• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capacity Research in Cluster-Based Underwater Wireless Sensor Networks Based on Stochastic Geometry

    2017-05-09 07:48:29
    China Communications 2017年6期

    School of Information Science and Engineering, Southeast University, Nanjing, China

    * The corresponding author, email: zzhlixia@seu.edu.cn

    I. INTRODUCTION

    Underwater wireless sensor networks(UWSNs) with high civil and military value,can be widely used in ocean information collection, resource exploration, environmental monitoring, disaster forecast, auxiliary navigation, distributed tactical observation and so on[1]. Network capacity is an important performance index of wireless sensor network.The research of relations between network capacity and the various parameters has very important research value and significance, because it is conducive to a better understanding and the design of network

    The capacity research in terrestrial wireless sensor network started relatively early.As early as 2000, Gupta and Kumar began to set about the theoretical analysis of network capacity [2], then many scholars successively into it, and some useful research results were obtained [3-5]. In recent years, with increasingly high data transmission rate demanding in UWSNs, scholars began to focus on the issue of capacity performance in the underwater networks [6-9]. However, the limited bandwidth, long propagation delay and severe multipath bring huge challenges to the capacity research of UWSNs. Thus the literatures on this subject are rare, either focusing on pure theoretical analysis of capacity or applying for only specific fixed networks. Basing on stochastic geometry theory and structure features of network, we propose a feasible network capacity analytical model with some insightful simulation results for the increasingly popular cluster-based UWSNs.

    Based on stochastic geometry, a network capacity analysis model applied to the cluster-based UWSNs is presented in this paper.

    II. COMMUNICATION MODEL

    2.1 Cluster-based network model

    For marine environmental monitoring, a typical UWSNs is based on hierarchical topology,and its structure is shown in Figure 1. Nodes are divided into clusters, each cluster consists of one cluster head and several cluster members. Information will be collected by cluster members and then distributed to the cluster heads. After a certain degree of data convergence, the cluster heads will forward it to the surface SINK node.

    2.2 Channel transmission model

    The high electrical conductivity of the seawater makes the radio wave attenuate seriously,and the light wave is easy to be chromatic dispersion because of the floating object in the sea. Thus the above two carrier forms are only used for short-range underwater communication. So far, acoustic wave is the most widely used carrier in the UWSNs. Compared with the traditional wireless channel, underwater acoustic channel has its own unique properties: the propagation speed is only 1500 m/s,thus it has a large propagation delay; for one thing the path loss increases with the increase of frequency, for another the power of ocean ambient noise is relatively high in the low frequency, therefore underwater acoustic channel has relatively narrow available bandwidth;the wave refraction caused by the water stratification and reflection of sea surface and sea bottom to the acoustic wave cause strong multipath effect for underwater acoustic channel.

    Fig. 1 The sketch map of Cluster-based underwater acoustic sensor networks

    (1) Pass loss

    Path loss consists of two parts: spreading loss and absorption loss [10]. The path loss that occurs in an underwater acoustic channel over a distancel(km)for a signal of frequencyf(kHz)is given by

    Where k is the spreading factor describing the geometric characteristics of the propagation andis the absorption coefficient.Andfor f in kHz can be expressed empirically by the Thorp’s formula [11] as:

    All of the independent transmitters (TXs) are distributed on the 2D plane according to a homogeneous Poisson Point Process (PPP)[12], expressed asof densityλ, wheredenotes the location of the typical nodeConsidering a single cluster-based UWSNs, the cluster head of the given cluster as the common receiver (RX) is placed at the origin, then those TXs around RX form the corresponding cluster members. According to the Slivnyak’s Theorem [13], we can casually pick one of the cluster membersas the reference transmitter. Letdenotes the distance betweenandRX. The distribution of interference nodes is just shown in Figure 2.

    (2) Multipath fading

    In the underwater communication, acoustic wave affected by refraction and reflection will form a number of different paths to reach the receiver. After passing through the underwater acoustic channel, the received signal is the sum of a large number of statistically independent random variables, whose amplitude is random.Rayleigh fading model is a common statistical model for underwater acoustic signal propagation environment, the envelope of the received signal will obey a Rayleigh distribution.

