• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Signal Path Reckoning Localization Method in Multipath Environment

    2017-05-09 03:03:42JunhuiZhaoLeiLiHaoZhangYiGong
    China Communications 2017年3期

    Junhui Zhao, Lei Li, Hao Zhang, Yi Gong

    1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China

    2 School of Information Engineering, East China Jiaotong University, Nanchang, 330013, China

    3 Department of Electrical and Electronic Engineering, South University of Science and Technology of China, Shenzhen, 518055, China

    * The corresponding author, email: junhuizhao@bjtu.edu.cn

    There is a growing need for both commercial and government application of wireless localization services that provide the location of a mobile device in a cellular or sensor network [1].Among the localization technologies, the most commercialized is the Global Positioning System (GPS), but there are still problems need to be solved [2]: GPS behaves brilliant in the open outdoor area, but as a result of the low satellite signal power, the signal attenuation phenomenon is very serious in the dense urban environment or under the bad weather. What is worse, the GPS behaves inferior in the vertical direction in the three-dimensional space, and is unavailable in the indoor or the underground environment.Solving the GPS-denied environment, the underwater acoustic sensor network (UASN) was considered and analyses the impacts of node deployment strategies on localization performance[3]. In [4], the author presented a review of the most successful Mobile Anchor Node Assisted Localization (MANAL) algorithms. The land based localization system generally behaves well based on the direct path signal, but in the indoor and dense urban environment, the localization error can reach hundreds of meters because of the multipath propagation’s effect, which is far from enough for the growing demand of the Location-based Service (LBS). As a result, high precision localization technology in the multipath environment becomes one of the hot research topics in the field of wireless localization.

    By now there are mainly two methods to mitigate the effect of the multipath propagation,fingerprint matching and geometrical calculation. In the former method [5], the fingerprint was obtained from the measured signal strength or power, so it has contained the effect of the multipath propagation and the non-line-of-sight error, so the localization result is not affected by these factors. Moreover, it is n’t sensitive to the time synchronization and the clock precision,and can get very high localization accuracy in a certain area. But it has some disadvantages:there are large workload and long period in the fingerprint extraction phase; the fingerprint needs to be measured afresh when the environment changed such as old buildings dismantled,new ones built and the layout altered. Therefore the signal fingerprint localization method does not apply to the cases of wide range or where the environment changes frequently. In order to overcome the deficiency of the large workload and long period in the fingerprint extraction phase, some improved methods are proposed.In [6-7], the authors have proposed the localization based on ray-tracing over fingerprinting techniques, in which the fingerprint extraction phase is carried out by computer simulating instead of measuring, but it is still facing problems such as mesh generation.

    The authors improve the Line of Possible Mobile Device (LPMD)algorithm. Furthermore, a signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths.

    The characteristics of recent energy-efficient coverage strategies have been analyzed in [8]. The networks’ full coverage and connectivity also can be addressed to solve the multipath problem. The geometric methods focus on multipath signal processing, where the time measurement accuracy is increased through the high accuracy time delay estimation method, but the result would be unsatisfactory under the condition that the direct signal does not dominate.

    In recent years, the research on MIMO(Multiple Input Multiple Output) technology is gaining more and more attention. The MIMO technology aims at realizing spatial multiplexing by smart antennas in the transmitter and receiver in the 4G communication technology and the new generation WLAN,which makes it possible to obtain the accurate signal AOA (Angle of Arrival) measurements[9]. Meanwhile, UWB (Ultra Wideband) has a strong ability of time resolution, which makes it able to identify the TOA (Time of Arrival)measurements in the multipath signals [10-11].Therefore, the AOA/TOA hybrid localization technology in the severe multipath environment becomes one of the hot research topics.A TOA/AOA algorithm has been proposed for NLOS propagation paths [12]. In [13], the algorithm only requires one reference device to estimate the mobile location based on TOA/AOA. [14] proposed the LPMD (Line of Possible Mobile Device) algorithm to estimate the receiver’s location utilizing the emission and arrival angles as well as the propagation distance in the multipath environment with the single-bound scattering paths, but its performance is poor when the multiple-bound scattering path predominates.Reference[15]located the target with a single sensor by a time-of-arrival wall association algorithm based on ray tracing reflections. In [16], the author proposed a map matching involved step counting algorithm, which is based on dead-reckoning.

