• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing Reliability via Checkpointing in Cloud Computing Systems

    2017-05-09 01:39:28AoZhouQiboSunJinglinLi
    China Communications 2017年7期

    Ao Zhou, Qibo Sun, Jinglin Li

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

    * The corresponding author, email: hellozhouao@gmail.com

    I. INTRODUCTION

    Due to the feature to share and multiplex resources across multiple tenants, cloud computing has gained widespread concern recently[1]. More and more applications are deployed in the cloud computing environment [2, 3].There are a large number of host servers in the cloud computing system. Therefore, the probability of failures is nontrivial based on the statistical analysis [4]. It is a critical challenge to guarantee the service reliability [5, 6].

    To tolerate the node failure, the replication technique and the checkpoint technique are extensively adopted in the cloud computing system to enhance the service reliability [7, 8].

    [9, 10] propose replication-based methods to tolerate failures. In [9], there are is one replica for each primary virtual machine. The primary virtual machine and its replica are grouped together to form a survival group.The method guarantees robustness of service when at least one virtual machine in a survival group works well. An efficient heuristic optimization algorithm is presented to solve the virtual machine placement problem. In [10],the data replication technique is employed to tolerate the data corruption. The problem is formulated as an integer linear programming problem. To solve the problem in polynomial time, the problem is transformed to a minimum-cost maximum- flow problem.

    Checkpoint mechanism saves the execution state of the virtual machine as a checkpoint image periodically during failure-free execution [11, 12]. When a failure event occurs,the previously saved checkpoint image can be used to restart the virtual machine from an intermediate state. Therefore, the amount of lost computation is reduced [13]. When the checkpoint mechanism is adopted, the checkpoint image should be transferred to the storage server periodically. The checkpoint traffic may congest the data center network. To address this problem, delta-checkpoint method is proposed to reduce the datacenter network resource consumption [14]. However, the root layer is the bottleneck of the datacenter network. When the checkpoint image is stored in the central database, the root layer network would become even more congested. Therefore, a distributed delta-checkpoint method is proposed by [15, 16]. The delta-checkpoint method stores the checkpoint images on a neighboring host server of the service providing host server. The checkpoint image transfer only consumes the edge layer network resource and the aggregation layer network resource. However, the switches are also unreliable [17]. Although network redundancy in the root layer and the aggregation layer helps to mask the switches failures from the service,there is no redundancy in the edge layer. Each host server only connects to one edge switch.The checkpoint image may become inaccessible because of the failure of the edge switches.

    Therefore, this paper addresses the problem and proposes an optimal checkpoint-based method with edge switch failure-aware (EDCKP). The contribution of this paper is twofold:

    (1) We propose a checkpoint-based method to tolerate the host server failure and the edge switch failure. Considering the two types of failures and fat-tree data center topology, the main goal of EDCKP is to ensure the service reliability and minimize the data center network resource consumption.

    (2) We provide extensive experiments to evaluate the effectiveness of EDCKP and study the impact of parameters on the reliability of cloud services. The experiment results demonstrate the effectiveness of our EDCKP.

    The remainder of this paper is organized as follows: Section 2 introduces the related work.Section 3 presents the system model and gives some de finitions that will be used throughout this paper. Section 4 presents our optimal checkpoint-based method. Section 5 evaluates the performance of the proposed method. Finally, Section 6 concludes the paper.

    In this paper, the authors propose EDCKP,a checkpoint-based fault tolerance method for service reliability enhancement in cloud computing system.

    II. RELATED WORK

    The techniques of checkpoint and replication have been extensively employed to tolerate failures in cloud computing systems [18].

    [12, 19] employ checkpoint or replication to tolerate out-of-bid failure. The application provider should bid for the virtual machines in dynamic virtual machine pricing model. Out of bid event occurs when the bid of an application provider is lower than the final price of a virtual machine [20, 21]. Then, the virtual machine is stopped and the physical resource is released. The application providing is interrupted, and the service reliability cannot be ensured. To address the problem, checkpoint interface is provided by the virtual resource provider. The application provider can decide when to take a checkpoint for the obtained virtual machine. To eliminate the effects of outof-bid and reduce the lost computation, [12]takes a checkpoint image when the price rises.To minimize the overhead of checkpoint, [19]attempts to skip unnecessary checkpoint taking. The proposed method skips a checkpoint taking when there is a high chance that the application provider can win current bid. Otherwise, a checkpoint is taken immediately.

