then a conventional LDPC encoder encodes the bit stream into LDPC coded bits δm(n). The GDAPPM mapper makes δm(n) to be a differential baseband symbols SGDAPPM(n)which have a certain pulse amplitude among the novel amplitude set {0,v,v+d,v+2d,v+3d,4}according to section III. Then the baseband symbols SGDAPPM(n) are finally shaped as SGDAP-PM(t) and modulated by an optical modulator,thus complete the entire transmit process. In strong turbulence channel and optical receiver,each signal Sf(t) is affected by a negative exponential fading and additive white Gaussian noise. At the receive terminal, the receiver recovers the frequency-band signal into the baseband signal. Consequently it is demapped to LLRs outputs. At last, the LDPC decoder calculated the final result of received bitstream which be checked with transmitted bits for BER calculation. A comparable group without LDPC coding is also simulated for comparative analysis of BER improvement.

    Some important parameters are initialized as follows: Eb/N0varies from 12 ~ 24dB,=5×10-14, L=2km, k=2×106π/1.55, N0=2σ2, then LDPC decod- ing iteration number limit kitaking value 10. Results of 4×4 and 4×8 GDAPPM (denoted by A×M DAPPM-Novel and A×M DAPPM-LDPC 10 interation-Novel) in strong turbulence condition are shown in Figure 4 and Figure 5 respectively.

    Significant BER improvement is achieved by using the proposed scheme in both GDAPPM and LDPC-GDAPPM. Comparing with classical LDPC-DAPPM, the LDPC-GDAPPM in strong turbulence achieved 2 dB coding gain approximately. In the new systems, BER come down to 0.5×10-6~10-6. While compared with the uncoded 4×4 DAPPM, the LDPC-GDAPPM scheme can provide about 5 dB maximum coding gain at the BER of 10-2. As for the 4×8 LDPC-GDAPPM, leveraging the coding gain its BER improvement still achieve 1 dB compared with classical coded DAPPM,even though more pulse position increase misjudgment probability of low amplitude pulse in strong turbulent channel.

    VI. CONCLUSION

    Fig. 3 Simulation system of LDPC-GDAPPM FSO

    Fig. 4 BER performance of 4×4 GDAPPM in strong turbulence

    Fig. 5 BER performance of 4×8 GDAPPM in strong turbulence

    To sum up, a novel DAPPM FSO as well as LDPC-GDAPPM is proposed, and its efficiency and reliability are demonstrated in turbulent channel. The novel scheme mainly composed of partly equidifferent mapping and its demodulation. Simulation results show about 2dB transmit power reduction against traditional 4×4 DAPPM at the identical BER. This novel scheme contributes to saving optical transmission power to achieve the same BER performance, so it is a “green” approach. To scale up the proposed partly equidifferent mapping approach for other turbulent FSO system, we will further investigate the region based statistical channel model and advanced forward error control schemes in our future work.

    ACKNOWLEDGEMENTS

    This work was partially supported by the National High-tech R&D Program (863 Program) 2013AA041003, the Natural Science Foundation of China under Grants 51165033,and the Science and Technology Department of Jiangxi Province of China under grant 20151BBE50046, 20142BBE50035 and 20151BAB207052.

    [1] WANG Kaimin, Bo L, Lijia Z, et al, “Review of coded modulation free space optical communication system”[J],China Communications,vol.12, no.11, pp 1-17, 2015.

    [2] PATNAIK B, SAHU P K, “Design and study of high bit–rate free–space optical communication system employing QPSK modulation”[J].International Journal of Signal and Imaging Systems Engineering, vol.6, no.1, pp 3-8. 2013.

    [3] LEE S H, JUNG S Y, KWON J K. “Modulation and coding for dimmable visible light communication”[J].IEEE Communications Magazinevol.53,no.2, pp 136-143,2015.

    [4] AMINIAN M S, DONG Y, “Routing in Terrestrial Free Space Optical Ad-Hoc Networks”[D]. PhD thesis, Link?ping University Institute of Technology, Norrk?ping, 2014.

