• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Joint Subcarrier and Power Allocation for DF-Based Multiuser Two-Way Relay Networks

    2017-05-09 07:49:03XiangChenFeiHeLiminXiaoShidongZhou
    China Communications 2017年6期

    Xiang Chen, Fei He, Limin Xiao, Shidong Zhou

    1 School of Electronics and Information Technology, SYSU-CMU Shunde International Joint Research Institute, Sun Yat-sen Univ.,Guangzhou, 510006, China

    2 Key Lab of EDA, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China

    3 China Academy of Electronics and Information Technology, Beijing, 100041, China

    4 EE Department, Research Institute of Information Technology, TNList, Tsinghua University, Beijing, 100084, China

    * The corresponding author, email:chenxiang@mail.sysu.edu.cn

    I. INTRODUCTION

    Orthogonal frequency division multiplexing(OFDM) two-way relaying is a cost-efficient technique to realize coverage extension and throughput enhancement in fifth generation(5G) wireless networks, which has been firstly advocated in many 4G standards, including IEEE 802.16m and 3GPP advanced long term evolution (LTE-Advanced) [1,2]. When multiple users are served simultaneously by the single OFDM based two-way relay, different users will go through different fading, which results in multi-user diversity beneficial to improve system performance.

    There are many previous works investigating the multiuser access, signal processing and resource allocation optimization problem in the above multiuser OFDM based two-way relay system [3-14]. In [3], a Code Division Multiple Access(CDMA) based scheme is considered for single relay aided two-way multiuser communications, however the system capacity is limited by multiuser interference in CDMA. [4] then takes F/TDMA instead of CDMA to maximize the weighted system sum rates by proper power allocation for different relaying strategies. [5,6] investigate the joint power, subcarrier allocation optimization problem in Amplify-and-Forward(AF) relay networks, in which [6] further considered a multiple-relay aided case involving relay selection in the optimization procedure. In the contrary, the multiple Decode-and-Forward(DF)-relay based resource allocation problem is considered in [7], and proportional fairness user scheduling is performed to improve system performance. [8] then systematively solves the resource allocation problem for AF/DF relay networks, when the direct link between the base-station and terminals, and the one-way/two-way relay nodes coexist in the system. Regarding the combinatorial optimization problem raised in [8-10], an alternative graph theory based method is proposed, in which Hungarian method is adopted to solve the subcarrier pairing for OFDM based relays.Literatures [11-14] investigate the two-way MIMO relays systems to optimize system throughput from the aspects of signal processing, while cannot be directly applied to OFDM systems.

    This paper studied joint subcarrier and power allocation for DF-based multiuser two-way relay network. A generalized subcarrier pairing strategy was proposed and solved by a low complexity Lagrange duality decomposition-based method.

    It should be noted that, all the above literatures only consider the independent coding for each subcarrier in OFDM based relay networks. However, it has been proved, by joint coding across multiple subcarriers for OFDM relay systems will obviously help to improve system spectrum efficiency [10]. Therefore,we will firstly take multi-subcarrier DF relay strategy [10] into the multiuser case, then try to solve the resource allocation problem by low complexity algorithms. The main contributions of this paper are summarized as follows:

    (1) For an OFDM based single two-way relay aided network, we firstly propose a generalized subcarrier pairing (GSP) strategy,permitting each user-pair to occupy different subcarriers during the multiple access (MA)and broadcast (BC) phases. Each user-pair can perform joint coding cross the allocated subcarriers to avoid the one-to-one mapping in traditional subcarrier pairing [7,8,9], reducing the complexity of multiuser scheduling.

    (2) The non-convex resource allocation problem for multiuser OFDM based twoway relay networks by the GSP is formulated,which is then solved by low complexity Lagrange duality decomposition based method.By Lagrange duality decomposition, the power and subcarrier allocation for two phases can be optimized independently, reducing the complexity of resource allocation, simultaneously obtain additional multiuser diversity.

    The rest of this paper is organized as follows. Section II presents the system model.Section III describes the novel GSP strategy,and formulates the joint resource allocation problem to characterize the corresponding achievable rate region. The duality-based resource allocation algorithm is developed in Section IV. Some numerical results are presented in Section V. Finally, Section VI draws some conclusions.

    Notation: Throughout this paper, we use bold lowercase letters to denote column vectors, and we also denote ann×1 column vector bymeans that each component of column vectorpis nonnegative.denotes the statistical expectation of the argument.

    II. SYSTEM MODEL

    Fig. 1 System model of OFDM based DF two-way relay network, including generalized subcarrier pairing strategy

    We consider a multiuser two-way OFDM relay network withNsubcarriers, whereKpairs of terminal nodesandexchange messages by virtue of an intermediate relay node.Each time frame of a two-way DF relay strategy consists of two phases: a multiple-access phase and a broadcast phase, as illustrated in Fig.1.

