• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Random Access and Resource Allocation for the Coexistence of NOMA-Based and OMA-Based M2M Communications

    2017-05-09 07:48:16YaliWuGuixiaKangNingboZhang
    China Communications 2017年6期

    Yali Wu , Guixia Kang *, Ningbo Zhang

    1 Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

    2 Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory,Shijiazhuang 050081, China

    * The corresponding author, email: gxkang@bupt.edu.cn

    I. INTRODUCTION

    With the rapid development of internet of things (IoT), machine-to-machine (M2M)communications, also known as machine-type communications (MTC), has been widely applied in various aspects [1]. Due to the diverse set of applications and services, three different aspects should be investigated in the design of future fifth generation (5G) system: (1) enhanced mobile broadband (eMBB) supporting both high data rate and low latency communications, and extreme coverage, (2) ultra-reliable MTC (uMTC) supporting network service with high reliability and low latency, and (3)massive MTC (mMTC) supporting the connectivity for increasing number of devices [2].In this paper, the goal is to provide insights for the design of mMTC services in a 5G setting.According to a report released by the 5G Infrastructure Public Private Partnership (5G-PPP)community, the next generation of wireless networks need to support more than 10,000 devices per square kilometer [3]. However, a large number of M2M user equipments (UEs)connected to the network within a very short period time will inevitably lead to the radio access network (RAN) overload and degrade the performance of existing human-to-human(H2H) communications [4]. There have been some orthogonal resource allocation methods to alleviate the RAN congestion and improve the access success probability [5-8]. Orthogonal multiple access (OMA) techniques, e.g.orthogonal frequency division multiple access(OFDMA), is adopted in the long term evolution (LTE) systems, where each resource block (RB) serves one UE to keep UE’s orthogonality. However, the continuous expansion of M2M UEs still results in a shortage problem of radio resources. OMA is not optimal in terms of spectral efficiency, and cannot achieve the system upper bound [9].

    This paper studies a novel RA and resource allocation scheme for the coexistence of NOMA-based and OMA-based M2M communications.

    In wireless communication networks, how to efficiently utilize the channel resource has become a critical issue due to the scarcity of spectrum [10,11]. Non-orthogonal multiple access (NOMA) is highly recommended to be involved in 5G systems, which can improve spectrum efficiency and network capacity by allowing multiple UEs to share the same radio resource in power domain at the transmitter with successive interference cancellation(SIC) at the receivers [12]. Theoretically,recent research has been proved that NOMA can achieve system capacity limit compared to OMA [13,14], thus making it a desirable enabling technology to facilitate M2M communications.

    Random access (RA) is the key step for M2M UE to access the cellular network. An UE starts a RA by sending a preamble on the physical random access channel (PRACH) to Evolved Node B (eNB), and transmitting the connection setup request or data packet on the physical uplink shared channel (PUSCH) [15].OMA allows only one UE to use the PUSCH,we call this kind of RA as OMA-based RA.NOMA with SIC receiver permits multiple UEs sharing the same PUSCH, we call this kind of RA as NOMA-based RA. However,the performance of NOMA will be degraded if SIC receiver cannot perfectly cancel co-channel interferences, and may not satisfy the quality of service (QoS) of M2M communications in some scenarios. Therefore, the contributions of this work mainly focus on:

    1) The coexisting RA (i.e., the coexistence of the NOMA-based RA and OMA-based RA)for M2M communications is proposed. A joint UE paring and power allocation algorithm is designed for the coexisting RA, which considers three criteria, i.e., the maximum transmission power constraints, minimum data rate constraints and the order of SIC in NOMA. In addition, the number of UEs for NOMA-based RA and OMA-based RA are determined by this algorithm.

    2) To improve the number of successful data packet transmissions for the coexisting RA, all available radio resources are dynamically separated between NOMA-based RA and OMA-based RA. Furthermore, a reasonable resource tradeoff between PRACH and PUSCH is achieved.

    The remainder of this paper is organized as follows. Section II discusses the resource allocation for the coexisting RA. Section III presents the joint UE paring and power allocation for the coexisting RA. Performance evaluations are given in Section IV, while the paper is concluded in Section V.

    II. RESOURCE ALLOCATION FOR THE COEXISTING RA

    The NOMA-based RA and OMA-based RA are detailed following, respectively. Different from OMA-based RA, when NOMA-based RA is selected, a UE group is first established,and the transmission power of each multiplexing UE is decided. The result of UE paring and power allocation is given by Section III.Denoteu1andu2as the number of UE groups(i.e., the number of group center UEs) for NOMA-based RA and the number of OMA UEs(i.e., the number of UEs for OMA-based RA),respectively. The value ofu1andu2are derived from Section III.