    [5] KHAN M, YUKSEL M, “Maintaining a free-space-optical communication link between two autonomous mobiles”[C]// Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). Isanbul, Turkey:IEEE Press,pp 3154-3159, 2014.

    [6] UBOLTHIP SETHAKASET, T. AARON GULLIVER,“Differential Amplitude Pulse-Position Modulation for Indoor Wireless Optical Communications”[J].EURASIP Journal on Applied Signal Processing, no.1, pp 3–11, 2005.

    [7] POOJA GOPAL, V.K.JAIN, SUBRAT KAR, “Performance Analysis of Ground to Satellite FSO System with DAPPM Scheme in Weak Atmospheric Turbulence”[C]// Proceedings of International Conference on Fiber Optics and Photonics(PHOTONICS). Chennai, India:OSA Press. pp 1–6, 2012.

    [8] ZHANG Zhengya, VENKAT ANANTHARAM, MARTIN J. WAINWRIGHT, “An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors”[J].IEEE Journal of Solid-State Circuits, vol.45, no.4, pp 843-855, 2010.

    [9] ZHENG Dou, SHA Xuejun, “LDPC-Coded Optical PPM Communication System over the Atmosphere Turbulence Channels”[C]// Proceedings of Information and Automation (ICIA). Harbin,China :IEEE Press, pp 2277-2280, 2010.

    [10] IVAN B. DJORDJEVIC, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation”[J].Optics express, vol.15, no.16, pp 10026-10031, 2007.

    [11] WANG K, ZHANG Q, WANG Y, et al. “LDPC-coded A×M-DAPPM systems for simulation of turbulent free-space optical communication system”[C]// Proceedings of 12th International Conference on Optical Communications and Networks (ICOCN). Chengdu, China:IEEE Press,pp 120-126, 2013.

    [12] EPPLE B. “Simplified Channel Model for Simulation of Free-Space Optical Communications”[J].IEEE/OSA Journal of Optical Communications and Networking, vol.5, no.2, pp 293-304, 2010.

    [13] DAVASLIO?LU K, ?A?IRAL E, KOCA M. “Free space optical ultra-wideband communications over atmospheric turbulence channels”[J].Optics express, vol.18, no.16, pp 16618-16627,2010.