    2.3 Network interference model

    In the remainder of this paper, we consider narrowband transmission, i.e., for nodetransmission that takes place in a “small”bandwidtharound the carrier frequencyWithinis given by Eq.(2). For node, the interference seen at the cluster head is

    III. CAPACITY DEFINITION

    3.1 SIR and outage probability

    Fig. 2 The sketch map of the distribution of interference nodes

    3.2 Transmission capacity

    Assuming that the network can withstand a maximum outage probability of ε, the transmission capacity is defined as the product of the maximum transmission density in per unit area, the success probability and the data rate[14], expressed as

    IV. THEORETICAL ANALYSIS AND SIMULATION

    4.1 Theoretical analysis

    There is a certain number of transmitting nodes in the network, obeying a distribution of Poisson Point Process with densityλ. The cluster members in the given cluster are numbered in turn from 1 to N, resulting in a set of transmitters, i.e.The number of sub-channels is n. Selecting a node(idenotes the ID.) casually, the absorption coefficient in the responding sub-channel iswhereWe useto denote the set of other transmitters in the same sub-channel with nodebutis not included. According to the transmission model of underwater acoustic channel, takeas the reference transmitter, then from Eq. (4),the interference signal at the cluster head can be expressed as:

    In accordance with the definition of outage probability, substitute Eq. (5) into Eq. (6).Owning to, we can know that

    Substituting Eq. (13) into Eq. (12), we get

    Then according to Eq. (14) and Eq. (11),we can obtain

    The integral of exponent part does not have closed analytical solution in the above equation, so the numerical integration method is used to obtain the theoretical approximate value in the subsequent content. Due to the condition of a given 2-dimensional planar network, so we haveAnd θ is a constant,so the expression can be simplified as

    Hence, Eq. (15) can be just simplified as

    On the basis of the above formula, the outage probability of sub-channelcan be expressed as

    Considering the ideal channel allocation method, we can assume that the number of nodes on each sub-channel is approximately equal, so that the outage probability of the whole network can be obtained by simply summing and averaging as follows:

    The following task is of course to solve the expectationIn order to get the expression on the node densityλ, do as the follows:

    As the cluster members are independent identically uniform distributed in the cluster’s coverage area, suppose R as radius of a single cluster,then the distance of cluster members to cluster head has the following distribution function:

    Then the corresponding probability density function is:

    c) Substitute Eq. (21) into the expectation.

    d) According to the definition of definite integral, we can get

    According to the definition of expectations and the solving method of double integral, we obtain the expression ofas follows:

    Substituting Eq. (24) into Eq. (22), we can getAnd the theoretical value of outage probability can be obtained by substituting the Eq. (22) into Eq. (19), then we can get the corresponding theoretical value of the transmission capacity according to the definition. The changing curves of outage probabilityand transmission capacityon node densityare studied by simulation experiments. The comparison and analysis between simulation results and theoretical value are also given in the following section.

    4.2 Simulation experiment

    In this section, we try to simulate the outage probability and transmission capacity under different sizes of simulation regions using MATLAB, then compare with the theoretical value.

    Assume that all nodes use the same transmission power in an interference-limited network, and the transmitters assign sub-channels in a random competition way. In the theory analysis, interference nodes are assumed to distribute in an infinite region. However, the infinite region can’t be achieved in simulation experiment. Besides, considering the limited transmission power and transmission radius in actual networks, the radius of limited region that interference nodes exist is defined as interference radius ρ. The simulation parameters settings are listed in Table I.

    The outage probability and transmission capacity changing with node density are shown in Figure 3 and Figure 4 respectively.