    2.1 NOMA-based RA

    When NOMA-based RA is selected, an access class barring (ACB) mechanism is adopted to control the number of UE groups. The ACB parameter determines the probability that the group center UE is allowed to access to the PRACH. The ACB parameter, denoted byR,is derived in Section 2.3. The eNB broadcasts the ACB parameter to all group center UEs. A group center UE randomly selectsxout of the uniform distribution between zero and one. If, the group center UE is allowed to access to the PRACH. Ifx>R, the group center UE reattempts RA after a random back-off.The NOMA-based RA consists of four steps as follows:

    Step 1: Preamble transmission. The allowed group center UE selects the specified preamble and transmits it on PRACH on behalf of its UE group. After that, the group center UE broadcasts the index of the specified preamble,path loss, power back-off factor and the list of non-group center UEs’ identity (ID) to the non-group center UEs.

    Step 2: After detecting the specified preamble, eNB sends random access response(RAR) through downlink channel. The number of RARs equals the number of allowed UE groupsThe preamble information of these RARs is the specified preamble while the assigned PUSCH is different in each RAR.

    Fig. 1 NOMA-based RA

    Step 3: Power back-off and data transmission. The group center UEs will receiveRARs corresponding to the specified preamble. The group center UEs are sorted in accordance with the value of the group center UEs’ IDs. The group center UE randomly selects one RAR out of the available RARs in line until all theRARs are selected. The RAR, which is selected by one group center UE, cannot be selected by other group center UEs. The multiplexing UEs in the same UE group are expected to receive the same RAR.Upon receiving the RAR, the multiplexing UE adjusts the transmission power based on path loss and power back-off factor, then transmits both UE ID and data packet on the PUSCH which is indicated by the received RAR.

    Step 4: SIC reception and acknowledge(ACK). As all the PUSCH for different UE groups are pairwise orthogonal, eNB could decode messages from each PUSCH independently. It performs SIC and decodes the data packet one by one on each PUSCH. After that, eNB sends the ACK message and corresponding UE ID via control channel. The NOMA-based RA is illustrated in Fig. 1.

    2.2 OMA-based RA

    To avoid the resource wasting caused by preamble collision, we extend the preamble transmission by transmitting UE ID and a cyclic redundancy check (CRC) information on a part of the subcarriers reserved for guard band [8].Division Multiple Access (CDMA) is used to distinguish each UE, i.e., the UE ID and CRC are encoded by gold sequence. Every preamble has a unique gold sequence. When more than one UE select the same preamble, their UE ID will be multiplied by the same sequence.When more than one UE transmit their IDs on the same subcarriers, eNB cannot decode UE ID. Then eNB thinks collision occurs and will not schedule PUSCH to the preamble, thus saving resource. The OMA-based RA consists of four steps as follows:

    Step 1: An OMA UE randomly selects one preamble out of non-specified preambles with equal probability. The OMA UE transmits the preamble, UE ID and CRC on PRACH.

    Step 2: After detecting the preamble, eNB begins to decode the UE ID. After successfully decoding the UE ID, eNB sends the corresponding RAR. The RAR conveys the preamble information and uplink resource grant for data packet transmission in Step 3. If eNB cannot decode the ID, this preamble is regarded as a collision and eNB will stop sending RAR.

    Step 3: After receiving the corresponding RAR, the OMA UE adjusts the transmission power and transmits a data packet to eNB on the PUSCH indicated by the received RAR.

    Step 4: If eNB correctly decodes the data packet transmitted in Step 3, it transmits an ACK message to the corresponding UE.

    2.3 Resource allocation for the coexisting RA

    Assuming that the total number of RBs allocated to PRACH and PUSCH in a RA cycle isQ, and the number of RBs allocated to PRACH isN. A PRACH consists of 6 physical RBs in a subframe, which occupies 864 subcarriers [15]. Assumingκpreamble sequences are mapped to the central 839 subcarriers while the rest 25 subcarriers are reserved for guard band in each RA cycle. Thereforepreambles are constructed, andNis integer multiples of 6. eNB chooses one of the preambles as a specified preamble, and the remainingpreambles as the non-specified preambles.

    The number of RBs allocated to PUSCH isQ-N. Suppose the number of RBs constituting one subchannel issubchannels can be constructed.denotes the bottom integer function. Assuming an M2M UE usesRBs for a fix-sized data packet transmission. Since multiple UEs can share the same subchannel for data packet transmissions in NOMA-based RA, eNB will schedule enough subchannels for NOMA-based RA. In extreme case, the number of subchannels iswhenN=0. Therefore, the ACB mechanism is adopted to control the number of UE groups, and the ACB parameter is

    Fig. 2 OMA-based RA

    The expected number of UE groups selecting the specified preambleeNB will schedulesubchannels for NOMA-based RA, and schedulesubchannels for OMA-based RA.

    DenoteMkas the number of multiplexing UEs on thek-th subchannelThen the number of successful data packet transmissions contributed by NOMA-based RA is

    An OMA UE randomly selects a preamble out ofnon-specified preambles. This selection follows the Binomial distribution with meanDenoteas the probability of a successful preamble that is selected by one OMA UE.is given by

    Considering the number of contending OMA UEs is very large, the number of non-specified preambles selected by one OMA UE follows the Binomial distribution. Therefore, the expected number of OMA UEs that select the successful preambles is

    To maximize the uplink resource utilization, RBs should be allocated to PRACH and PUSCH such that the number of PUSCH is equal to the expected number of successful preambles. By this choice, the number of successful data packet transmissions would be equal to the number of successful preambles since sufficient PUSCH resources are available for assigning to successful preambles.DenoteN*as the optimal number of RBs allocated to PRACH, which is achieved when the gap between the number of successful preambles and the number of available subchannels is minimum.