    99久久综合精品五月天人人| 欧美不卡视频在线免费观看 | 在线十欧美十亚洲十日本专区| 亚洲男人天堂网一区| 天堂影院成人在线观看| 午夜精品在线福利| 国产一区二区三区在线臀色熟女 | 真人一进一出gif抽搐免费| 久久精品91无色码中文字幕| 亚洲七黄色美女视频| 国产一区二区激情短视频| 欧美成人午夜精品| 国产99久久九九免费精品| 欧美中文日本在线观看视频| 桃红色精品国产亚洲av| 淫秽高清视频在线观看| 一区二区日韩欧美中文字幕| 亚洲精品国产区一区二| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产综合久久久| 午夜久久久在线观看| 黄片大片在线免费观看| 亚洲av电影在线进入| 一区福利在线观看| 少妇粗大呻吟视频| 岛国在线观看网站| 成人影院久久| 精品国产一区二区久久| 日韩高清综合在线| 欧美激情极品国产一区二区三区| 午夜免费观看网址| 久久国产乱子伦精品免费另类| 精品卡一卡二卡四卡免费| 午夜久久久在线观看| bbb黄色大片| 亚洲精品一二三| 黄网站色视频无遮挡免费观看| 美女扒开内裤让男人捅视频| 日本一区二区免费在线视频| av超薄肉色丝袜交足视频| 国产欧美日韩精品亚洲av| 亚洲国产精品sss在线观看 | 自线自在国产av| 亚洲全国av大片| 热re99久久精品国产66热6| 日日摸夜夜添夜夜添小说| 男女高潮啪啪啪动态图| 色婷婷av一区二区三区视频| 如日韩欧美国产精品一区二区三区| 这个男人来自地球电影免费观看| 久久精品国产亚洲av高清一级| www.999成人在线观看| avwww免费| 国产主播在线观看一区二区| 99国产极品粉嫩在线观看| 国产精品亚洲一级av第二区| 日日爽夜夜爽网站| 久久伊人香网站| aaaaa片日本免费| 日本五十路高清| 女同久久另类99精品国产91| 日本一区二区免费在线视频| 精品久久久久久电影网| 免费不卡黄色视频| 性欧美人与动物交配| 性欧美人与动物交配| 日本wwww免费看| 成年女人毛片免费观看观看9| 免费久久久久久久精品成人欧美视频| 高清在线国产一区| 脱女人内裤的视频| 在线观看舔阴道视频| 老司机亚洲免费影院| 国产精品亚洲一级av第二区| 伊人久久大香线蕉亚洲五| 久久久国产欧美日韩av| 丁香欧美五月| 亚洲第一青青草原| 亚洲精品国产精品久久久不卡| 精品国产乱码久久久久久男人| 亚洲aⅴ乱码一区二区在线播放 | 极品教师在线免费播放| 最近最新中文字幕大全免费视频| av超薄肉色丝袜交足视频| 午夜精品在线福利| 亚洲免费av在线视频| www.熟女人妻精品国产| 精品一区二区三区av网在线观看| 男男h啪啪无遮挡| 国产1区2区3区精品| 又黄又粗又硬又大视频| 亚洲五月色婷婷综合| 国产成人欧美| 欧美日本亚洲视频在线播放| avwww免费| 99热只有精品国产| 精品久久久久久久毛片微露脸| 桃红色精品国产亚洲av| 97超级碰碰碰精品色视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人免费av一区二区三区| 国产片内射在线| 久久青草综合色| 丝袜美足系列| av免费在线观看网站| 999久久久精品免费观看国产| 国产视频一区二区在线看| 日韩免费av在线播放| 巨乳人妻的诱惑在线观看| 欧美午夜高清在线| 国产免费现黄频在线看| 国产成人精品久久二区二区91| 99riav亚洲国产免费| 欧美人与性动交α欧美精品济南到| 亚洲一区高清亚洲精品| 窝窝影院91人妻| 亚洲 欧美 日韩 在线 免费| 国产男靠女视频免费网站| 精品人妻在线不人妻| 久久久国产精品麻豆| 国产成人精品久久二区二区91| 国产精华一区二区三区| 亚洲欧美激情综合另类| 久久久久国产一级毛片高清牌| 日本三级黄在线观看| 亚洲精品久久午夜乱码| 欧洲精品卡2卡3卡4卡5卡区| 一级作爱视频免费观看| 午夜精品久久久久久毛片777| 视频区图区小说| 婷婷丁香在线五月| 最近最新中文字幕大全电影3 | ponron亚洲| 亚洲精品在线观看二区| 国产xxxxx性猛交| 亚洲成人国产一区在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产一区二区精华液| 黄片播放在线免费| 国产伦一二天堂av在线观看| 一级a爱视频在线免费观看| 日本免费一区二区三区高清不卡 | 涩涩av久久男人的天堂| 亚洲视频免费观看视频| 成在线人永久免费视频| 免费搜索国产男女视频| 国产成人av教育| 国产av一区在线观看免费| 黄色丝袜av网址大全| 9191精品国产免费久久| 在线观看免费视频日本深夜| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区日韩欧美中文字幕| 久久精品影院6| 亚洲中文av在线| 国产有黄有色有爽视频| 超色免费av| 成熟少妇高潮喷水视频| 