    In cloud data center, the hardware or software failures can results in the unavailability of virtual machines. Fault-tolerance mechanism should be employed to enhance the service reliability.

    [22, 23] propose replication-based methods to tolerate failures. To improve the system reliability and reduce the communication cost,a structure constraint-aware virtual machine placement algorithm is presented in [24]. The problem is formulated as an optimization problem and a four approximation algorithms is proposed to solve the problem. In [9], there is one replica for each primary virtual machine. The primary virtual machine and its replica are grouped together to form a survival group. The method guarantees robustness of service when at least one virtual machine in a survival group works well. An efficient heuristic optimization algorithm is presented to solve the virtual machine placement problem. In [10], the data replication technique is employed to tolerate the data corruption. The problem is formulated as an integer linear programming problem. To solve the problem in polynomial time, the problem is transformed to a minimum-cost maximum-flow problem.[22] proposes a k-fault tolerance virtual machine placement method. Two problems are considered in virtual machine placement. The first problem is how to minimize the required physical servers for satisfying the required response time of the applications. The second problem is how to ensure that the required response time is still satis fied at any k physical server failures. First-fit strategy is extended to solve the k fault tolerance virtual machine placement problem. [23] attempts to study how to improve the reliability of multi-tier applications in cloud computing environment.Both the overhead of reliability enhancement strategy and the data transfer cost are consideration. The problem is formulated as a virtual network embedding and a heuristic algorithm is presented to solve the problem. Similar to[23], [25] attempts to achieve a trade-off between service reliability and network resource consumption for multi-tenant cloud computing.

    [14, 16] propose checkpoint-based methods to tolerate failures. To avoid the checkpoint traffic congesting the datacenter network,delta-checkpoint mechanism is proposed by[14] to save the datacenter network resource consumption. The datacenter network adopts a fat-tree topology. When the checkpoint image is stored in the central database, the root layer switches, which are the bottleneck of the datacenter network, may become congested. To address the problem, the distributed delta-checkpoint method is proposed [15].However, the switches are also unreliable. Different from the root layer and the aggregation layer, there is no redundancy in the edge layer.In the distributed delta-checkpoint method, the checkpoint image may become inaccessible when an edge switch fails. We will attack the challenge in this paper.

    III. SYSTEM MODEL AND MOTIVATION

    3.1 System model

    We consider a data center adopting a fat-tree topology [26]. Fig. 1 illustrates the fat-tree data center network. A fat-tree data center network consists of three layers: the root layer,the aggregation layer, and the edge layer. The host servers that share the same edge switch are referred to as “in the same subnet”. The host servers that share the same aggregation switches are referred to as “in the same pod”.Different from the root layer and the aggregation layer, there is no redundancy in the edge layer. The host servers connect to the network through the edge switches.

    Similar to the method proposed in [15],distributed delta-checkpoint is employed to tolerate the failures. The checkpoint image is stored in the neighboring server to avoid congesting the upper layer switches. The current state (e.g., the base system, and the RAM disk content) of the virtual machine is saved as a checkpoint image periodically. There are two types of checkpoint image: system checkpoint image and delta checkpoint image. The first checkpoint image taken for a virtual machine is named system checkpoint image. Once the system checkpoint is done, the remaining checkpoint images only contain the modi fied page compared with the last checkpoint. Fig. 2 illustrates the delta-checkpoint method.

    Fig. 1 Fat-tree data center network

    3.2 Motivation

    We begin by using a motivating example to show the research problem of this paper.

    Application providers [27, 28] implement and deploy their own applications on cloud.There are a large number of host servers in the cloud computing system. Therefore, the probability of failures is nontrivial based on the statistical analysis. To enhance the service reliability, checkpoint is employed to tolerate the node failure in a cloud data center. Traditionally, the checkpoint image is stored in the central database. As the bottleneck of the datacenter network, the root layer switches may get congested. Therefore, a distributed delta-checkpoint method is proposed. In the distributed delta-checkpoint method, the checkpoint image is stored in the neighboring servers. The method attempts to store the checkpoint image a server which is in the same subnet with the checkpoint image generation server. Hence, the method can avoid using the root layer data center network resource.However, the switches are also unreliable.Although network redundancy helps to mask the switches failures from the service, there is no redundancy in the edge layer. As shown in Fig.1, each host server only connect to one edge switch [29]. When the service providing server and its corresponding checkpoint image storage server are in the same subnet, current execution task should be restarted from the beginning once the connected edge switch fails.We would address the problem and select the optimal checkpoint image storage server for each service providing virtual machine.