    Consequently, the number of subchannels scheduled to OMA-based RA isThe number of successful data packet transmissions contributed by OMA-based RA is

    Therefore, the total number of successful data packet transmissions contributed by the coexisting RA is

    III. JOINT UE PARING AND POWER ALLOCATION FOR THE COEXISTING RA

    3.1 Uplink NOMA transmission

    All the M2M UEs and the eNB are equipped with a single omnidirectional antenna. From Section 2.3,Mk(Mk>1) UEs are paired as a UE group and transmit data packets on thek-th subchannel, whereandDenotemas the index for them-th UE. Letsk,mbe them-th UE’s signal transmitted on thek-th subchannel with.pk,mis the transmission power of them-th UE on thek-th subchannel. The received data packet on thek-th subchannel at eNB is

    Wherehk,m = gk,mlk,mis the channel from them-th UE in thek-th UE group to eNB.lk,mis the large-scale path loss, andgk,mis Rayleigh fading coefficient.nkis the additive white Gaussian noise observed on thek-th subchannel at eNB. To simplify the analysis,lk,mis modeled by Free-Space path loss model [16],i.e.,whereGlis the product of the transmit and receive antenna field radiation patterns in the line-of-sight(LOS) direction, λ is the signal wavelength anddk,mis the distance between them-th UE in thek-th UE group and eNB.gk,mis modeled as zero-mean, independent and circularly-symmetric complex Gaussian random variables with variance μ. The probability density function (PDF)is

    3.2 Uplink power control for NOMA

    The difference betweenpk,mandpk,1can be expressed in watt by

    PLk,mis modeled by Free-Space path loss model, and[18].Therefore, from (10),pk,mis given by

    Wherem= 2,…,Mk.

    3.3 Joint UE paring and power allocation for the coexisting RA

    Fig. 3 illustrates a two-UE uplink NOMA system and gives the specific signal detecting process of SIC receiver.

    Assuming each UE has its QoS requirement guaranteed by a minimum required data rate, which is denoted asOur design of UE paring and power allocation is based on providing QoS guarantees that each UE meets the corresponding rate requirement, i.e.,Substitutingandinto (15) andwe can get

    Wherem= 1, 2,…,Mk-1.

    Fig. 3 Illustration of a two-UE uplink NOMA system

    Algorithm 1 Joint UE Paring and Power Allocation for the coexisting RA

    Wherem= 1, 2,…,Mk-1.

    IfMkincreases, the implementation complexity of SIC in uplink NOMA and the error propagation (EP) would be increase [19]. In order to keep the receiver complexity comparatively low, we consider the simple case where only two UEs can be allocated on the same subchannel. SubstitutingMk= 2 into (18) and(19), we can get

    We focus on the following factors when proposing a joint UE paring and power allocation algorithm.

    a) The order of SIC in NOMA is usually based on the descending order of the Rayleigh fading coefficient in (14).

    b) The UEs can be paired together if the channel conditions of the UEs belong to the condition of (12), which satisfies the transmission power constraints of each multiplexing UEs.

    c) The UEs can be paired together if the channel conditions of the UEs belong to the condition of (20), which satisfies the data rate constraint of each multiplexing UE.

    Assuming there areNmactive M2M UEs for UE paring. The number of RBs allocated to thei-th subchannel isThe noise power on thei-th subchannel at eNB isThe target arrived power of the group center UE on thei-th subchannel ispi,u=pu. DefineX(Y) as theY-th element ofX. We consider the wireless channels are independent and identically distributed (i.i.d.) block Rayleigh fading,which means the fading channel gain is constant during a frame. Assuming that perfect channel state information (CSI) is available at eNB for each frame [20,21]. eNB can use the CSI for UE pairing and power allocation.Then eNB broadcasts the result of UE pairing and power allocation to UEs through downlink channel. The joint UE paring and power allocation for the coexisting RA consists of two phases as follows:

    IV. SIMULATION RESULTS

    In this section, simulations are conducted to illustrate and verify the performance of the number of successful data packet transmissions for the proposed RA and resource allocation scheme for the coexistence of NOMA-based and OMA-based M2M communications. To show the gain of the proposed scheme, the performance of OMA-based RA is also addressed. In the simulation,w=1,Gl=1,andλ=v/fc, wherevis the speed of light andfc= 2GHz. Two types of M2M services exist,each with the different target data rate and maximum uplink transmission power. The simulation parameters are given in Table I.

    Denote the largest arrived SNR asL_SNR,and(dB), where the unit ofpuandis watt.

    Table II shows the comparison of the number of successful data packet transmissions contributed by NOMA-based RA, OMA-based RA and the coexisting RA with different number of active UEs, respectively. According to the resource allocation for the coexisting RA in Section II, the ACB parameter isR=1.According to the UE paring and power allocation for the coexisting RA,u1andu2are determined. Sinceu1is the expected number of UE groups selecting the specified preamble. eNBwill scheduleu1subchannels for UE groups,therefore,. With the increase ofNm,significantly exceeds. This is because NOMA can use spectrum more efficiently by opportunistically exploring UE’ channel conditions.andcontribute toBs.