脱女人内裤的视频| netflix在线观看网站| 丁香六月欧美| 国产精品98久久久久久宅男小说| 国产av在哪里看| 欧美黑人精品巨大| 黑丝袜美女国产一区| 日韩大码丰满熟妇| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 在线国产一区二区在线| 又紧又爽又黄一区二区| 波多野结衣高清无吗| 国产91精品成人一区二区三区| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 国产高清国产精品国产三级| 超碰成人久久| 亚洲精品国产区一区二| 午夜福利欧美成人| 女生性感内裤真人,穿戴方法视频| 丝袜人妻中文字幕| 国产精品秋霞免费鲁丝片| 亚洲avbb在线观看| 91精品国产国语对白视频| 老司机亚洲免费影院| 亚洲伊人色综图| 免费高清视频大片| 久久久久久久久久久久大奶| 桃色一区二区三区在线观看| 99国产精品99久久久久| 超碰97精品在线观看| 国产蜜桃级精品一区二区三区| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| 成熟少妇高潮喷水视频| 亚洲国产欧美网| 三上悠亚av全集在线观看| 在线免费观看的www视频| 又大又爽又粗| 91麻豆av在线| 日韩精品中文字幕看吧| 97碰自拍视频| 宅男免费午夜| 亚洲五月天丁香| 欧美一级毛片孕妇| 成人永久免费在线观看视频| 黄色 视频免费看| 日韩欧美三级三区| 啪啪无遮挡十八禁网站| 性欧美人与动物交配| 国产熟女xx| ponron亚洲| 天堂√8在线中文| 欧美成狂野欧美在线观看| 亚洲国产中文字幕在线视频| 日韩国内少妇激情av| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看 | 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲午夜理论影院| 三上悠亚av全集在线观看| 免费高清视频大片| 一区二区三区精品91| 法律面前人人平等表现在哪些方面| 亚洲专区字幕在线| 精品人妻1区二区| 成人免费观看视频高清| 大香蕉久久成人网| 国产激情久久老熟女| 色婷婷久久久亚洲欧美| 国产精品久久久av美女十八| 中文字幕人妻丝袜制服| 很黄的视频免费| 国产成人免费无遮挡视频| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| 18禁美女被吸乳视频| 三级毛片av免费| 麻豆一二三区av精品| 亚洲成人久久性| 精品国产美女av久久久久小说| 中亚洲国语对白在线视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 亚洲少妇的诱惑av| 国产一区二区在线av高清观看| 制服诱惑二区| 我的亚洲天堂| 亚洲中文字幕日韩| 久久中文看片网| 一区二区三区精品91| 精品一区二区三区av网在线观看| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| 后天国语完整版免费观看| 免费观看精品视频网站| 丝袜在线中文字幕| 成年人免费黄色播放视频| 国产精品秋霞免费鲁丝片| 9191精品国产免费久久| 丁香欧美五月| 69av精品久久久久久| 精品久久蜜臀av无| 又黄又粗又硬又大视频| 亚洲第一av免费看| 18禁美女被吸乳视频| 大码成人一级视频| 久久久久国产精品人妻aⅴ院| 亚洲国产精品sss在线观看 | 国产麻豆69| 国产成+人综合+亚洲专区| 日韩成人在线观看一区二区三区| 少妇裸体淫交视频免费看高清 | 很黄的视频免费| 国产成人av教育| 黄色怎么调成土黄色| 黄色 视频免费看| 国产亚洲欧美在线一区二区| 国产欧美日韩综合在线一区二区| 91大片在线观看| 亚洲中文字幕日韩| 99国产精品免费福利视频| 欧美日韩一级在线毛片| 国产1区2区3区精品| 99久久人妻综合| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 又黄又爽又免费观看的视频| 国产蜜桃级精品一区二区三区| 久久精品91无色码中文字幕| 免费av中文字幕在线| 久久精品亚洲熟妇少妇任你| 日本 av在线| 午夜福利在线观看吧| 最新美女视频免费是黄的| 少妇 在线观看| 亚洲av成人av| 欧美日韩一级在线毛片| 丝袜美足系列| 亚洲成人精品中文字幕电影 | 亚洲avbb在线观看| av免费在线观看网站| 国产精品免费一区二区三区在线| 两性夫妻黄色片| 我的亚洲天堂| 国产深夜福利视频在线观看| 亚洲九九香蕉| 午夜久久久在线观看| 激情视频va一区二区三区| 亚洲熟妇熟女久久| 很黄的视频免费| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 91老司机精品| 99久久人妻综合| 在线看a的网站| 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美精品济南到| 久久精品国产综合久久久| 免费少妇av软件| 亚洲五月天丁香| 亚洲欧美日韩高清在线视频| www.