    In the multiple-access phase, the terminal nodesandsimultaneously transmit their messages to the relay nodethen the relay nodedecodes its received messages,re-encodes them into a new codeword, and broadcasts it to the terminal nodesandin the broadcast phase. The time proportion of the multiple-access phase is denoted as μ for 0<μ<1, and so the time proportion of the broadcast phase is 1-μ. We further defineas the binary variables for the subcarrier allocation in the MA and BC phases, respectively, such thatif themth subcarrier is allocated to thekth terminal pair in the multiple-access phase, whileotherwise; andif thenth subcarrier is allocated to thekth terminal pair in the broadcast phase, whileotherwise.Since during each relay phase each subcarrier can only be allocated to one user-pair, the subcarrier allocation policy also should satisfy the following constraint:

    In the traditional subcarrier pairing strategy in OFDM two-way relay networks[8,9],during the MA and BC phases, the allocated subcarrier group for each user-pair will always be the same, i.e.,for alandIn the same time, each user-pair only consider independent coding over each subcarrier, without considering joint coding cross multiple subcarriers[10]. Obviously, by the above fixed subcarrier allocation strategy for different relay phases for each user-pair, the multiuser diversity cannot be fully obtained, resulting in sum rate loss. The complexity of subcarrier allocation for each user-pair is also a NP-hard problem. Therefore,in the next section, we will firstly propose a novel GSP strategy to reduce the subcarrier allocation complexity, simultaneously guaranteeing multiuser diversity.

    III. GENERALIZED SUBCARRIER PAIRING AND RESOURCE ALLOCATION PROBLEM FORMULATION

    3.1 Generalized subcarrier pairing strategy

    In Fig.1, the numbers over the arrow lines mean the allocated subcarrier indices for the related user-pair. For example, for the 1st user-pair, during the MA phase,subcarriers are allocated for joint coding transmission, whilesubcarriers are allocated for BC phase. Similarly, forKth user-pair,during the MA phase,subcarriers are allocated for joint coding transmission, whilesubcarriers are allocated for BC phase.Obviously, the GSP is different from the traditional subcarrier pairing by allocating the same indicesandfor MA and BC phases.In fact, in traditional subcarrier pairing strategy[8,9], the same subcarrier allocation during the two phases limits the degree of freedom for channel matching, resulting in sum rate loss. In virtue of joint coding DF scheme[10],the one-to-one mapping of traditional subcarrier pairing is no longer necessary, so the adaptive rate allocation among multiple subcarriers is also no longer needed.

    In our GSP strategy with joint coding DF transmission scheme, only one channel coder/decoder pair is needed for each user node,while at the relay node one channel coder/decoder pair is equipped for each user-pair.So the total number of channel coder/decoder pairs in such scheme needs to be 6K. For traditional independently coding DF transmission for each subcarrier [10], the total number of channel coder/decoder pairs should be 6N. In general, the number of subcarrierNis much larger than the number of user-pairK, so by our proposed GSP algorithm, the number of channel coder/decoder pairs involved in the system can be reduced obviously due to the joint subcarriers channel coding scheme, simultaneously resulting in the following low complexity resource allocation schemes in Section IV.

    3.2 Resource allocation problem formulation

    In this subsection, we will formulate the joint power and subcarrier allocation problem.

    As Fig.1 shows, in the multiple-access phase, the received signalYRmof the relay nodeover subcarriermis expressed as

    Each node is subject to an individual power constraint, i.e.,

    IV. LOW-COMPLEXITY RESOURCE ALLOCATION ALGORITHM

    It is easily known that (5) is a mixed integer non-linear programming problem, and thus an exhaustive search overis required to find the optimal solution. Thanks to [19], we know that the duality gap between the primal problem and the dual problem in a multi-carrier system approaches to zero for a sufficiently large number of subcarriers. Thus we can bottom at this page, wherefor allandare nonnegative dual variables solve the dual problem instead of the original problem.

    Let us define the partial Lagrange dual function of problem (5) as (6) shown in the associated with five rate inequality constraints and two power inequality constraints for thekth terminal pair, respectively, andis the nonnegative dual variable associated with power inequality constraint for relay terminal. Then, the corresponding dual problem is defined as [16]

    4.1 Lagrange dual decomposition for dual function

    For any given dual variablesthe dual function can be re-expressed as (8) shown in the bottom at this page.

    4.2 Power allocation

    We solve (9) for allk, m, thus there are totalKNsub-problems. Fortunately, we can derive closed-form solutions to problem (9) by the following Karush-Kuhn-Tucker (KKT) conditions

    1)Case 1In this case,theKKTconditions (11a) and (11b) both hold with equality. Therefore, we need to solve a system ofquadraticequations with two variables. To simplify this problem, we define an auxiliary variable

    Then, by (11a) and (11b) and through some derivations, we obtain

    By substituting (13a) and (13b) into (12),we end up with the followingcubicequation ofx:

    and its closed-form solutions are given by Cardano’s formula [17]. After obtaining the positive real root x of (14), we can easily obtain the optimalby substituting x into (13).