    According to the figures we can see that whether in simulation results or theoretical value, with the increase of node density, the outage probability of the system is alwaysincreasing, and the transmission capacity will increase at first and then decrease. That is to say that there is an optimal node density which can make the network’s transmission capacity reach a maximum value. For the outage probability, the simulation results are always less than the theoretical value, and for the transmission capacity, the former is also better than the latter. It is known that the results of“theory inf” corresponds to an infinite interference region, then the number of interference nodes considered will far exceed that of the simulation experiment with limited interference radius ρ. Therefore compared with the theoretical value, the outage probability will be relatively low and the transmission capacity will be slightly high accordingly in the case of simulation experiment.

    Table I Simulation parameters settings

    Fig. 3 The comparison of simulation results and theoretical value about the outage probability I

    Fig. 4 The comparison of simulation results and theoretical value about the transmission capacity I

    Simulation results are gradually approaching the theoretical value as the radius ρ increases from 5 to 12. It is easy to speculate that, as long as the value of ρ continues to increase, the simulation results must be able to approximate the theoretical value within the range of given error accuracy. In order to measure the error between theoretical value and simulation results, the upper limit of integral in Eq. (15) is set as the value of limited interference radius ρ, obtaining theoretical value of finite integral upper limit, finally comparing with the corresponding simulation results. The comparisons between simulation results and theoretical value about outage probability and transmission capacity are shown in Figure 5 and Figure 6 respectively.

    The following two figures show that the theoretical value with finite interference radius will quickly converge to the theoretical upper bound with infinite interference radius as ρ increases from 5 to 12; at the same time, the simulation results with finite interference radius are also heading towards the “theory inf” with the increase of ρ, but its speed is far less than the corresponding part of theoretical value. Therefore, with the increase of ρ, the error with finite interference radius between the theoretical value and simulation results have a tendency to expand. In a word, the changing tends of outage probability and transmission capacity with node density are consistent, and the optimal node density corresponding to the maximum transmission capacity between the theoretical value and simulation results is consistent, thus the validity of the theoretical analysis is verified.

    From figure 6, as the interference radius ρ increases from 5 to 12, the optimal node density successively to be 0.11, 0.07, 0.06 and 0.05 nodes/km2is gradually decreasing. In other words, the optimal node density will be affected by the interference radius ρ. In fact,there are many influence factors of network capacity to be researched in the future, such as network structure, frequency band, channel allocation method, channel fading and so on.

    V. CONCLUSION

    Fig. 5 The comparison of simulation results and theoretical value about the outage probability II

    Fig. 6 The comparison of simulation results and theoretical value about the transmission capacity II

    Based on stochastic geometry, a network capacity analysis model applied to the cluster-based UWSNs is presented in this paper. In combination with the unique characteristics of underwater acoustic channel in path loss and multipath fading, considering the interference signal generated by other transmitters, the network’s outage probability and transmission capacity are both defined. Then some theoretical analysis and simulation experiments based on stochastic geometry are carried on respectively. Comparing the simulation results with the theoretical value, the validity of the theoretical analysis is verified, and the cause of error between them is also clearly explained. The results show that under a given network condition like specific monitoring scope, frequency band, channel-allocation method and so on, there is always an optimal network node density which can result in the maximum transmission capacity. It is conceivable that when some specific network conditions change, the optimal network node density should be varied correspondingly. Then the influence factors analysis on network capacity will be one of the following research topics and directions. In conclusion, we believe that the work of capacity research in this paper can provide some reference for the future application and design of the UWSNs.

    ACKNOWLEDGEMENTS

    This work has been supported by National Natural Science Foundation of China (No.61101164).

    Reference

    [1] AKYILDIZ I F, POMPILI D, MELODIA T. Underwater acoustic sensor networks: research challenges [J]. Ad Hoc Networks, 2005, 3(3): 257-279.

    [2] GUPTA P, KUMAR P R. The capacity of wireless networks [J]. IEEE Transactions on Information Theory, 2000, 46(2) : 388-404.