    The novelty of our work is using the idea of dead reckoning localization and ray tracing for reference, we propose signal path reckoning localization method with the assistance of GIS (Geographic Information System), to estimate the location with the emission angle and propagation distance measurements. This paper also improves the LPMD algorithm for single-bound scattering scenario. Simulation results show that the proposed algorithm obtains satisfactory result when the angle error is controlled.

    The rest of this paper is organized as follows. The improved LPMD algorithm is introduced in Section II. The signal path reckoning localization method with the assistance of GIS is proposed in Section III. The simulation results are presented in Section IV and paper is concluded in Section V.

    II. IMPROVED LPMD ALGORITHM

    2.1 Introduction of the LPMD algorithm

    Reference [14] proposed an AOA/TOA hy-brid localization algorithm based on the single-bound scattering path, the LPMD algorithm, as shown in Fig. 1.

    Considering obstacles between the BS(Base Station) and MD (Mobile Device), no LOS (Line of Sight) path exists. The signal can reach the MD from BS through a single-bound scattering path. Assumed that there are directive antennas on both the BS and the MD.

    There is a serious defect about LPMD algorithm. When the lines are just parallel, the algorithm cannot estimate the MD’s location.The location error is serious when the lines are close to parallel.

    2.2 Utilization of the direct path signal

    In the realistic multipath environment, LOS(direct path) and NLOS (single-bound scattering path) are always available among the reference devices when the buildings are sparse.In the multipath localization methods, the direct path will play a positive role to improve the localization accuracy. Reference [14] utilized the direct path in a way as below. For the

    The coefficient matrix in (2) can be optimized according to (3), and the localization accuracy could be improved.

    The method above is simple, but the distance information of the signal is ignored. The new coefficient matrix is only added by the sine and cosine ofwhich only accounts a very small proportion compared with the distance measurement, therefore the addition of the direct path has little in fluence on the accuracy of the estimated location.

    For the direct path, the location can be estimated by only one BS utilizing the AOA and the TOA measurements. So this paper improves LPMD algorithm with this theory.

    Only the system measuring error is considered in the direct path and the scattering path, so each path should be given the same

    Fig. 1 Schematic diagram of LPMD localization algorithm

    This path weighting factor will provide more weight to the LOS and the one-bound scattering paths. The final estimated location is expressed as

    III. SIGNAL PATH RECKONING LOCALIZATION METHOD

    Under the actual environment of multipath propagation, the direct and single-bound scattering paths only account a very small proportion. Through verifying, the LPMD algorithm does not apply to the multiple-bound scattering paths. Meanwhile, some techniques need to be carried out to eliminate the multiple-bound scattering paths for the LPMD algorithm. The LPMD algorithm is unavailable when the number of single-bound scattering path is less than two. As a result, a novel method is needed for the multiple-bound scattering paths.

    Fig. 2 Schematic diagram of path reckoning localization

    Ray tracing localization scheme provides the reference for this article. The traditional ray tracing technique is mean to calculate the field strength and power of a certain point, according to the simulation of the signal propagation paths from the known transmitters with the assistance of GIS. In this paper, receiver’s location is unknown, so the measurements we can get are only about the angle and distance information. Using the idea of the ray tracing and the dead reckoning for reference, the signal path reckoning localization method is proposed.

    Each direct path can generate an estimated location.

    The weighting factor of the multiple-bound scattering paths is given as

    where n is the number of paths.

    As the localization process needs the assistance of GIS where the data are different for different cases, the localization process and GIS ought to be assigned in the central server.The localization scheme is shown as below.

    1. The AP (Access Point) broadcast messages with the information of the AP’s location,the emission angle and the propagation time;

    2. The receiver node receives the message and sends a localization request, and establishes a connection with an AP;

    3. AP estimates the location according to the information in the localization request (the location of AP, the emission angle and the propagation time) with the assistance of GIS, and sends the localization result to the receiver node.

    IV. SIMULATION

    In order to make contrast between the signal path reckoning localization method and the LPMD algorithm, the location of receiver O is set at (170,100), which forms two nonparallel lines of the LPMD algorithm. Considering the fading problem caused by reflection,we assume that the path with the number of reflection less than four is valid. The radio signal propagating in wall reflection with no attenuation is assumed. All the valid paths are shown as in Fig. 3. We can see that receiver O only receives the reflected signals from the transmitters of A and C.