    2)Case 2:. Then the solutions to (11a) and (11b) are given by

    3) Case 3:Then the solutions to (11a) and (11b) are given by

    4) Case 4:This is the default case when the above 3 cases do not happen.

    Similarly, we solve (10) for allk; n, thus there are alsoKNsub-problems. According to theKKTcondition

    If (18) has no positive root, then

    4.3 Subcarrier allocation

    Substituting optimal power values, andinto (8), we obtain (19) shown in the bottom at this page, whereis obtained by substitutinginto the objective function of (9), andis obtained by substitutinginto the objective function of (10).

    From (19), the optimal subcarrier allocation is given by

    Each maximization operation in (20) has the complexity ofO(K) and the total complexity of subcarrier allocation thus isO(KN),where the complexity is defined as that in[9,19].

    4.4 Dual update with subgradient method

    Next we solve the dual problem (7) to find the optimal values of dual variables. By the subgradient method [18], we set initial dual variablesandto find the optimal power allocation in (9) and (10) and the optimal subcarrier allocation in (20). Then, with the obtainedunderandafterlth iteration, the dual variables at (l+1)th iteration should be updated as (21) shown in the bottom at this page.

    for allk, where,andis an appropriate step size of thelth iteration to guarantee the convergence of the sub-gradient method [18], and (21d) and (21e) are due to the fact that the partial derivations of (6) with respect toare both equal to zero.The iteration will be stopped once certain criterion is fulfilled. Finally, we normalize the convergedandso that the power constraint at each terminal node is satisfied.

    V. NUMERICAL RESULTS

    In this section, numerical results are provided to illustrate the achievable rate performance of the proposed GSP strategy fulfilled by the proposed optimal power allocation. The wireless channels are generated by usingMindependently Rayleigh distributed time-domain taps with unit variance. We assume thatfor alli, k, n, i.e., the wireless channels betweenandTRare reciprocal, and thus. The time proportion of the multiple-access phase used isμ=0.5 and the maximum total transmission power for all the nodes are the same, i.e.,. Thus, the average signal-to-noiseratios (SNR) of the wireless links are given byAll simulations in this section are performed under the symmetric channel scenario, i.e.We also set

    Fig.2 presents the averaged system sum rates vs. SNR, by our proposed GSP and traditional subcarrier pairing scheme, respectively.For each SNR, the results are obtained averagely over 500 independent channel realizations. For simplicity, the user-pair number is set asThe traditional subcarrier pairing scheme is deduced from [5]1The resource allocation scheme in [5] is originally designed for AF relay systems. Due to no more DF-based comparative objectives in current literatures, we have to modify the subcarrier pairing scheme of [5]combined with our power allocation solution by(11) to perform traditional resource allocation (i.e.,called “traditional subcarrier pairing scheme”in this paper) for DF relay networks. The corresponding upper bound proposed by AF scheme in [5] is also changed as Fig.2 shows.combined with power allocation closed-form solution for DF relay networks in Subsection IV.B. From Fig.2 it can be seen that, the achieved system spectrum efficiency by the GSP is obviously higher than that by the traditional method. If we regard the optimal solution of the dual problem(7) as the performance upper bound (drawn by solid line), the performance obtained by the GSP approaches to the bound with a negligible gap, verifying the asymptotic optimal solution by the Lagrange dual decomposition in Section IV.

    Fig. 2 Averaged sum rates vs. SNR by the GSP (marked by square) and traditional subcarrier pairing (Traditional SP, marked by triangle), K=2

    Fig. 3 Averaged sum rates vs. SNR by different subcarrier allocation and power allocation schemes

    In Fig.3, we further compare the averaged sum rates by different subcarrier allocation(-SA) schemes under different number of user groups. The used SA schemes include: (I) the optimal solution SA by (20); (II) the fixed block subcarrier allocation (i.e., Block SA).Here, we only user Block SA as the basic comparison to discuss the tradeoff between system control complexity and the system performance, while the approximate optimality of the GSP has been proved in Fig.2. For the Block SA, we assign the subcarriers with indicesto thekth user-pair (for simplicity, assumeto be an integer), and the SA keeps the same during the two phases, i.e., MA and BS phases. We use the power allocation scheme by Subsection IV.B for the Block SA scheme. It can be seen that, for fixed, the optimal SA outperforms the Block SA in terms of averaged sum rates.We also compare the performance under different user-pair numbers,Whenall the subcarriers are allocated to only one user-pair, so the performance is the same as that of [10]. From Fig.3, along with the increase of number of user-pair, the averaged sum rates are improved, adequately showing the multiuser diversity gain.