自偷自拍.com| 香蕉丝袜av| 久久人妻av系列| 午夜两性在线视频| 黄色视频不卡| 女人被狂操c到高潮| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 久久久久久亚洲精品国产蜜桃av| 色婷婷久久久亚洲欧美| 深夜精品福利| 波多野结衣一区麻豆| 日韩免费高清中文字幕av| 国产主播在线观看一区二区| 黄片大片在线免费观看| 亚洲色图综合在线观看| 国产野战对白在线观看| 最近最新中文字幕大全免费视频| 国产av一区在线观看免费| 老汉色∧v一级毛片| 精品久久久久久久毛片微露脸| 色综合欧美亚洲国产小说| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码| 一本综合久久免费| 男女做爰动态图高潮gif福利片 | 成年人免费黄色播放视频| 国产成人一区二区三区免费视频网站| 国产免费男女视频| 久热这里只有精品99| 如日韩欧美国产精品一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲国产精品999在线| av网站免费在线观看视频| xxx96com| 日韩精品青青久久久久久| 日本a在线网址| 最新美女视频免费是黄的| 999久久久国产精品视频| 国产精品自产拍在线观看55亚洲| 亚洲avbb在线观看| 久久婷婷成人综合色麻豆| 黑丝袜美女国产一区| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 亚洲av第一区精品v没综合| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 亚洲国产欧美一区二区综合| 99精品在免费线老司机午夜| 亚洲精品一区av在线观看| 日韩大码丰满熟妇| 美国免费a级毛片| av视频免费观看在线观看| 日韩有码中文字幕| 99国产精品一区二区三区| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 黄色女人牲交| 热99re8久久精品国产| av免费在线观看网站| 女生性感内裤真人,穿戴方法视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲| 久久久国产一区二区| 亚洲中文字幕日韩| 免费高清在线观看日韩| 午夜成年电影在线免费观看| 亚洲专区中文字幕在线| 精品福利永久在线观看| 成人精品一区二区免费| av欧美777| 99香蕉大伊视频| 欧美日韩精品网址| av有码第一页| 中文字幕最新亚洲高清| www.自偷自拍.com| 麻豆av在线久日| 99久久99久久久精品蜜桃| 欧美激情 高清一区二区三区| 亚洲成a人片在线一区二区| 欧美成人午夜精品| 精品国产乱码久久久久久男人| 高潮久久久久久久久久久不卡| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 大陆偷拍与自拍| 国产在线精品亚洲第一网站| 成人三级黄色视频| av福利片在线| 国产乱人伦免费视频| 极品教师在线免费播放| 91老司机精品| 在线观看一区二区三区激情| 99香蕉大伊视频| 亚洲色图av天堂| 国产一区二区激情短视频| 日本三级黄在线观看| 国产男靠女视频免费网站| tocl精华| 老熟妇乱子伦视频在线观看| 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 亚洲美女黄片视频| 成人黄色视频免费在线看| 水蜜桃什么品种好| 极品教师在线免费播放| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 夜夜夜夜夜久久久久| 999久久久国产精品视频| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品91蜜桃| 国产成人精品久久二区二区91| 精品卡一卡二卡四卡免费| 亚洲激情在线av| 一级片'在线观看视频| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 一二三四在线观看免费中文在| 中文字幕人妻丝袜制服| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 日韩免费av在线播放| 精品国产一区二区久久| 亚洲专区字幕在线| 亚洲中文av在线| 精品久久久久久久久久免费视频 | 久久精品国产亚洲av高清一级| 日日摸夜夜添夜夜添小说| 18禁国产床啪视频网站| 大码成人一级视频| 