    As shown in Fig. 3 there are four paths in all. Simulation is carried out for seven cases: (1) the signal path reckoning localization method with all 4 paths; (2) the signal path reckoning localization method with selecting random 3 paths of 4 paths; (3) the signal path reckoning localization method with selecting random 2 paths of 4 paths; (4) the improved LPMD algorithm with the single-bound scattering and direct paths; (5) the LS (least square) algorithm with fictitious TOA measurements assuming there were no obstacles;(6) the proposed TOA/AOA algorithm in [12]with single-bound scattering and direct paths;(7) the proposed TOA/AOA algorithm in [13]with the direct paths.

    Fig. 3 Schematic diagram of the signal propagation paths

    Fig. 4 The performance of the location error probability distribution of path reckoning

    ment respectively, and randn is a random value which conforms to normal distribution.

    The RMSE (Root-mean-square error) is used to evaluate the localization accuracy,shown as

    As shown in Fig. 4, because of the lack of the angle measurement’s constraint, the performance of LS algorithm with fictitious TOA measurements is the worst of the compared algorithms. And the TOA/AOA algorithms are better than the LS algorithm. The signal path reckoning method performs the best of all, and the more paths, the better.

    As shown in Fig. 5, when the standard deviation of distance error is less than 2m, the LS algorithm with fictitious TOA measurements performs best because it is not affected by the angle error. But as the distance error’s increasing, the LS algorithm performs far worse than the LPMD algorithm and the path reckoning method without angle constrain. The improved LPMD algorithm performs better than the signal path reckoning method when the measurement error is small (smaller than 3m). And the Miao TOA/AOA performs close to the signal path reckoning with the condition ignoring multi-bound scattering paths. When the distance error is much more serious, the signal path reckoning method performs best, and the more paths, the better.

    As shown in Fig. 6, the LS algorithm performs stable because the distance error is certain. As the two lines are close to vertical, the performance of LPMD and comparing TOA/AOA algorithms change little with the increasing of the angle error. When the angle error standard deviation is less than 0.08rad, the signal path reckoning method performs stable as well, and better than the improved LPMD and the LS algorithm. Meanwhile, the more paths,the better it performs. But when the angle error standard deviation is larger than 0.08rad,the localization error increases and becomes unstable. This is because when the angle error is serious, the reckoned path may be seriously deflective from the actual propagation path,which causes the inferior result. So it is important to control the angle measurement error or choose measurements with small angle errors in the signal path reckoning method. The simulations also depict that the angle and the distance play a part together. They are mutual obligation. The more path measurements are,the more equations are, also the more noise.So, the algorithms should match condition.

    V. CONCLUSIONS

    This paper analyzes the hybrid localization method of emission angle and propagation distance utilizing the signal propagation path in the multipath environment. Firstly, the LPMD algorithm with the single-bound scattering paths is introduced and improved by optimizing the utilization of the direct paths. For the multi-bound scattering paths, the signal path reckoning localization method with the assistance of GIS, which uses the idea of the ray tracing and dead reckoning for reference, is proposed. Simulation result shows that with the environment idealization, the proposed method performs better than the existing localization schemes when the angle measurement error is controlled.

    ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China (61471031),the Fundamental Research Funds for the Central Universities, Beijing Jiaotong University (2013JBZ001), National Science and Technology Major Project (2016ZX03001014-006), the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2017D14),Shenzhen Peacock Program under Grant No.KQJSCX20160226193545.

    [1] Sayed A H, Tarighat A, Khajehnouri N, “Network-based wireless location: challenges faced in developing techniques for accurate wireless location information”,IEEESignal Processing Magazine,vol. 22, no. 4, pp 24-40, Jul, 2005.

    Fig. 5 The result for location error with different distance errors of path reckoning algorithm

    Fig. 6 The result for location error with different angle errors of path reckoning algorithm

    [2] Drawil N M, Amar H M, Basir O A, “GPS Localization Accuracy Classification: A Context-Based Approach”,IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp 262-273, Sep, 2013.

    [3] Han G, Zhang C, Shu L, et al, “Impacts of deployment strategies on localization performance in underwater acoustic sensor networks”,IEEE Transactions on Industrial Electronics, vol.62, no. 3, pp 1725-1733, Oct, 2015.