    Table I Simulation parameters

    Table II Comparison of, Bs with different Nm

    Table II Comparison of, Bs with different Nm

    ?

    Fig. 4 The comparison of the number of successful data packet transmissions between theoretical and simulation results for the coexisting RA

    Fig. 4 presents the comparison of the number of successful data packet transmissions between theoretical and simulation results for the coexisting RA in a random RA cycle.We can see the rising trend of the number of successful data packet transmissions with the increased number of active UEs in a random RA cycle. In addition, the theoretical results also match the simulation results well.

    Fig. 5 The comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA

    Fig. 6 The comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA with different κ and

    Fig. 5 illustrates the comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA in a random RA cycle.We can see the number of successful data packet transmissions of the coexisting RA significantly outperforms the number of successful data packet transmissions of OMA-based RA. In addition, the average number of successful data packet transmissions of the coexisting RA of multiple RA cycles is presented in the figure. The number of successful data packet transmissions in a random RA cycle changes around the average result.

    To better illustrate the performance of the coexisting RA, Figs. 6-8 are simulated based on the average number of successful data packet transmissions of multiple RA cycles.

    Fig. 6 shows thecomparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA with differentκand. We can see that if, the number of successful data packet transmissions forκ=24,36,48 closes to each other. While ifκ=24, with the increase of,the number of successful data packet transmissions decreases.That is because more RBs are needed for transmitting a data packet whenincreases.This proves that the value ofhas more effect than the value ofκin the coexisting RA. Furthermore, with the increased number of active UEs, the number of successful data packet transmissions of coexisting RA significantly outperforms the number of successful data packet transmissions of OMA-based RA with differentκand.

    Fig. 7 presents the comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA with different target data rate. As expected,lower target data rate results in more number of successful data packet transmissions as it is more likely to be satisfied. With the increased number of active UEs, the number of successful data packet transmissions of the coexisting RA significantly increases, and exceeds the number of successful data packet transmissions of OMA-based RA with different target data rate. That is because NOMA can utilize resource more efficiently by opportunistically exploring UE’ channel conditions.

    Fig. 8 shows the comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA with different largest arrived SNR. With the increase ofNm, the number of successful data packet transmissions sharply increases with the increase of largest arrived SNR until it reaches a certain saturation point. The value of largest arrived SNR corresponding to the saturation point is optimal, since the number of successful data packet transmissions keeps constant even when the largest arrived SNR exceeds the optimal value. Furthermore,with the increase ofNm, the gap between the coexisting RA and OMA-based RA sharply increases with the increase of largest arrived SNR until it keeps constant.

    V. CONCLUSIONS

    This paper studies a novel RA and resource allocation scheme for the coexistence of NOMA-based and OMA-based M2M communications. The joint UE paring and power allocation algorithm for the coexisting RA is proposed, by which the number of UEs for NOMA-based RA and OMA-based RA are determined. The eNB dynamically changes the resource allocation between NOMA-based RA and OMA-based RA, as well as the resource allocation between PRACH and PUSCH according to the number of UEs for NOMA-based RA and OMA-based RA. Simulation results show the number of successful data packet transmissions is significantly improved by the coexisting RA than OMA-based RA. Therefore, the coexisting RA and resource allocation scheme in this paper provides an important insight for future M2M communications.

    ACKNOWLEDGEMENTS

    Fig. 7 The comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA with different target data rate

    Fig. 8 The comparison of the number of successful data packet transmissions between the coexisting RA and OMA-based RA with different largest arrived SNR

    This work was supported by the National Natural Science Foundation of China (61501056),National Science and Technology Major Project of China (No. 2016ZX03001012), and the Research Fund of ZTE Corporation.

    [1] 3GPP TR 37.868, V11.0.0, “Study on RAN improvements for machine-type communications,”O(jiān)ct. 2011.

    [2] A. Osseiran, J. F. Monserrat, P. Marsch, 5G Mobile and Wireless Communications Technology.Cambridge University Press, 2016.

    [3] The 5G Infrastructure Public Private Partnership,“5G PPP Use Cases and Performance Evaluation Models,” Apr. 25, 2016.

    [4] M. Lvesque, F. Aurzada, M. Maier,et al., “Coexistence Analysis of H2H and M2M Traffic in FiWi Smart Grid Communications Infrastructures Based on Multi-Tier Business Models,” IEEE Trans.Commun., vol, 62, no. 11, pp. 3931-3941, 2014.

    [5] W. Li, Q. Du, L. Liu,et al., “Dynamic Allocation of RACH Resource for Clustered M2M Communications in LTE Networks,” International Conference on Identification, Information, and Knowledge in the Internet of Things, pp. 140-145, 2015.

    [6] Y. Pang, G. Lin, H. Wei, “Context-Aware Dynamic Resource Allocation for Cellular M2M Communications,” IEEE Internet of Things, vol. 3, no. 3,pp. 318-326, 2016.