    VI. CONCLUSIONS

    In this paper, we investigate the resource allocation problem in the OFDM based multiuser two-way relay networks, including power and subcarrier allocation. The joint coding DF scheme [10] is firstly incorporated to enlarge the achievable rate region compared with the existing per-subcarrier DF relay strategies for the multiuser DF relay case. Then the GSP is proposed to reduce the complexity of resource allocation and user scheduling in multiuser scenarios. In order to solve the non-convex resource allocation problem under the above scheme, a low complexity Lagrange dual decomposition based method is proposed to maximize the system sum rates. Numerical simulations show that, by the proposed GSP,the system spectrum efficiency will be evidently improved, with the multiuser diversity guaranteed.

    ACKNOWLEDGEMENTS

    The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The work is supported by the National Natural Science Foundation of China (NSFC) (No. 61501527), State’s Key Project of Research and Development Plan (No. 2016YFE0122900-3), the Fundamental Research Funds for the Central Universities, Basic Research Foundation of Science Technology and Innovation Commission of Shenzhen Municipality (No.JCYJ20150630153033410) SYSU-CMU Shunde International Joint Research Institute and 2016 Major Project of Collaborative Innovation in Guangzhou (Research and Application of Ground Satellite Communicaiton Systems for Space Broadband Information Networks).

    [1] M. Salem, A. Adinoyi, M. Rahman, H. Yanikomeroglu, D. Falconer, Y.-D. Kim,E. Kim, and Y.-C. Cheong. An overview of radio resource management in relay-enhanced OFDMA-based networks[J], IEEE Commun. Surv. Tutorials, 2010,12(3): 422–438.

    [2] H. Zhang, Y. Liu, and M. Tao. Resource allocation with subcarrier pairing in OFDMA two-way relay networks[J]. IEEE Wireless Commun. Lett., 2012,1(4): 61–64.

    [3] Chen M, Yener A. Multiuser two-way relaying:Detection and interference management strategies[J]. IEEE Trans. Wireless Commun., 2009,8(8):4296–4305.

    [4] Chen M, Yener A. Power Allocation for F/TDMA Multiuser Two-way Relay Networks[J]. IEEE Trans. Wireless Commun., 2010, 9(2):546–551.

    [5] Sidhu G A S, Gao F, Chen W, et al. A Joint Resource Allocation Scheme for Multiuser Two-Way Relay Networks[J]. IEEE Trans. Commun.,2011, 59(11):2970–2975.

    [6] Zhang H, Liu Y, Tao M. Resource Allocation with Subcarrier Pairing in OFDMA Two-Way Relay Networks[J]. IEEE Wireless Commun. Lett., 2012,1(2):61–64.

    [7] Shin H, Lee J H. Joint Resource Allocation for Multiuser Two-Way OFDMA Relay Networks with Proportional Fairness[C]. Proceedings of IEEE VTC’11 Fall, 2011.

    [8] Jitvanichphaibool K, Zhang R, Liang Y C. Optimal Resource Allocation for Two-Way Relay-Assisted OFDMA[J]. IEEE Trans. Veh. Technol.,2009, 58(7):3311–3321.

    [9] Liu Y, Tao M, Li B, et al. Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks[J]. IEEE Trans. Wireless Commun., 2010, 9(11):3490–3500.

    [10] Fei He, Yin Sun, Limin Xiao, Xiang Chen, Chong-Yung Chi, Shidong Zhou. Capacity Region Bounds and Resource Allocation for Two-Way OFDM Relay Channels[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2904-2917.

    [11] Chengwen Xing, Ying Ma, Yiqing Zhou and Feifei Gao. Transceiver Optimization for Multi-Hop Communications with Per-Antenna Power Constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(6): 1519-1534.

    [12] Chengwen Xing, Feifei Gao, and Yiqing Zhou.A Framework for Transceiver Designs for Multi-Hop Communications with Covariance Shaping Constraints[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3930-3945.

    [13] Chengwen Xing, Shaodan Ma, and Yiqing Zhou.Matrix-Monotonic Optimization for MIMO Systems[J]. IEEE Transactions on Signal Processing,2015, 63(2): 334-348.

    [14] Chengwen Xing, Shaodan Ma and Yik-Chung Wu. Robust Joint Design of Linear Relay Precoder and Destination Equalizer for Dual-Hop Amplify-and-Forward MIMO Relay Systems[J].IEEE Transactions on Signal Processing, 2010,58(4): 2273-2283.

    [15] W. Yu and R. Lui. Dual methods for nonconvex spectrum optimization of multicarrier systems[J]. IEEE Trans. Commun., 2006, 54(7):1310–1322.

    [16] S. Boyd and L. Vandenberghe. Convex Optimization[M]. Cambridge, U.K.: Cambridge Univ.Press, 2004.

    [17] W. Dunham. Cardano and the solution of the cubic. Journey through Genius: The Great Theorems of Mathematics[M]. New York: John Wiley& Sons, Inc., 1990: 133–154.