    [4] Han G, Zhang C, Duong T, et al, “A Survey on Mobile Anchor Node Assisted Localization in Wireless Sensor Networks”,IEEE Communications Surveys & Tutorials, vol. PP, no. 99, pp 1-25, Mar, 2015.

    [5] Alsindi N, Chaloupka Z, Aweya J, “Entropy-based location fingerprinting for WLAN systems”,2012 IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN),pp 1-7, Nov, 2012.

    [6] Del Corte A, Gutiérrez O, Gomez J M, “High-accuracy localization based on the dominant rays of ray-tracing over fingerprinting techniques”,2012 IEEE Antennas and Propagation Society International Symposium (APSURSI),pp 1-2, Jul,2012.

    [7] Mallat A, Vandendorpe L, “CRBs for the joint estimation of TOA and AOA in wideband MISO and MIMO systems: comparison with SISO and SIMO systems”,IEEE International Conference on Communications, pp 1-6, Jun, 2009.

    [8] Han G, Liu L, Jiang J, et al, “Analysis of Energy-Efficient Connected Target Coverage Algorithms for Industrial Wireless Sensor Networks”,IEEE Transactions on Industrial Informatics, vol.PP, no. 99, pp 1-9, Dec, 2015.

    [9] Irahhauten Z, Leus G, Nikookar H, et al, “UWB Ranging Based on Partial Received Sub-Band Signals in Dense Multipath Environments”,2010 IEEE International Conference on Communications (ICC), pp 1-6, Jul, 2010.

    [10] Seow C K, Tan S Y, “Non-line-of-sight localization in multipath environments”,IEEE Transactions on Mobile Computing, vol. 7, no. 5, pp 647-660, Mar, 2008.

    [11] Bao H, Wong W C, “An indoor dead-reckoning algorithm with map matching”,2013 9th International Wireless Communications and Mobile Computing Conference, pp1534-1539, 2013.

    [12] Miao H, Yu K, Juntti M J, “Positioning for NLOS propagation: Algorithm derivations and Cramer-Rao bounds”,2006 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp IV-IV., May, 2006.

    [13] Chen S W, Seow C K, Tan S Y, “single reference mobile localisation in multipath environment”,Electronics Letters, vol. 49, no. 21, pp 1360-1362,Nov, 2013.

    [14] Irahhauten Z, Nikookar H, Klepper M, “A joint ToA/DoA technique for 2D/3D UWB localization in indoor multipath environment”,2012 IEEE International Conference on Communications(ICC), pp 4499-4503, Nov, 2012.

    [15] Tayebi A, Gomez J, de Adana F S, et al, “Ray-tracing application to mobile localization in multipath indoor environments”,2009 International Conference on Electromagnetics in Advanced Applications, ICEAA’09, pp 412-415, Nov, 2009.

    [16] Setlur P, Smith G E, Ahmad F, et al, “Target localization with a single sensor via multipath exploitation”,IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no.3, pp 1996-2014,Mar, 2012.