    [7] C. Oh, D. Hwang, T. Lee, “Joint Access Control and Resource Allocation for Concurrent and Massive Access of M2M Devices,” IEEE Trans.Wireless Commun., vol. 14, no. 8, pp. 4182-4192, 2015.

    [8] N. Zhang, G. Kang, J. Wang,et al., “Resource Allocation in a New Random Access for M2M Communications,” IEEE Commun. Lett., vol.19,no. 5, pp. 843-846, 2015.

    [9] H. Li, H. Liu, “An analysis of uplink OFDMA optimality,” IEEE Trans. Wireless Commun., vol. 6,no. 8, pp. 2972–2983, 2007.

    [10] X. Li, Y. Shi, X. Wang,et al., “Efficient link scheduling with joint power control and successive interference cancellation in wireless networks,”SCIENCE CHINA Information Sciences, vol. 59,no. 12, pp. 1-15, 2016.

    [11] N. Wang, S. Gong, Z. Fei,et al., “A QoE-based jointly subcarrier and power allocation for multiuser multiservice networks,” SCIENCE CHINA Information Sciences, vol. 59, no. 12, pp. 1-13,2016.

    [12] Z. Wei, J. Yuan, D. Ng,et al., “A survey of downlink non-orthogonal multiple access for 5g wireless communication networks,” ZTE Communications, vol. 14, no. 4, pp. 17-25, 2016.

    [13] Y. Yuan, X. Zhao, “5G: vision, scenarios and enabling technologies,” ZTE Communications, vol.13, no. 1, pp. 3-10, 2015.

    [14] X. Chen, A. Benjebbour, A. Li, “Multi-User proportional fair scheduling for uplink non-orthogonal multiple access (NOMA),” IEEE VTC Spring,pp. 1-5, 2014.

    [15] 3GPP TR 36.211, V12.2.0, “Evolved universal terrestrial radio access (E-UTRA): Physical channels and modulation,” Jun. 2014.

    [16] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge Univ. Press, 2005.

    [17] N. Zhang, J. Wang, G. Kang,et al., “Uplink Nonorthogonal Multiple Access in 5G Systems,” IEEE Commun. Lett., vol. 20, no. 3, pp. 458-461, 2016.

    [18] 3GPP TR 36.213, V10.12.0, “Physical layer procedures,” Sep. 2015.

    [19] A. Benjebbour, Y. Saito, Y. Kishiyama,et al.,“Concept and practical considerations of nonorthogonal multiple access (NOMA) for future radio access,” IEEE Intell. Signal Process. Commun. Syst., pp. 770–774, 2013.

    [20] X. Ge, J. Chen, C. Wang,et al., “5G green cellular networks considering power allocation schemes,” SCIENCE CHINA Information Sciences, vol. 59, no. 2, pp. 1-14, 2016.

    [21] W. Han, Y. Zhang, X. Wang,et al., “Orthogonal Power Division Multiple Access: A Green Communication Perspective,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp.3828-3842, 2016.