    [18] S. Boyd and A. Mutapcic. Notes for EE364b:Subgradient methods[EB/OL]. Jan. 2007, Stanford University. Available:http://www.stanford.edu/class/ee364b/notes/subgradients notes.pdf

    [19] G. A. S. Sidhu, F. Gao, W. Chen, and A. Nallanathan. A joint resource allocation scheme for multiuser two-way relay networks[J]. IEEE Trans.Commun., 2011, 59(11): 2970–2975.

    午夜福利18| 欧美日韩在线观看h| 日本熟妇午夜| 色综合色国产| 天天一区二区日本电影三级| 亚洲,欧美,日韩| 亚洲精华国产精华液的使用体验 | 国产精品久久久久久久久免| 国产69精品久久久久777片| 18禁在线无遮挡免费观看视频 | 午夜老司机福利剧场| 免费高清视频大片| 婷婷色综合大香蕉| 两性午夜刺激爽爽歪歪视频在线观看| 99热这里只有是精品在线观看| 午夜亚洲福利在线播放| 99久久精品热视频| 亚洲激情五月婷婷啪啪| 一个人看的www免费观看视频| 成人美女网站在线观看视频| 免费看av在线观看网站| 亚洲精品国产av成人精品 | 熟女人妻精品中文字幕| a级毛片a级免费在线| 黄片wwwwww| 亚洲精品亚洲一区二区| 日韩,欧美,国产一区二区三区 | 99热只有精品国产| 我的老师免费观看完整版| 成人高潮视频无遮挡免费网站| 亚洲在线观看片| 亚洲精品456在线播放app| 国产精品嫩草影院av在线观看| 嫩草影院新地址| 十八禁网站免费在线| 日本 av在线| 欧美一区二区精品小视频在线| 网址你懂的国产日韩在线| 国产亚洲精品av在线| 中文字幕久久专区| 亚洲国产精品成人久久小说 | 波野结衣二区三区在线| 日韩一区二区视频免费看| 99热这里只有是精品50| 久久久a久久爽久久v久久| 真实男女啪啪啪动态图| 成人综合一区亚洲| 国产av一区在线观看免费| 性色avwww在线观看| 久久久久久大精品| 亚洲无线在线观看| 18禁在线播放成人免费| 国产精品久久久久久av不卡| 女人十人毛片免费观看3o分钟| 床上黄色一级片| 有码 亚洲区| 亚洲av一区综合| 卡戴珊不雅视频在线播放| 亚洲五月天丁香| 国产精华一区二区三区| 熟女人妻精品中文字幕| 干丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美国产日韩亚洲一区| 国产探花在线观看一区二区| 精品国内亚洲2022精品成人| 观看免费一级毛片| 久久久久国内视频| 国产精品,欧美在线| 成年女人看的毛片在线观看| 亚洲人成网站在线观看播放| 亚洲av电影不卡..在线观看| 欧美zozozo另类| 日韩av在线大香蕉| 亚洲无线在线观看| 亚洲精品色激情综合| 国产一区亚洲一区在线观看| 长腿黑丝高跟| 97在线视频观看| 中文字幕熟女人妻在线| 18禁在线播放成人免费| 最后的刺客免费高清国语| 国产真实乱freesex| 国产人妻一区二区三区在| 中文字幕熟女人妻在线| 国产一区亚洲一区在线观看| 国内少妇人妻偷人精品xxx网站| 在线播放无遮挡| av女优亚洲男人天堂| 亚洲婷婷狠狠爱综合网| 偷拍熟女少妇极品色| 国国产精品蜜臀av免费| 精品午夜福利在线看| 国产高清三级在线| 精品人妻熟女av久视频| 亚洲国产精品成人久久小说 | 国产精品一及| www日本黄色视频网| 免费看a级黄色片| 国产免费一级a男人的天堂| 欧美日韩一区二区视频在线观看视频在线 | 看非洲黑人一级黄片| av天堂在线播放| 人妻夜夜爽99麻豆av| 精品熟女少妇av免费看| 亚洲专区国产一区二区| 白带黄色成豆腐渣| 黄色配什么色好看| 搞女人的毛片| av在线亚洲专区| 久久久久久久久中文| 少妇的逼水好多| 一级毛片aaaaaa免费看小| 校园春色视频在线观看| 欧美色视频一区免费| 日韩亚洲欧美综合| 少妇熟女欧美另类| 亚洲国产精品国产精品| 看片在线看免费视频| 亚洲经典国产精华液单| 国产爱豆传媒在线观看| 亚洲精品日韩av片在线观看| 99热网站在线观看| 免费看美女性在线毛片视频| 一级毛片久久久久久久久女| 久久久久久久久久黄片| 国产精品国产三级国产av玫瑰| 九色成人免费人妻av| 欧美性猛交╳xxx乱大交人| 97热精品久久久久久| 亚洲成人久久爱视频| 麻豆精品久久久久久蜜桃| 午夜福利成人在线免费观看| 久久久精品大字幕| 在线播放无遮挡| 在线a可以看的网站| 22中文网久久字幕| 男人舔女人下体高潮全视频| 国产一区亚洲一区在线观看| 成人漫画全彩无遮挡| 嫩草影院入口| 国产真实乱freesex| 高清毛片免费看| 成人av在线播放网站| 最近的中文字幕免费完整| 