    欧美精品av麻豆av| 亚洲欧洲国产日韩| 少妇被粗大的猛进出69影院| 老司机在亚洲福利影院| 91国产中文字幕| 一本一本久久a久久精品综合妖精| 美女中出高潮动态图| 中文字幕精品免费在线观看视频| svipshipincom国产片| 一区二区av电影网| 国产黄色免费在线视频| 丝袜美腿诱惑在线| 午夜免费观看性视频| 成年av动漫网址| 韩国av在线不卡| 一级毛片我不卡| 亚洲国产欧美网| 成人三级做爰电影| 亚洲av成人精品一二三区| 这个男人来自地球电影免费观看 | 午夜激情久久久久久久| 又大又黄又爽视频免费| 亚洲av中文av极速乱| 国产有黄有色有爽视频| 精品人妻熟女毛片av久久网站| 精品人妻在线不人妻| 亚洲av在线观看美女高潮| 亚洲国产成人一精品久久久| 国产精品久久久久久精品古装| 性色av一级| 国产亚洲一区二区精品| 曰老女人黄片| 国产精品久久久久久精品电影小说| 人妻人人澡人人爽人人| 热re99久久国产66热| 精品久久久久久电影网| 国产精品国产三级专区第一集| 男女免费视频国产| 国产免费现黄频在线看| 亚洲,欧美,日韩| 一本一本久久a久久精品综合妖精| 国产不卡av网站在线观看| 国产xxxxx性猛交| 巨乳人妻的诱惑在线观看| 伊人久久国产一区二区| 乱人伦中国视频| 精品亚洲乱码少妇综合久久| 嫩草影视91久久| 老司机靠b影院| 男人舔女人的私密视频| 纯流量卡能插随身wifi吗| 老司机靠b影院| 人人妻,人人澡人人爽秒播 | 久久ye,这里只有精品| 色综合欧美亚洲国产小说| 少妇被粗大猛烈的视频| 两性夫妻黄色片| 午夜日本视频在线| 青草久久国产| 欧美日韩福利视频一区二区| 少妇被粗大猛烈的视频| bbb黄色大片| 久久精品久久久久久噜噜老黄| 久久久精品国产亚洲av高清涩受| 国产成人欧美在线观看 | 国产精品香港三级国产av潘金莲 | 天天影视国产精品| 亚洲欧美色中文字幕在线| 日韩精品免费视频一区二区三区| 国产精品香港三级国产av潘金莲 | 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久人妻| 亚洲精品国产av蜜桃| 久久人人97超碰香蕉20202| 国产精品蜜桃在线观看| 黑人巨大精品欧美一区二区蜜桃| 蜜桃国产av成人99| 妹子高潮喷水视频| 男人舔女人的私密视频| 两个人免费观看高清视频| 精品一品国产午夜福利视频| 日韩一区二区视频免费看| 久热这里只有精品99| 亚洲,欧美精品.| 欧美黑人欧美精品刺激| 日韩熟女老妇一区二区性免费视频| 丁香六月天网| 男女午夜视频在线观看| 91精品国产国语对白视频| 亚洲婷婷狠狠爱综合网| 好男人视频免费观看在线| 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| 国产一区二区三区综合在线观看| 久久久久精品人妻al黑| 日本黄色日本黄色录像| 日韩熟女老妇一区二区性免费视频| 免费观看av网站的网址| 久久久久久久久久久久大奶| 免费高清在线观看视频在线观看| 丝袜人妻中文字幕| 久久天躁狠狠躁夜夜2o2o | 欧美最新免费一区二区三区| 夫妻性生交免费视频一级片| 国产免费现黄频在线看| 国产精品av久久久久免费| av.在线天堂| 久久免费观看电影| 免费高清在线观看视频在线观看| 婷婷色麻豆天堂久久| 99香蕉大伊视频| 一本色道久久久久久精品综合| av网站在线播放免费| 国产亚洲最大av| 色视频在线一区二区三区| 99九九在线精品视频| 欧美日韩av久久| 在线免费观看不下载黄p国产| 精品少妇一区二区三区视频日本电影 | 亚洲一区二区三区欧美精品| 成人毛片60女人毛片免费| 麻豆av在线久日| 美女大奶头黄色视频| 婷婷色麻豆天堂久久| 只有这里有精品99| 亚洲美女黄色视频免费看| 精品久久蜜臀av无| bbb黄色大片| 99精品久久久久人妻精品| 国产一区二区在线观看av| 久久精品久久久久久噜噜老黄| 在线观看免费午夜福利视频| 日韩不卡一区二区三区视频在线| 久久这里只有精品19| 女人精品久久久久毛片| 高清av免费在线| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜爱| 精品久久久精品久久久| 在现免费观看毛片| 亚洲三区欧美一区| 老汉色∧v一级毛片| 亚洲专区中文字幕在线 | 高清视频免费观看一区二区| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 欧美最新免费一区二区三区| 黄色毛片三级朝国网站| 欧美国产精品一级二级三级| 多毛熟女@视频| 国产99久久九九免费精品| 欧美乱码精品一区二区三区| 国产精品久久久久成人av| 久久久久精品性色| 国产一级毛片在线| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人色综图| 午夜免费观看性视频| 日本黄色日本黄色录像| 