    久久青草综合色| 欧美精品一区二区大全| 亚洲av电影在线进入| 天天影视国产精品| 九色亚洲精品在线播放| 婷婷丁香在线五月| 亚洲国产欧美一区二区综合| 久久精品aⅴ一区二区三区四区| 国产亚洲av高清不卡| 久久久国产一区二区| 91精品三级在线观看| 国产深夜福利视频在线观看| 国产片特级美女逼逼视频| 国产片内射在线| 在线看a的网站| 在线观看免费视频网站a站| 亚洲专区中文字幕在线| 亚洲精品在线美女| 久久av网站| 国产精品久久久久久人妻精品电影 | 欧美大码av| www日本在线高清视频| 亚洲av成人不卡在线观看播放网 | 男女边摸边吃奶| 少妇人妻久久综合中文| 精品国产国语对白av| a 毛片基地| 欧美日韩视频高清一区二区三区二| 亚洲一码二码三码区别大吗| 久久久精品免费免费高清| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品久久久久久婷婷小说| 在线天堂中文资源库| 日韩欧美一区视频在线观看| 久久精品人人爽人人爽视色| 两人在一起打扑克的视频| 午夜福利视频精品| 蜜桃国产av成人99| 国产三级黄色录像| 视频区图区小说| 久久99热这里只频精品6学生| 欧美日韩av久久| 免费少妇av软件| 视频区欧美日本亚洲| 日本午夜av视频| 成人三级做爰电影| 美国免费a级毛片| 亚洲成人手机| xxxhd国产人妻xxx| 中文字幕人妻熟女乱码| 永久免费av网站大全| 嫩草影视91久久| 老司机亚洲免费影院| 日本vs欧美在线观看视频| 人成视频在线观看免费观看| 日韩熟女老妇一区二区性免费视频| videos熟女内射| 一区二区三区乱码不卡18| 亚洲情色 制服丝袜| 一本色道久久久久久精品综合| 亚洲国产av影院在线观看| 美女主播在线视频| 欧美日韩视频高清一区二区三区二| 中文字幕av电影在线播放| 高清不卡的av网站| 美国免费a级毛片| 十八禁高潮呻吟视频| av有码第一页| 一本—道久久a久久精品蜜桃钙片| 热re99久久国产66热| 99久久人妻综合| 大香蕉久久网| 少妇人妻久久综合中文| 亚洲国产精品成人久久小说| 成人午夜精彩视频在线观看| 久久99一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 操出白浆在线播放| 亚洲天堂av无毛| 久久精品久久精品一区二区三区| 国产高清视频在线播放一区 | 高清黄色对白视频在线免费看| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 在线观看免费高清a一片| 男女边吃奶边做爰视频| 中文字幕最新亚洲高清| 国产黄色视频一区二区在线观看| av视频免费观看在线观看| 日韩av在线免费看完整版不卡| 国产精品免费大片| 国产一级毛片在线| 色94色欧美一区二区| 少妇人妻久久综合中文| 国产精品一区二区精品视频观看| 欧美老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕| av一本久久久久| av不卡在线播放| 每晚都被弄得嗷嗷叫到高潮| 男人添女人高潮全过程视频| 国产日韩欧美在线精品| 精品人妻在线不人妻| 麻豆av在线久日| 亚洲国产精品一区三区| 韩国精品一区二区三区| 欧美在线一区亚洲| 精品一区二区三区av网在线观看 | 大香蕉久久成人网| 午夜久久久在线观看| 国产精品久久久久成人av| 2021少妇久久久久久久久久久| 一区二区三区激情视频| 亚洲精品国产av蜜桃| 男女床上黄色一级片免费看| 国产成人91sexporn| 精品国产国语对白av| 国产在线观看jvid| 欧美少妇被猛烈插入视频| 999久久久国产精品视频| 夜夜骑夜夜射夜夜干| 国产片特级美女逼逼视频| 亚洲中文日韩欧美视频| 男女午夜视频在线观看| 一区二区三区精品91| 国产av国产精品国产| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 涩涩av久久男人的天堂| 国产成人影院久久av| 一级毛片女人18水好多 | 久久天躁狠狠躁夜夜2o2o | 国产欧美日韩精品亚洲av| 又大又黄又爽视频免费| 五月天丁香电影| 一区福利在线观看| 国产极品粉嫩免费观看在线| 水蜜桃什么品种好| 看免费成人av毛片| 2018国产大陆天天弄谢| 激情视频va一区二区三区| 国产欧美亚洲国产| 欧美日韩亚洲国产一区二区在线观看 | 国产野战对白在线观看| 大香蕉久久成人网| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 在线看a的网站| 制服人妻中文乱码| 新久久久久国产一级毛片| 母亲3免费完整高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 黄色一级大片看看| 久久久精品94久久精品| 久久久久久久国产电影| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 久久中文字幕一级| 午夜免费鲁丝| 国产淫语在线视频| 久9热在线精品视频| 一本综合久久免费| 久久久欧美国产精品| 久久九九热精品免费| 我的亚洲天堂| 日韩电影二区| 观看av在线不卡| 一本大道久久a久久精品| 国产又色又爽无遮挡免| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 中文字幕人妻丝袜一区二区| 一边亲一边摸免费视频| 黄网站色视频无遮挡免费观看| 欧美人与善性xxx| 国产成人91sexporn| 热99国产精品久久久久久7| kizo精华| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 可以免费在线观看a视频的电影网站| 亚洲午夜精品一区,二区,三区| 宅男免费午夜| 精品一区二区三区四区五区乱码 | 大香蕉久久网| √禁漫天堂资源中文www| 国产高清视频在线播放一区 | 成人国产av品久久久| 丰满迷人的少妇在线观看| 伊人久久大香线蕉亚洲五| 天天操日日干夜夜撸| 制服人妻中文乱码| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 9191精品国产免费久久| 在线精品无人区一区二区三| 午夜久久久在线观看| 国产欧美日韩一区二区三区在线| 一级片免费观看大全| 国产免费视频播放在线视频| 尾随美女入室| 