日韩av在线大香蕉| 变态另类丝袜制服| 欧美一区二区国产精品久久精品| 亚洲精品日韩av片在线观看| 人妻夜夜爽99麻豆av| 大型黄色视频在线免费观看| 2021天堂中文幕一二区在线观| av中文乱码字幕在线| 日本 av在线| 国产一区二区亚洲精品在线观看| 欧美日韩乱码在线| 日韩亚洲欧美综合| 国产精品伦人一区二区| 老女人水多毛片| 久久久久国产精品人妻aⅴ院| 国产亚洲精品久久久久久毛片| 国产乱人视频| 亚洲美女视频黄频| 日韩三级伦理在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一进一出抽搐gif免费好疼| 亚洲精华国产精华液的使用体验 | 午夜老司机福利剧场| 国产成人影院久久av| 麻豆国产av国片精品| 欧美xxxx性猛交bbbb| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 午夜久久久久精精品| 国内精品久久久久精免费| 国产午夜精品论理片| 日日摸夜夜添夜夜添av毛片| 黄色一级大片看看| 日本成人三级电影网站| 国产成人精品久久久久久| 寂寞人妻少妇视频99o| 日本免费一区二区三区高清不卡| 波多野结衣高清无吗| 亚洲精品日韩av片在线观看| 九九久久精品国产亚洲av麻豆| 在线免费观看的www视频| 国产亚洲91精品色在线| 淫秽高清视频在线观看| 日本a在线网址| 午夜免费激情av| 91狼人影院| 小说图片视频综合网站| 不卡一级毛片| 国产精品福利在线免费观看| 3wmmmm亚洲av在线观看| 国产精品,欧美在线| 久久精品影院6| 一区二区三区四区激情视频 | 最近中文字幕高清免费大全6| 亚洲欧美清纯卡通| 久久久久久久久久久丰满| 精品久久久噜噜| 日韩,欧美,国产一区二区三区 | 精品久久久久久久久av| av国产免费在线观看| 99热只有精品国产| 日本精品一区二区三区蜜桃| 91久久精品国产一区二区成人| a级毛色黄片| 精品一区二区三区av网在线观看| 亚洲av二区三区四区| 男女做爰动态图高潮gif福利片| 欧美性感艳星| 免费人成视频x8x8入口观看| 最近手机中文字幕大全| 久久精品夜色国产| 国产精品伦人一区二区| 又黄又爽又刺激的免费视频.| 三级男女做爰猛烈吃奶摸视频| 看非洲黑人一级黄片| 日韩av在线大香蕉| 老司机福利观看| 亚洲人与动物交配视频| 久久6这里有精品| 男插女下体视频免费在线播放| 最近的中文字幕免费完整| 老司机福利观看| 午夜免费男女啪啪视频观看 | 18禁黄网站禁片免费观看直播| 九九久久精品国产亚洲av麻豆| 变态另类丝袜制服| 99久久无色码亚洲精品果冻| 亚洲欧美日韩高清专用| 欧美3d第一页| 国产高清三级在线| 国产成人一区二区在线| 国产高潮美女av| 日本色播在线视频| 我的女老师完整版在线观看| a级毛片免费高清观看在线播放| av视频在线观看入口| 亚洲精品国产av成人精品 | 欧美三级亚洲精品| 人人妻,人人澡人人爽秒播| 亚洲欧美成人综合另类久久久 | 乱码一卡2卡4卡精品| 日日摸夜夜添夜夜添小说| 亚洲最大成人中文| 日韩精品青青久久久久久| 一a级毛片在线观看| АⅤ资源中文在线天堂| av在线播放精品| 久久午夜亚洲精品久久| 午夜精品国产一区二区电影 | 老熟妇仑乱视频hdxx| 热99在线观看视频| 亚洲内射少妇av| 一区二区三区四区激情视频 | 亚洲精品久久国产高清桃花| 桃色一区二区三区在线观看| 一本精品99久久精品77| 18+在线观看网站| 在线观看66精品国产| 91午夜精品亚洲一区二区三区| 热99在线观看视频| 久久久久久大精品| 国产精品久久久久久av不卡| 美女 人体艺术 gogo| 亚洲国产精品国产精品| 久久久久久久久久成人| 国产极品精品免费视频能看的| 亚洲精品日韩av片在线观看| 国产精品一区二区三区四区久久| 亚洲七黄色美女视频| 一进一出抽搐动态| 国产乱人偷精品视频| 91在线观看av| 女同久久另类99精品国产91| 亚洲精品一区av在线观看| 亚洲av成人av| 夜夜爽天天搞| 干丝袜人妻中文字幕| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 午夜影院日韩av| 国产欧美日韩精品亚洲av| 少妇猛男粗大的猛烈进出视频 | 97碰自拍视频| 亚洲av免费在线观看| 69人妻影院| 在线免费观看不下载黄p国产| 国产v大片淫在线免费观看| 欧美潮喷喷水| 在线观看免费视频日本深夜| av国产免费在线观看| 九九热线精品视视频播放| 久久天躁狠狠躁夜夜2o2o| 欧美丝袜亚洲另类| 精品久久久久久久久久免费视频| 搞女人的毛片| 嫩草影视91久久| 美女黄网站色视频| 日韩成人av中文字幕在线观看 | 全区人妻精品视频| 看非洲黑人一级黄片| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清专用| 九九爱精品视频在线观看| 欧美日韩国产亚洲二区| 在线天堂最新版资源| 