精品国产露脸久久av麻豆| 亚洲人成电影观看| 精品国产乱码久久久久久小说| 桃花免费在线播放| 多毛熟女@视频| 校园人妻丝袜中文字幕| 国产精品熟女久久久久浪| 亚洲精品成人av观看孕妇| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲高清精品| 午夜福利视频在线观看免费| 在线观看免费视频网站a站| 亚洲久久久国产精品| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 99热国产这里只有精品6| 爱豆传媒免费全集在线观看| 日韩av免费高清视频| 亚洲情色 制服丝袜| 黑人欧美特级aaaaaa片| 黄色毛片三级朝国网站| 亚洲自偷自拍图片 自拍| 老司机在亚洲福利影院| 在线观看www视频免费| 18禁动态无遮挡网站| 国产又爽黄色视频| 尾随美女入室| 欧美人与善性xxx| 美女高潮到喷水免费观看| 亚洲人成77777在线视频| 天美传媒精品一区二区| 中文字幕高清在线视频| 韩国av在线不卡| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| 不卡视频在线观看欧美| 99精国产麻豆久久婷婷| 久久99精品国语久久久| 国产一区亚洲一区在线观看| 天堂8中文在线网| 亚洲精品国产av成人精品| 亚洲欧美中文字幕日韩二区| 国产乱来视频区| 亚洲少妇的诱惑av| kizo精华| 99re6热这里在线精品视频| 欧美日本中文国产一区发布| 国产成人精品久久久久久| 一级片免费观看大全| 少妇被粗大猛烈的视频| 午夜久久久在线观看| 一本大道久久a久久精品| 麻豆精品久久久久久蜜桃| 午夜福利视频在线观看免费| 人人妻人人爽人人添夜夜欢视频| 美女脱内裤让男人舔精品视频| 叶爱在线成人免费视频播放| 中文字幕人妻熟女乱码| 国产成人av激情在线播放| 高清欧美精品videossex| 国产精品一区二区精品视频观看| 亚洲成人一二三区av| 精品国产一区二区三区四区第35| 岛国毛片在线播放| 男女下面插进去视频免费观看| 欧美日韩成人在线一区二区| 美女扒开内裤让男人捅视频| 亚洲av福利一区| 久久综合国产亚洲精品| 国产 精品1| 纯流量卡能插随身wifi吗| 人人妻,人人澡人人爽秒播 | 精品国产国语对白av| 99热全是精品| 97在线人人人人妻| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 一级毛片 在线播放| 中文字幕高清在线视频| 亚洲精品在线美女| 日韩一区二区视频免费看| 亚洲第一区二区三区不卡| 亚洲欧美成人综合另类久久久| 黑人猛操日本美女一级片| 丝袜美足系列| 国产精品一区二区精品视频观看| 国产在线一区二区三区精| 欧美黑人欧美精品刺激| 亚洲激情五月婷婷啪啪| 一本色道久久久久久精品综合| av卡一久久| 麻豆乱淫一区二区| 国产野战对白在线观看| 精品少妇黑人巨大在线播放| 久久久久久久久久久久大奶| 日韩中文字幕视频在线看片| 毛片一级片免费看久久久久| 久久人人爽人人片av| 国产精品久久久av美女十八| 女性生殖器流出的白浆| 国产精品一国产av| 一级毛片电影观看| 热99国产精品久久久久久7| 欧美 日韩 精品 国产| 人妻一区二区av| 麻豆av在线久日| 十分钟在线观看高清视频www| 久久久久久久精品精品| 在线免费观看不下载黄p国产| 久久久国产欧美日韩av| 91精品三级在线观看| 国产黄色免费在线视频| 男女边吃奶边做爰视频| 色播在线永久视频| 亚洲欧美激情在线| 久热这里只有精品99| 满18在线观看网站| 欧美另类一区| 一级a爱视频在线免费观看| 国产色婷婷99| 国产福利在线免费观看视频| 国产麻豆69| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 欧美激情 高清一区二区三区| 久久天躁狠狠躁夜夜2o2o | 亚洲av男天堂| 黄色毛片三级朝国网站| 激情视频va一区二区三区| 久久狼人影院| 高清黄色对白视频在线免费看| 高清av免费在线| 国产精品嫩草影院av在线观看| 无遮挡黄片免费观看| 国产探花极品一区二区| 久久99精品国语久久久| 在线观看国产h片| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 国产精品久久久久久人妻精品电影 | 18在线观看网站| 午夜老司机福利片| 精品久久久精品久久久| 欧美日韩精品网址| 人人妻,人人澡人人爽秒播 | 亚洲自偷自拍图片 自拍| 天天躁狠狠躁夜夜躁狠狠躁| 永久免费av网站大全| 午夜激情久久久久久久| 亚洲国产最新在线播放| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 高清av免费在线| 日韩中文字幕欧美一区二区 | 青春草视频在线免费观看| 午夜福利在线免费观看网站| 国产又爽黄色视频| 