国产亚洲午夜精品一区二区久久| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 丝袜脚勾引网站| 19禁男女啪啪无遮挡网站| av网站在线播放免费| 国产一级毛片在线| av网站免费在线观看视频| 日日摸夜夜添夜夜爱| 天天影视国产精品| 老司机午夜十八禁免费视频| 超碰97精品在线观看| 国产av精品麻豆| 国产高清国产精品国产三级| 日韩视频在线欧美| 视频区图区小说| 一级a爱视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 又粗又硬又长又爽又黄的视频| 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 大码成人一级视频| 亚洲伊人色综图| 国产成人影院久久av| 一本综合久久免费| 午夜福利免费观看在线| 久久青草综合色| 日韩电影二区| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 成年美女黄网站色视频大全免费| 黄片播放在线免费| 精品一区二区三卡| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 亚洲人成77777在线视频| 国产一区二区 视频在线| 亚洲成人免费av在线播放| 中文欧美无线码| 亚洲欧美一区二区三区久久| 国产精品二区激情视频| 欧美大码av| 国产精品久久久av美女十八| 国产一区二区在线观看av| 久久久精品区二区三区| 亚洲国产欧美一区二区综合| 五月天丁香电影| 看免费成人av毛片| 久久ye,这里只有精品| 精品人妻一区二区三区麻豆| 久9热在线精品视频| 欧美精品亚洲一区二区| 国产成人精品无人区| 中文字幕高清在线视频| 宅男免费午夜| 国产视频首页在线观看| 国产xxxxx性猛交| 亚洲人成电影免费在线| 亚洲精品中文字幕在线视频| 国产黄色免费在线视频| av天堂久久9| 热99国产精品久久久久久7| 日韩大片免费观看网站| 日韩大片免费观看网站| 黑人欧美特级aaaaaa片| 下体分泌物呈黄色| 久久毛片免费看一区二区三区| 青草久久国产| 中文字幕av电影在线播放| 伊人久久大香线蕉亚洲五| 91精品三级在线观看| 99国产精品一区二区蜜桃av | 黄频高清免费视频| 男人操女人黄网站| 一级毛片女人18水好多 | 永久免费av网站大全| 日本av手机在线免费观看| 久久国产精品男人的天堂亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频一区二区在线看| 日本a在线网址| 美女福利国产在线| 啦啦啦 在线观看视频| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 久久这里只有精品19| 丝袜在线中文字幕| 免费观看a级毛片全部| 丝袜脚勾引网站| 免费观看人在逋| 精品高清国产在线一区| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 黄色一级大片看看| 中文字幕av电影在线播放| 亚洲第一青青草原| 久久热在线av| 1024香蕉在线观看| 欧美精品av麻豆av| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 国产片内射在线| 久久狼人影院| 亚洲国产中文字幕在线视频| 久久狼人影院| 美女扒开内裤让男人捅视频| 成年动漫av网址| 成年女人毛片免费观看观看9 | xxxhd国产人妻xxx| kizo精华| 国产精品免费大片| 一区二区日韩欧美中文字幕| svipshipincom国产片| 亚洲第一av免费看| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 老司机午夜十八禁免费视频| 新久久久久国产一级毛片| 国产成人av教育| 欧美日韩亚洲高清精品| 91国产中文字幕| 国产视频一区二区在线看| 老鸭窝网址在线观看| 女性被躁到高潮视频| 香蕉丝袜av| 国精品久久久久久国模美| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 亚洲第一av免费看| 2018国产大陆天天弄谢| 国产xxxxx性猛交| 成人国语在线视频| 国产一区有黄有色的免费视频| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 欧美成狂野欧美在线观看| 侵犯人妻中文字幕一二三四区| 男女免费视频国产| 老司机在亚洲福利影院| 日韩av不卡免费在线播放| 亚洲自偷自拍图片 自拍| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 人妻一区二区av| 男女国产视频网站| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 人妻一区二区av| 男女国产视频网站| 午夜免费男女啪啪视频观看| √禁漫天堂资源中文www| 在线观看免费视频网站a站| 高清av免费在线| 无遮挡黄片免费观看| 午夜老司机福利片| 在线观看人妻少妇| e午夜精品久久久久久久| 精品人妻一区二区三区麻豆| 日本vs欧美在线观看视频| 午夜免费成人在线视频| 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av| 2018国产大陆天天弄谢| 成年动漫av网址| 午夜久久久在线观看| 成年动漫av网址| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 男女国产视频网站| 蜜桃在线观看..