    [3] WEBER S P, YANG X, ANDREWS J G, et al. Transmission Capacity of Wireless Ad Hoc Networks with Outage Constraints [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4091-4102

    [4] ANDREWS J G, WEBER S P, KOUNTOURIS M,et al. Random Access Transport Capacity [J].IEEE Transactions on Wireless Communications,2010, 9(6):849-856

    [5] BUSSON A, CHELIUS G. Capacity and interference modeling of CSMA/CA networks using SSI point processes [J]. Telecommunication Systems, 2014, 57 (1): 25-39

    [6] LUCANI D, M′EDARD M, STOJANOVIC M. Capacity scaling laws for underwater networks[A]. Proceedings of 42nd Asilomar Conference on Signals, Systems and Computers [C]. Pacific Grove, CA, Oct. 2008.

    [7] STAMATIOU K, CASARI P, ZORZI M. Throughput and Transmission Capacity of Underwater Networks with Randomly Distributed Nodes [A]. Proceeding of 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) [C]. 2011.1-9

    [8] SHIN W Y, LUCANI D E, M′EDARD M, et al. On the order optimality of large-scale underwater networks–Part I: Extended network model [J].Springer: Wireless Personal Communications,2013, 71(3):1683-1700.

    [9] SHIN W Y, LUCANI D E, M′EDARD M, et al. On the Eff ects of Frequency Scaling over Capacity Scaling in Underwater Networks–Part II: Dense Network Model [J].Springer: Wireless Personal Communications, 2013, 71(3):1701-1719.

    [10] STOJANOVIC M. On the relationship between capacity and distance in an underwater acoustic communication channel [J]. ACM Mobile Comput. and Commun. Review, 2007, 11(4): 34–43.

    [11] BREKHOVSKIKH L M, LYSANOV Y P. Fundamentals of ocean acoustics [M]. Springer, 2003.

    [12] HAENGGI M, ANDREWS J G, BACCELLI F, et al.Stochastic geometry and random graphs for the analysis and design of wireless networks [J].IEEE Journal on Selected Areas in Communications, 2009, 27(7):1029-1046,

    [13] MARTIN H, RADHA K G. Interference in Large Wireless Networks [J]. Foundations and Trends? in Networking: 2009, 3(2): 127-248

    [14] H Hu, H.B Zhu, Q Zhu. Transmission Capacity Analysis in Wireless Ad Hoc Networks Based on Stochastic Geometry Theory [J]. Journal of Nanjing University of Posts and Telecommunications (Natural Sciences), 2013,33(2):1-7