自拍偷自拍亚洲精品老妇| 日韩欧美三级三区| 国产成人a∨麻豆精品| 久久草成人影院| 少妇的逼水好多| 永久网站在线| 日日撸夜夜添| 亚洲av熟女| 亚洲欧美精品综合久久99| 午夜日韩欧美国产| 99久久久亚洲精品蜜臀av| 丰满人妻一区二区三区视频av| 高清毛片免费观看视频网站| 99热精品在线国产| 久99久视频精品免费| 中文在线观看免费www的网站| 看十八女毛片水多多多| 最好的美女福利视频网| 国国产精品蜜臀av免费| 熟女人妻精品中文字幕| 99热这里只有是精品50| 女同久久另类99精品国产91| 久久久久久伊人网av| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 国产免费一级a男人的天堂| 丰满人妻一区二区三区视频av| 一区二区三区免费毛片| 九九爱精品视频在线观看| 少妇熟女aⅴ在线视频| 村上凉子中文字幕在线| 久久久久久国产a免费观看| 简卡轻食公司| 大又大粗又爽又黄少妇毛片口| 老熟妇乱子伦视频在线观看| www日本黄色视频网| 国产精品精品国产色婷婷| 亚洲婷婷狠狠爱综合网| 国产伦在线观看视频一区| 少妇人妻精品综合一区二区 | 久久九九热精品免费| 老师上课跳d突然被开到最大视频| 一个人看视频在线观看www免费| 午夜福利高清视频| 97超视频在线观看视频| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| 欧美最新免费一区二区三区| 亚洲精品在线观看二区| 淫秽高清视频在线观看| 99riav亚洲国产免费| 欧美国产日韩亚洲一区| 成年女人看的毛片在线观看| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 中国国产av一级| 成人精品一区二区免费| 国产高清视频在线观看网站| 国内精品宾馆在线| 成人一区二区视频在线观看| 欧美另类亚洲清纯唯美| 国产伦在线观看视频一区| 99热只有精品国产| 三级毛片av免费| 欧美不卡视频在线免费观看| 在线免费观看的www视频| 中文字幕精品亚洲无线码一区| 日韩精品中文字幕看吧| 搡女人真爽免费视频火全软件 | 夜夜夜夜夜久久久久| 免费看光身美女| 久久久成人免费电影| 午夜爱爱视频在线播放| 不卡视频在线观看欧美| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品影视一区二区三区av| 国产中年淑女户外野战色| 联通29元200g的流量卡| 日韩,欧美,国产一区二区三区 | 国产中年淑女户外野战色| 免费av观看视频| 久久热精品热| 中国国产av一级| 午夜精品国产一区二区电影 | 99国产精品一区二区蜜桃av| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| a级毛片免费高清观看在线播放| 成年免费大片在线观看| 日韩在线高清观看一区二区三区| 久久精品综合一区二区三区| 18+在线观看网站| 综合色av麻豆| 日韩国内少妇激情av| 一个人免费在线观看电影| 特级一级黄色大片| av在线播放精品| 久久久久国产网址| 欧美成人a在线观看| 国产黄片美女视频| 18禁在线无遮挡免费观看视频 | 国产淫片久久久久久久久| av在线蜜桃| av女优亚洲男人天堂| 一区二区三区高清视频在线| 午夜爱爱视频在线播放| 国产三级在线视频| 亚洲欧美精品综合久久99| 3wmmmm亚洲av在线观看| 日本在线视频免费播放| 99热只有精品国产| 亚洲av中文字字幕乱码综合| 丰满乱子伦码专区| 国产成人一区二区在线| 国产成人a∨麻豆精品| 黄色日韩在线| 国产亚洲av嫩草精品影院| 亚洲中文字幕一区二区三区有码在线看| 亚洲四区av| 人妻夜夜爽99麻豆av| 能在线免费观看的黄片| 无遮挡黄片免费观看| 中出人妻视频一区二区| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 久久亚洲精品不卡| 十八禁国产超污无遮挡网站| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 欧美zozozo另类| 变态另类成人亚洲欧美熟女| 国产真实乱freesex| 波多野结衣高清无吗| 国产69精品久久久久777片| 91av网一区二区| 九九爱精品视频在线观看| 国产精品一及| 日日摸夜夜添夜夜添小说| 97在线视频观看| 国产伦精品一区二区三区四那| 亚洲最大成人av| 特级一级黄色大片| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av天美| 亚洲精品456在线播放app| 全区人妻精品视频| 免费大片18禁| 啦啦啦观看免费观看视频高清| 精品人妻视频免费看| 日韩 亚洲 欧美在线| 在线观看66精品国产| 我要搜黄色片| 看片在线看免费视频| 亚洲自偷自拍三级| 精品久久久久久成人av| 日日啪夜夜撸| 麻豆成人午夜福利视频| 