| 国产日韩一区二区三区精品不卡| 国产不卡av网站在线观看| 搡老乐熟女国产| 国产av一区二区精品久久| 久久久精品94久久精品| 另类亚洲欧美激情| 91老司机精品| 一二三四社区在线视频社区8| 欧美大码av| 亚洲av美国av| 在线观看免费高清a一片| 九草在线视频观看| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看| 校园人妻丝袜中文字幕| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 人体艺术视频欧美日本| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 在线 av 中文字幕| 母亲3免费完整高清在线观看| 亚洲午夜精品一区,二区,三区| 在线看a的网站| 97人妻天天添夜夜摸| 婷婷色麻豆天堂久久| 少妇 在线观看| 国产精品成人在线| 男人舔女人的私密视频| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| 亚洲综合色网址| avwww免费| 国产视频首页在线观看| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 欧美日韩综合久久久久久| 欧美乱码精品一区二区三区| 国产福利在线免费观看视频| 国产亚洲av高清不卡| 亚洲色图 男人天堂 中文字幕| 国产一级毛片在线| 国产成人av教育| 久久久国产欧美日韩av| 亚洲欧洲日产国产| 宅男免费午夜| 午夜福利视频精品| 国产有黄有色有爽视频| 女性被躁到高潮视频| 亚洲精品自拍成人| 亚洲成人免费电影在线观看 | 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲 | 欧美激情极品国产一区二区三区| 99久久综合免费| 中文字幕人妻丝袜制服| 侵犯人妻中文字幕一二三四区| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 精品国产一区二区久久| 青春草视频在线免费观看| 国产成人啪精品午夜网站| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 欧美激情 高清一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产三级黄色录像| 老司机亚洲免费影院| 18在线观看网站| 女人被躁到高潮嗷嗷叫费观| 18禁裸乳无遮挡动漫免费视频| 日韩视频在线欧美| 国产人伦9x9x在线观看| 女性生殖器流出的白浆| 五月天丁香电影| 国产精品 国内视频| 超碰97精品在线观看| 欧美日韩福利视频一区二区| 波多野结衣av一区二区av| 黑人猛操日本美女一级片| 亚洲久久久国产精品| 99久久99久久久精品蜜桃| 国产成人精品无人区| 久久久精品区二区三区| 丝袜人妻中文字幕| 一级黄片播放器| 欧美日韩一级在线毛片| 亚洲欧美色中文字幕在线| 国产片内射在线| 欧美激情极品国产一区二区三区| 丰满少妇做爰视频| 精品福利永久在线观看| 悠悠久久av| 国产97色在线日韩免费| 蜜桃在线观看..| 午夜福利视频精品| 51午夜福利影视在线观看| 国产视频一区二区在线看| 女警被强在线播放| avwww免费| xxxhd国产人妻xxx| 51午夜福利影视在线观看| 国产精品国产三级国产专区5o| 麻豆国产av国片精品| 午夜福利视频在线观看免费| 欧美大码av| 久久女婷五月综合色啪小说| 午夜激情av网站| 久9热在线精品视频| av在线老鸭窝| 成人影院久久| 夫妻性生交免费视频一级片| 国产片特级美女逼逼视频| 这个男人来自地球电影免费观看| 中文字幕亚洲精品专区| 一级毛片 在线播放| 亚洲精品久久成人aⅴ小说| 高潮久久久久久久久久久不卡| 人人妻人人澡人人爽人人夜夜| 99国产精品一区二区三区| 青草久久国产| 欧美精品高潮呻吟av久久| 丰满迷人的少妇在线观看| 久久国产精品大桥未久av| 一级a爱视频在线免费观看| 又大又黄又爽视频免费| 亚洲av欧美aⅴ国产| 亚洲成人免费电影在线观看 | av欧美777| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 狂野欧美激情性bbbbbb| 国产麻豆69| 国产午夜精品一二区理论片| 中文字幕av电影在线播放| 男女下面插进去视频免费观看| 天堂俺去俺来也www色官网| e午夜精品久久久久久久| 国产一卡二卡三卡精品| 色播在线永久视频| 中国美女看黄片| www.自偷自拍.com| 久久久久精品国产欧美久久久 | 亚洲欧美精品自产自拍| 亚洲三区欧美一区| 桃花免费在线播放| 午夜福利,免费看| 一本大道久久a久久精品| 国产精品成人在线| 亚洲第一av免费看| 国产av国产精品国产| 51午夜福利影视在线观看| 欧美日韩黄片免| av又黄又爽大尺度在线免费看| 久久亚洲国产成人精品v| 大片免费播放器 马上看| cao死你这个sao货| 亚洲专区中文字幕在线| www.熟女人妻精品国产| 国产av精品麻豆| 性色av一级| 国产精品亚洲av一区麻豆| 一本一本久久a久久精品综合妖精| 久久精品国产综合久久久| 亚洲一区二区三区欧美精品| 极品少妇高潮喷水抽搐| 国产高清videossex| 欧美日韩综合久久久久久| 久久国产精品影院| 久久久久久亚洲精品国产蜜桃av| 少妇被粗大的猛进出69影院| 91九色精品人成在线观看| 一区二区三区精品91| 国产成人系列免费观看| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 亚洲国产成人一精品久久久| 中文精品一卡2卡3卡4更新| 一本一本久久a久久精品综合妖精| 一本久久精品| 91国产中文字幕| 国产xxxxx性猛交| 国产1区2区3区精品| 久久精品成人免费网站| 一个人免费看片子| 黄色怎么调成土黄色| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| 高清av免费在线| 九草在线视频观看| 手机成人av网站| 黄色片一级片一级黄色片| 久久久欧美国产精品| 99九九在线精品视频| 欧美精品一区二区免费开放| 青春草视频在线免费观看| 啦啦啦在线免费观看视频4| 麻豆av在线久日| 波多野结衣av一区二区av| 国产av国产精品国产| 精品福利永久在线观看| av天堂在线播放| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美一区二区三区黑人| 三上悠亚av全集在线观看| 欧美精品av麻豆av| 精品免费久久久久久久清纯 | 欧美黄色淫秽网站| 黄色视频不卡| 国产视频一区二区在线看| 国产一区亚洲一区在线观看| 国产在线视频一区二区| 久久久久国产精品人妻一区二区| 一区二区av电影网| 深夜精品福利| 水蜜桃什么品种好| 老司机午夜十八禁免费视频| 99re6热这里在线精品视频| 日本欧美国产在线视频| 国产成人av教育| 人妻一区二区av| 免费日韩欧美在线观看| 日本一区二区免费在线视频| 久久亚洲国产成人精品v| 国产精品久久久久成人av| bbb黄色大片| 免费看不卡的av| 一本久久精品|