    日日撸夜夜添| 国产成人精品婷婷| 好男人视频免费观看在线| 精品少妇一区二区三区视频日本电影 | 天天操日日干夜夜撸| 伊人亚洲综合成人网| 国产黄频视频在线观看| 国产人伦9x9x在线观看 | 亚洲精品视频女| 一级毛片 在线播放| 黄色毛片三级朝国网站| 亚洲精品国产av蜜桃| 18禁国产床啪视频网站| 麻豆av在线久日| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 在线亚洲精品国产二区图片欧美| 黄色配什么色好看| 亚洲精品,欧美精品| 国产精品欧美亚洲77777| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠躁躁| 国产在线免费精品| 日韩精品有码人妻一区| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 日韩视频在线欧美| 夫妻性生交免费视频一级片| 久久久精品国产亚洲av高清涩受| 亚洲,一卡二卡三卡| 在线免费观看不下载黄p国产| 欧美在线黄色| 一级毛片黄色毛片免费观看视频| 七月丁香在线播放| 美国免费a级毛片| 婷婷成人精品国产| 精品少妇黑人巨大在线播放| 一区在线观看完整版| 午夜久久久在线观看| 国产精品久久久久成人av| 日韩制服丝袜自拍偷拍| 欧美最新免费一区二区三区| 日本av免费视频播放| 丰满乱子伦码专区| 韩国av在线不卡| 美女中出高潮动态图| 国产有黄有色有爽视频| 亚洲一级一片aⅴ在线观看| 啦啦啦视频在线资源免费观看| 青春草国产在线视频| 男女无遮挡免费网站观看| 99国产综合亚洲精品| 99热国产这里只有精品6| av天堂久久9| 亚洲国产色片| 午夜免费男女啪啪视频观看| 国产黄色免费在线视频| 国产精品欧美亚洲77777| 国产精品嫩草影院av在线观看| 亚洲伊人色综图| 国产一区二区三区综合在线观看| 精品国产乱码久久久久久小说| 人人澡人人妻人| 最近2019中文字幕mv第一页| 国产成人午夜福利电影在线观看| 中文欧美无线码| 国产高清国产精品国产三级| 天堂俺去俺来也www色官网| 久热这里只有精品99| 大话2 男鬼变身卡| 日韩中文字幕视频在线看片| 老司机影院成人| 91成人精品电影| 久久女婷五月综合色啪小说| 成人国产麻豆网| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 国产精品香港三级国产av潘金莲 | www.av在线官网国产| 青草久久国产| 久久 成人 亚洲| 国产成人欧美| 久久鲁丝午夜福利片| 国产精品无大码| 久久影院123| 人妻系列 视频| 宅男免费午夜| 久久精品久久久久久噜噜老黄| 亚洲欧美一区二区三区国产| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 好男人视频免费观看在线| 伊人久久国产一区二区| 美女脱内裤让男人舔精品视频| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产综合久久久| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 最近最新中文字幕免费大全7| 人妻人人澡人人爽人人| 精品一品国产午夜福利视频| 亚洲av中文av极速乱| 久久久精品94久久精品| 亚洲欧美一区二区三区国产| 高清视频免费观看一区二区| 精品国产乱码久久久久久小说| 亚洲色图综合在线观看| 欧美成人午夜免费资源| 欧美xxⅹ黑人| xxx大片免费视频| 欧美人与性动交α欧美软件| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| av免费在线看不卡| 日韩欧美精品免费久久| 一区福利在线观看| 日韩人妻精品一区2区三区| 国产精品免费大片| 亚洲成人一二三区av| 亚洲男人天堂网一区| 2022亚洲国产成人精品| 国产av国产精品国产| 欧美成人精品欧美一级黄| 捣出白浆h1v1| 一本—道久久a久久精品蜜桃钙片| 色播在线永久视频| 免费黄频网站在线观看国产| 日本-黄色视频高清免费观看| 亚洲精品乱久久久久久| 中文字幕精品免费在线观看视频| 国产精品香港三级国产av潘金莲 | 看十八女毛片水多多多| 可以免费在线观看a视频的电影网站 | 夜夜骑夜夜射夜夜干| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av不卡免费在线播放| 欧美少妇被猛烈插入视频| 亚洲欧美精品综合一区二区三区 | 搡女人真爽免费视频火全软件| 午夜福利视频精品| 少妇精品久久久久久久| 日韩一本色道免费dvd| 久久热在线av| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 久久韩国三级中文字幕| 欧美变态另类bdsm刘玥| 国产一区二区在线观看av| 在现免费观看毛片| 