香蕉丝袜av| 99热国产这里只有精品6| 啦啦啦在线免费观看视频4| 亚洲av综合色区一区| 九草在线视频观看| 精品国产乱码久久久久久小说| 丝袜美足系列| 波多野结衣av一区二区av| 中文字幕人妻丝袜制服| 国产国语露脸激情在线看| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 人体艺术视频欧美日本| 少妇的丰满在线观看| 97精品久久久久久久久久精品| 秋霞伦理黄片| 18在线观看网站| 一区二区三区四区激情视频| 午夜精品国产一区二区电影| 久久久久精品人妻al黑| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| 午夜福利乱码中文字幕| 大香蕉久久成人网| 一二三四中文在线观看免费高清| 精品亚洲成国产av| 日韩欧美一区视频在线观看| 老司机影院毛片| 777米奇影视久久| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| 国产女主播在线喷水免费视频网站| 亚洲国产精品一区三区| 啦啦啦啦在线视频资源| 亚洲在久久综合| 少妇人妻 视频| 免费在线观看视频国产中文字幕亚洲 | 国产乱人偷精品视频| 国产有黄有色有爽视频| 午夜激情久久久久久久| 少妇 在线观看| 深夜精品福利| 男人操女人黄网站| 9色porny在线观看| 久久精品久久久久久久性| 色94色欧美一区二区| 狂野欧美激情性xxxx| 在现免费观看毛片| av视频免费观看在线观看| 免费人妻精品一区二区三区视频| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 人人妻人人澡人人爽人人夜夜| 亚洲成国产人片在线观看| 一级黄片播放器| videosex国产| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 天堂俺去俺来也www色官网| 宅男免费午夜| 最黄视频免费看| 色婷婷久久久亚洲欧美| 人妻一区二区av| 免费不卡黄色视频| 中文字幕精品免费在线观看视频| 日韩精品免费视频一区二区三区| 国产精品无大码| 老司机深夜福利视频在线观看 | 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 捣出白浆h1v1| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| 十分钟在线观看高清视频www| 国产乱来视频区| 五月开心婷婷网| 午夜激情久久久久久久| 在线观看www视频免费| 免费高清在线观看日韩| √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 亚洲av电影在线观看一区二区三区| 亚洲av成人不卡在线观看播放网 | 国产精品99久久99久久久不卡 | xxxhd国产人妻xxx| 一级爰片在线观看| 制服丝袜香蕉在线| 欧美精品av麻豆av| 久久人人97超碰香蕉20202| 高清黄色对白视频在线免费看| 91老司机精品| 十八禁高潮呻吟视频| 麻豆av在线久日| 一本大道久久a久久精品| 国产一卡二卡三卡精品 | 亚洲国产欧美网| 久热这里只有精品99| 99热国产这里只有精品6| a级毛片黄视频| 国产成人精品福利久久| 日韩av免费高清视频| 免费黄网站久久成人精品| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| 精品一区二区三卡| 日本一区二区免费在线视频| 热99国产精品久久久久久7| 久久久精品免费免费高清| 大香蕉久久成人网| 国产在视频线精品| 国产精品二区激情视频| 久久久国产一区二区| 亚洲成人一二三区av| 狠狠婷婷综合久久久久久88av| 人人澡人人妻人| 国产成人系列免费观看| 亚洲av国产av综合av卡| 我要看黄色一级片免费的| 国产探花极品一区二区| 可以免费在线观看a视频的电影网站 | 国产野战对白在线观看| 男女边摸边吃奶| 99久久99久久久精品蜜桃| 亚洲男人天堂网一区| 亚洲av男天堂| 秋霞在线观看毛片| 黄频高清免费视频| 精品少妇久久久久久888优播| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕在线视频| 国产精品国产av在线观看| 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区国产| 老司机影院毛片| 久久影院123| 久久国产精品男人的天堂亚洲| 免费观看a级毛片全部| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 日本av手机在线免费观看| 日韩 欧美 亚洲 中文字幕| 国产国语露脸激情在线看| 一级黄片播放器| 亚洲一码二码三码区别大吗| 