久久人人97超碰香蕉20202| 成人黄色视频免费在线看| 一本综合久久免费| 亚洲第一青青草原| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 在线天堂中文资源库| 国产在线精品亚洲第一网站| 他把我摸到了高潮在线观看| 国产亚洲欧美精品永久| 亚洲自拍偷在线| 精品一区二区三区四区五区乱码| 一进一出抽搐gif免费好疼 | 一级a爱视频在线免费观看| 亚洲精品中文字幕一二三四区| 在线国产一区二区在线| 亚洲熟妇熟女久久| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| 新久久久久国产一级毛片| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 亚洲av五月六月丁香网| 在线看a的网站| 久久精品亚洲精品国产色婷小说| 国产精品九九99| 脱女人内裤的视频| 亚洲av美国av| 久久热在线av| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 自线自在国产av| 久99久视频精品免费| 黄色 视频免费看| 国产熟女午夜一区二区三区| 日本黄色视频三级网站网址| 一级,二级,三级黄色视频| 欧美精品啪啪一区二区三区| 少妇裸体淫交视频免费看高清 | 亚洲欧美一区二区三区久久| 国产黄a三级三级三级人| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人国产一区在线观看| 高清在线国产一区| 国产精品香港三级国产av潘金莲| 成人国语在线视频| 身体一侧抽搐| 90打野战视频偷拍视频| 精品第一国产精品| 80岁老熟妇乱子伦牲交| 日本三级黄在线观看| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合一区二区三区| 亚洲黑人精品在线| 老司机在亚洲福利影院| 日韩av在线大香蕉| 国产乱人伦免费视频| 亚洲国产精品一区二区三区在线| 99国产精品一区二区三区| 久久人妻熟女aⅴ| 不卡av一区二区三区| 精品免费久久久久久久清纯| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 免费日韩欧美在线观看| 亚洲欧美一区二区三区黑人| 日韩免费高清中文字幕av| 久久中文字幕人妻熟女| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 亚洲一区二区三区不卡视频| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 不卡av一区二区三区| 日本免费a在线| 无限看片的www在线观看| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 国产有黄有色有爽视频| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 色老头精品视频在线观看| 夜夜爽天天搞| 国产精品免费视频内射| 国产黄色免费在线视频| 成人特级黄色片久久久久久久| 香蕉国产在线看| 久久久久久人人人人人| 欧美色视频一区免费| 纯流量卡能插随身wifi吗| 久久这里只有精品19| 色在线成人网| 欧美日韩亚洲国产一区二区在线观看| 久热这里只有精品99| 国产日韩一区二区三区精品不卡| 亚洲av美国av| 男男h啪啪无遮挡| 成在线人永久免费视频| 天天影视国产精品| 又大又爽又粗| 成人特级黄色片久久久久久久| 一区在线观看完整版| 自线自在国产av| 操美女的视频在线观看| 国产又爽黄色视频| 夫妻午夜视频| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| av有码第一页| 欧美日韩国产mv在线观看视频| 欧美激情高清一区二区三区| 美国免费a级毛片| 99国产精品一区二区蜜桃av| 精品福利观看| 免费看十八禁软件| 身体一侧抽搐| 97超级碰碰碰精品色视频在线观看| 丁香欧美五月| √禁漫天堂资源中文www| 深夜精品福利| 热re99久久国产66热| 男女之事视频高清在线观看| 午夜激情av网站| 高清毛片免费观看视频网站 | 深夜精品福利| 99国产精品99久久久久| 91av网站免费观看| 国产精品99久久99久久久不卡| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| 两人在一起打扑克的视频| 美女午夜性视频免费| 欧美大码av| 色综合站精品国产| 岛国在线观看网站| 91国产中文字幕| 久久婷婷成人综合色麻豆| 国产国语露脸激情在线看| 亚洲国产精品sss在线观看 | 一二三四在线观看免费中文在| 成人黄色视频免费在线看| 日本五十路高清| 校园春色视频在线观看| 午夜福利,免费看|