免费大片黄手机在线观看| 国产97色在线日韩免费| 啦啦啦啦在线视频资源| 中文字幕人妻丝袜制服| 色视频在线一区二区三区| 老熟女久久久| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 亚洲精品久久成人aⅴ小说| 超色免费av| 一二三四中文在线观看免费高清| 日韩一区二区视频免费看| 亚洲激情五月婷婷啪啪| 亚洲国产欧美网| 精品国产一区二区三区四区第35| 五月伊人婷婷丁香| 黄色视频在线播放观看不卡| 亚洲av电影在线进入| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| 久久女婷五月综合色啪小说| 在线观看国产h片| 久久人人97超碰香蕉20202| 国产成人精品无人区| 在线观看美女被高潮喷水网站| 黑人巨大精品欧美一区二区蜜桃| 这个男人来自地球电影免费观看 | 自线自在国产av| 国产免费福利视频在线观看| 久久青草综合色| 老女人水多毛片| 午夜日本视频在线| 久久99热这里只频精品6学生| 亚洲图色成人| 最近中文字幕2019免费版| 亚洲伊人久久精品综合| 搡老乐熟女国产| 精品少妇一区二区三区视频日本电影 | 在线天堂最新版资源| 少妇被粗大猛烈的视频| 男男h啪啪无遮挡| 人妻系列 视频| 成人免费观看视频高清| 日韩精品有码人妻一区| 啦啦啦视频在线资源免费观看| 中文字幕制服av| 久久久久国产网址| 美女主播在线视频| 亚洲国产欧美网| 亚洲国产精品国产精品| 日韩熟女老妇一区二区性免费视频| 国产免费福利视频在线观看| 日本爱情动作片www.在线观看| 久久精品夜色国产| 亚洲视频免费观看视频| 欧美日韩一级在线毛片| 不卡av一区二区三区| 亚洲国产精品999| 亚洲精品久久久久久婷婷小说| 国产激情久久老熟女| 午夜福利影视在线免费观看| 在线观看人妻少妇| 叶爱在线成人免费视频播放| 视频区图区小说| 久久精品久久精品一区二区三区| 97在线人人人人妻| 成人毛片a级毛片在线播放| 少妇的丰满在线观看| 亚洲国产最新在线播放| 99热全是精品| 十八禁网站网址无遮挡| 国产成人91sexporn| 中文字幕最新亚洲高清| 婷婷色麻豆天堂久久| 国精品久久久久久国模美| 久久精品国产鲁丝片午夜精品| 黄色配什么色好看| 国产黄频视频在线观看| 国产黄色视频一区二区在线观看| 免费在线观看完整版高清| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 久久精品国产亚洲av天美| 亚洲一区二区三区欧美精品| 欧美精品av麻豆av| 在线观看www视频免费| www.av在线官网国产| 国产黄色免费在线视频| 又黄又粗又硬又大视频| 亚洲精品久久成人aⅴ小说| 麻豆av在线久日| av在线播放精品| 亚洲国产看品久久| 亚洲激情五月婷婷啪啪| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av蜜桃| 国产欧美亚洲国产| 亚洲国产av影院在线观看| 咕卡用的链子| 精品一区二区三卡| 18禁国产床啪视频网站| 搡女人真爽免费视频火全软件| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 美女主播在线视频| 一区二区三区乱码不卡18| 精品国产一区二区三区四区第35| 日本午夜av视频| a级毛片黄视频| 欧美变态另类bdsm刘玥| 午夜av观看不卡| 日日爽夜夜爽网站| 欧美成人午夜免费资源| 国产精品成人在线| 国产在视频线精品| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 精品一区在线观看国产| 久久久久久免费高清国产稀缺| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 性色av一级| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 三上悠亚av全集在线观看| 国产成人一区二区在线| av一本久久久久| 飞空精品影院首页| 亚洲一码二码三码区别大吗| 国产一区二区 视频在线| 免费少妇av软件| 亚洲人成电影观看| 日韩欧美精品免费久久| 少妇的逼水好多| freevideosex欧美| 嫩草影院入口| 欧美在线黄色| 久久久久精品久久久久真实原创| 亚洲国产色片| 中文字幕人妻丝袜制服| 在线观看美女被高潮喷水网站| av线在线观看网站| 久久免费观看电影| 啦啦啦视频在线资源免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| 热re99久久精品国产66热6| 国产高清不卡午夜福利| 免费av中文字幕在线| 欧美 日韩 精品 国产| 欧美人与善性xxx| 国产片内射在线| 久久久久久久国产电影| 久久精品国产亚洲av高清一级| 欧美精品国产亚洲| 少妇精品久久久久久久| 婷婷色综合大香蕉| 久久久久网色| 成年美女黄网站色视频大全免费| 人人妻人人添人人爽欧美一区卜| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| 嫩草影院入口| 日韩在线高清观看一区二区三区| 日韩制服骚丝袜av| 五月天丁香电影| av.