亚洲av二区三区四区| 嫩草影院精品99| 国产大屁股一区二区在线视频| 精品一区二区三区视频在线观看免费| 欧美日韩乱码在线| 99热这里只有是精品50| 日本熟妇午夜| 狂野欧美激情性xxxx在线观看| 国产在线精品亚洲第一网站| 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 国产女主播在线喷水免费视频网站 | av在线亚洲专区| 亚洲美女视频黄频| 最新在线观看一区二区三区| 高清午夜精品一区二区三区 | 午夜福利在线观看吧| 国产伦在线观看视频一区| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验 | 99国产精品一区二区蜜桃av| 亚洲中文日韩欧美视频| 最新中文字幕久久久久| 久久精品国产99精品国产亚洲性色| 91午夜精品亚洲一区二区三区| 麻豆成人午夜福利视频| 国产极品精品免费视频能看的| av视频在线观看入口| 亚洲无线观看免费| 国产av不卡久久| 成人鲁丝片一二三区免费| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 欧美日韩综合久久久久久| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看| 变态另类丝袜制服| 十八禁国产超污无遮挡网站| 最好的美女福利视频网| 一本久久中文字幕| 在线播放无遮挡| 波多野结衣高清作品| 一本精品99久久精品77| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 国产精品国产三级国产av玫瑰| 老师上课跳d突然被开到最大视频| 久久久久久伊人网av| 亚洲精品乱码久久久v下载方式| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 特大巨黑吊av在线直播| 美女大奶头视频| 欧美极品一区二区三区四区| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 午夜a级毛片| 成年av动漫网址| 欧美bdsm另类| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 国产色婷婷99| 色哟哟·www| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 成人永久免费在线观看视频| 成人漫画全彩无遮挡| 91在线观看av| 亚洲性夜色夜夜综合| 国产伦一二天堂av在线观看| 在线观看美女被高潮喷水网站| 国产精品亚洲美女久久久| 长腿黑丝高跟| 精品久久久久久久久久久久久| 日韩人妻高清精品专区| 中国美女看黄片| 在线播放无遮挡| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 国产精品无大码| 亚洲精品456在线播放app| 一级a爱片免费观看的视频| 免费在线观看成人毛片| 免费在线观看影片大全网站| 一个人免费在线观看电影| 国产av麻豆久久久久久久| 久久久久久伊人网av| 最近最新中文字幕大全电影3| 黄片wwwwww| 老司机福利观看| 亚洲精品在线观看二区| 日韩欧美精品免费久久| 亚洲精华国产精华液的使用体验 | 熟妇人妻久久中文字幕3abv| 99在线人妻在线中文字幕| 精品99又大又爽又粗少妇毛片| 三级男女做爰猛烈吃奶摸视频| 淫秽高清视频在线观看| 欧美潮喷喷水| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 最好的美女福利视频网| 亚洲人与动物交配视频| 亚洲欧美精品自产自拍| 欧美xxxx黑人xx丫x性爽| 成人高潮视频无遮挡免费网站| 舔av片在线| 久久久欧美国产精品| 成年女人永久免费观看视频| 日韩大尺度精品在线看网址| 国产一区亚洲一区在线观看| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件 | 99热精品在线国产| 十八禁网站免费在线| 久久久久久久亚洲中文字幕| 亚洲av一区综合| 久久精品91蜜桃| 亚洲成a人片在线一区二区| 国产伦精品一区二区三区视频9| 天堂av国产一区二区熟女人妻| 少妇猛男粗大的猛烈进出视频 | 两性午夜刺激爽爽歪歪视频在线观看| 99riav亚洲国产免费| 亚洲真实伦在线观看| 直男gayav资源| 色综合站精品国产| 大香蕉久久网| 国产淫片久久久久久久久| 精品久久久久久久久亚洲| 99热精品在线国产| 69av精品久久久久久| 1000部很黄的大片| 色av中文字幕| 哪里可以看免费的av片| 伊人久久精品亚洲午夜| 麻豆国产av国片精品| 一级a爱片免费观看的视频| 黄色欧美视频在线观看| 一个人免费在线观看电影| 精品一区二区三区人妻视频| 免费黄网站久久成人精品| 俄罗斯特黄特色一大片| 国内精品美女久久久久久| 亚洲久久久久久中文字幕| 亚洲最大成人av|