一二三四中文在线观看免费高清| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 18禁观看日本| 成人手机av| 最近2019中文字幕mv第一页| 99国产综合亚洲精品| 一区二区三区四区激情视频| 日韩欧美一区视频在线观看| 亚洲免费av在线视频| 国产深夜福利视频在线观看| 国产精品国产三级专区第一集| 美国免费a级毛片| 成年人免费黄色播放视频| 亚洲av电影在线观看一区二区三区| 国产免费又黄又爽又色| 成人国产麻豆网| 丰满饥渴人妻一区二区三| 亚洲七黄色美女视频| 人妻人人澡人人爽人人| 19禁男女啪啪无遮挡网站| 在线观看国产h片| 日韩视频在线欧美| 桃花免费在线播放| 免费黄网站久久成人精品| 日本av免费视频播放| 国产亚洲av高清不卡| 欧美精品一区二区大全| 精品久久久精品久久久| 欧美激情极品国产一区二区三区| 人人澡人人妻人| 久久久欧美国产精品| 大码成人一级视频| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 久久久久久人人人人人| 青草久久国产| 日韩中文字幕欧美一区二区 | 成人毛片60女人毛片免费| 高清欧美精品videossex| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 男女国产视频网站| 免费少妇av软件| 色吧在线观看| 伊人久久国产一区二区| 亚洲美女视频黄频| 三上悠亚av全集在线观看| 国产熟女午夜一区二区三区| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 美女国产高潮福利片在线看| 国产熟女欧美一区二区| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区| 天堂8中文在线网| 精品视频人人做人人爽| 久久久久国产一级毛片高清牌| 亚洲图色成人| 日韩伦理黄色片| 欧美日韩亚洲高清精品| 哪个播放器可以免费观看大片| 国产无遮挡羞羞视频在线观看| 超色免费av| 日韩中文字幕欧美一区二区 | 亚洲精品日韩在线中文字幕| 曰老女人黄片| 中文天堂在线官网| 99久国产av精品国产电影| 99精国产麻豆久久婷婷| 大片免费播放器 马上看| 国产免费现黄频在线看| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 最近中文字幕高清免费大全6| 高清视频免费观看一区二区| 中文字幕最新亚洲高清| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 国产伦理片在线播放av一区| 欧美久久黑人一区二区| 亚洲,欧美精品.| 久久综合国产亚洲精品| 人妻一区二区av| 国产精品女同一区二区软件| 男女床上黄色一级片免费看| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 观看美女的网站| 欧美人与善性xxx| 午夜免费鲁丝| 久久鲁丝午夜福利片| 久久97久久精品| 亚洲av日韩精品久久久久久密 | 亚洲av福利一区| 国产免费又黄又爽又色| av网站在线播放免费| 久久狼人影院| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| 熟女少妇亚洲综合色aaa.| 国产免费又黄又爽又色| 美女扒开内裤让男人捅视频| 欧美变态另类bdsm刘玥| 制服人妻中文乱码| 熟女av电影| 我的亚洲天堂| 在线天堂中文资源库| 人人妻人人添人人爽欧美一区卜| 91精品三级在线观看| 日日摸夜夜添夜夜爱| 国产在线免费精品| 大片免费播放器 马上看| 伦理电影大哥的女人| 嫩草影院入口| 美女高潮到喷水免费观看| 嫩草影院入口| 欧美日韩亚洲综合一区二区三区_| 我要看黄色一级片免费的| 永久免费av网站大全| 亚洲欧美日韩另类电影网站| 久久精品亚洲av国产电影网| 飞空精品影院首页| 国产成人91sexporn| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 国产av一区二区精品久久| 9色porny在线观看| 一区在线观看完整版| 国产欧美日韩一区二区三区在线| 一本色道久久久久久精品综合| 人妻 亚洲 视频| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区黑人| 男人舔女人的私密视频| 青春草亚洲视频在线观看| 久久精品国产亚洲av高清一级| 久久人人97超碰香蕉20202| 久久影院123| 高清黄色对白视频在线免费看| 丝瓜视频免费看黄片| 欧美久久黑人一区二区| 欧美在线一区亚洲| 国产在线一区二区三区精| 黑人猛操日本美女一级片| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久人人人人人| 搡老乐熟女国产| 午夜福利网站1000一区二区三区| 亚洲精品一区蜜桃|