在线天堂| 久久影院123| 久久精品国产鲁丝片午夜精品| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 99热网站在线观看| 亚洲欧美日韩另类电影网站| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 天堂俺去俺来也www色官网| 欧美日本中文国产一区发布| 久久久久久久精品精品| 精品视频人人做人人爽| 久久这里只有精品19| 香蕉精品网在线| 中文字幕人妻丝袜制服| 久久青草综合色| 久久狼人影院| 各种免费的搞黄视频| 亚洲av免费高清在线观看| 免费看不卡的av| 欧美少妇被猛烈插入视频| av线在线观看网站| 91国产中文字幕| 免费黄色在线免费观看| 黑丝袜美女国产一区| 黄片播放在线免费| 伦精品一区二区三区| 桃花免费在线播放| 秋霞在线观看毛片| 日本免费在线观看一区| 一本大道久久a久久精品| 尾随美女入室| 国产男人的电影天堂91| 精品国产一区二区三区四区第35| 观看av在线不卡| a 毛片基地| 免费观看av网站的网址| 免费观看无遮挡的男女| 赤兔流量卡办理| 免费观看a级毛片全部| 少妇熟女欧美另类| 国产免费福利视频在线观看| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 制服诱惑二区| av女优亚洲男人天堂| 成人免费观看视频高清| 国产av国产精品国产| 考比视频在线观看| 日韩一卡2卡3卡4卡2021年| 久久精品久久精品一区二区三区| 免费少妇av软件| 国产精品成人在线| 久久久久精品性色| 欧美激情高清一区二区三区 | 哪个播放器可以免费观看大片| 99久久精品国产国产毛片| kizo精华| 男女边吃奶边做爰视频| 黄色 视频免费看| 亚洲精品,欧美精品| 咕卡用的链子| 久久人妻熟女aⅴ| 国产精品熟女久久久久浪| 天堂中文最新版在线下载| 91精品国产国语对白视频| 青春草视频在线免费观看| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 国产国语露脸激情在线看| 三级国产精品片| av.在线天堂| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| av不卡在线播放| 亚洲久久久国产精品| 在线观看三级黄色| 国产精品香港三级国产av潘金莲 | 国产精品二区激情视频| 日韩av免费高清视频| 久久久精品免费免费高清| 亚洲美女视频黄频| videos熟女内射| 亚洲色图 男人天堂 中文字幕| 蜜桃国产av成人99| 久久99精品国语久久久| 国产乱来视频区| 人成视频在线观看免费观看| 久久综合国产亚洲精品| 亚洲久久久国产精品| 成人国产av品久久久| 丝袜人妻中文字幕| 国产精品野战在线观看 | 国产一区二区三区综合在线观看| 操美女的视频在线观看| 高清欧美精品videossex| 欧美午夜高清在线| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| 欧美+亚洲+日韩+国产| 大陆偷拍与自拍| 成人亚洲精品av一区二区 | 不卡一级毛片| 一区福利在线观看| 久久性视频一级片| 操美女的视频在线观看| 不卡一级毛片| 欧美黑人精品巨大| 51午夜福利影视在线观看| svipshipincom国产片| 午夜激情av网站| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 天天躁夜夜躁狠狠躁躁| а√天堂www在线а√下载| xxxhd国产人妻xxx| 成在线人永久免费视频| 亚洲 欧美一区二区三区| 免费高清在线观看日韩| 久久久久久久久中文| 极品教师在线免费播放| 韩国av一区二区三区四区| 亚洲七黄色美女视频| 亚洲中文日韩欧美视频| 亚洲国产精品一区二区三区在线| 日韩国内少妇激情av| 久久精品91无色码中文字幕| 亚洲欧美精品综合一区二区三区| 99在线视频只有这里精品首页| 久热爱精品视频在线9| 午夜精品在线福利| 黄色成人免费大全| 99精品久久久久人妻精品| 涩涩av久久男人的天堂| 成人18禁在线播放| 亚洲精品国产精品久久久不卡| 国产日韩一区二区三区精品不卡| 国产一区二区在线av高清观看| 中文字幕最新亚洲高清| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 国产精品日韩av在线免费观看 | 精品一区二区三区av网在线观看| 亚洲免费av在线视频| 亚洲色图av天堂| 高清毛片免费观看视频网站 | 亚洲欧美精品综合一区二区三区| 亚洲七黄色美女视频| 久久国产亚洲av麻豆专区| 亚洲狠狠婷婷综合久久图片| 亚洲色图综合在线观看| 色在线成人网| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| a在线观看视频网站| 人妻丰满熟妇av一区二区三区| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 国产精品自产拍在线观看55亚洲| 看黄色毛片网站| 国产午夜精品久久久久久| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 国产99久久九九免费精品| 男女床上黄色一级片免费看| 日韩欧美在线二视频| 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| av在线播放免费不卡| 最近最新中文字幕大全电影3 | 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 一级片'在线观看视频| 丁香欧美五月| 熟女少妇亚洲综合色aaa.| 免费在线观看完整版高清| 国产aⅴ精品一区二区三区波| 久热这里只有精品99| 窝窝影院91人妻| 久久精品影院6| 久久国产精品人妻蜜桃| 亚洲性夜色夜夜综合| 美女福利国产在线| 久久久久久大精品| 欧美激情久久久久久爽电影 | cao死你这个sao货| xxx96com| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三| 老司机福利观看| 久久国产乱子伦精品免费另类| 搡老乐熟女国产| 久久中文看片网| 欧美中文综合在线视频| 久久精品影院6| xxxhd国产人妻xxx| 91成年电影在线观看| 热re99久久国产66热| 91成年电影在线观看| 国产精品1区2区在线观看.| av超薄肉色丝袜交足视频| 777久久人妻少妇嫩草av网站| 在线观看免费午夜福利视频| 自线自在国产av| 日本wwww免费看| 日韩欧美一区二区三区在线观看| 欧美乱妇无乱码| 免费在线观看影片大全网站| 久久草成人影院| 午夜a级毛片| 如日韩欧美国产精品一区二区三区| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 精品久久蜜臀av无| 日韩欧美国产一区二区入口| 久久草成人影院| 精品久久久久久,| 最新美女视频免费是黄的| 免费在线观看完整版高清| 国内久久婷婷六月综合欲色啪| 天天影视国产精品| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费 | 成年人黄色毛片网站| 人人妻,人人澡人人爽秒播| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 很黄的视频免费| 国产在线观看jvid| 免费观看精品视频网站| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区| 18禁裸乳无遮挡免费网站照片 | 电影成人av| 天天躁夜夜躁狠狠躁躁| 亚洲欧美激情综合另类| 一区二区三区激情视频| 琪琪午夜伦伦电影理论片6080| 伦理电影免费视频| 久久精品影院6| av国产精品久久久久影院| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 久久久久精品国产欧美久久久| ponron亚洲| 欧洲精品卡2卡3卡4卡5卡区| 欧美老熟妇乱子伦牲交| 亚洲专区字幕在线| 人成视频在线观看免费观看| 久久国产精品影院| 成人国语在线视频| 一级a爱片免费观看的视频| 日日爽夜夜爽网站| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 免费不卡黄色视频| 午夜影院日韩av| 免费在线观看日本一区| 中亚洲国语对白在线视频| 天堂俺去俺来也www色官网| 91麻豆av在线| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 日日夜夜操网爽| 国产精品九九99| 黄色成人免费大全| 一级,二级,三级黄色视频| 午夜免费成人在线视频| 午夜免费鲁丝| av在线天堂中文字幕 | 美女午夜性视频免费| 日日爽夜夜爽网站| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区二区三区在线观看| av国产精品久久久久影院| 18禁美女被吸乳视频| 好男人电影高清在线观看| 精品一区二区三区四区五区乱码| 国产91精品成人一区二区三区| 99国产精品99久久久久| 久久性视频一级片| 久久狼人影院| 免费在线观看日本一区| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 性欧美人与动物交配| 成人免费观看视频高清|