    There is another problem we should confront in this paper: how to select the recovery server when a failure event has occurred.When a host server fails or an edge switch that connects to a service providing server fails, the system checkpoint image and the delta checkpoint image are merged to a complete checkpoint image before restarting the interrupted virtual machine. We need to select an optimal host server and restart the interrupted virtual machine based on the merged checkpoint image. Therefore, the problem is divided into two sub-problems: edge switch failure-aware storage server selection, and recovery server selection. Different from [15], we will take both the server failure and the edge failure into consideration in checkpoint image storage server selection.

    Fig. 2 Delta-checkpoint method

    Table I Notations

    IV. PROPOSED OPTIMAL CHECKPOINTBASED METHOD

    4.1 Edge switch failure-aware storage server selection for checkpoint image

    The notations in Table 1 will be used throughout the paper. The storage server selection problem can be formulated as a multi-object optimization problem by the following:

    where the first objective is to maximize the service reliability, the second objective is to minimize the network resource consumption,1 when thei-thserver is the checkpoint image storage server,Ris the service reliability.

    Algorithm 1: Storage server selection Input: service providing server Ps, the subnet subs that Ps belongs to, the pod pods that Ps belongs to Output: checkpoint image storage server Tserver 1. initialize pmList;2. add all subnets in pods to subList;3. For{ each subi in subList}4. {5. If{ subi is subs}6. continue;7. If{ subi contains an image storage server for the service}8. continue;9. add all servers in subi to pmList;10. sort all servers in pmList by reliability dsc;11. For{ each pmi in pmList }12. {13. If{cdisk pm>=rdisk}14. {15. assign pmi to Tserver ;16. return Tserver ;17. }18. }19. }20. assign a central storage server to Tserver;21. return Tserver ;

    We design a heuristic algorithm to solve the storage server selection. The algorithm is shown in Algorithm 1. We try to select a server that is in the same pod with the service providing server. Because the delta checkpoint image should be generated and transferred periodically, we attempt to select the storage server from the same pod with the source virtual machine. Therefore, we can avoid the packet transferring through the core layer of the data center network. For all servers in the target pod, we try to select the server with the highest reliability.

    4.2 Recovery server selection

    When a host server fails or an edge switch to which a service providing server connects fails, we need to select a recovery server. The system checkpoint image and the delta checkpoint image are transferred to the recovery server and merged to create a complete checkpoint image. The virtual machine is restarted based on the complete checkpoint image. The problem can be formulated as an optimization problem by the following:

    Algorithm 2: Recovery server selection Input: subsckp that Psckp belongs to, podsckp that Psckp belongs to, subdckp that Pdckp belongs to, poddckp that Pdckp belongs to Output: recovery server Rserver 1. If{ podsckp is poddckp }2. {3. add all subnets in podsckp to subList;4. For{ each subi in subList }5. {6. If{ subi is subsckp || subi is subdckp }7. continue;8. If{there is at least one available server in subi }9. {10. select an available server with the highest reliability from subi and assign it to Rserver;11. return Rserver;12. }13. }14. }15. Else 16. {17. If{the size of the system checkpoint image is larger than the size of the delta checkpoint image}18. {19. subα= subsckp, podα= podsckp;20. subβ= subdckp, podβ= poddckp;21. }22. Else 23. {24. subα= subdckp, podα= poddckp;25. subβ= subsckp, podβ= podsckp;26. }27. add all subnets in podα to subList;28. For{ each subi in subList }29. {30. If{ subi is subα}31. continue;32. If{there is at least one available server in subi }33. {34. select an available server with the highest reliability from subi and assign it to Rserver;35. return Rserver;36. }37. }38. clear subList and add all subnets in podβ to subList;39. For{ each subi in subList }40. {41. If{ subi is subβ}42. continue;43. If{there is at least one available server in subi }44. {45. select an available server with the highest reliability from subi and assign it to Rserver;46. return Rserver ;47. }48. }49. }50. select an available server with the highest reliability from other pods and assign it to Rserver;51. return Rserver;

    where the objective is to minimize the network recovery server.

    We design a heuristic algorithm to solve the problem. The algorithm is shown in Algorithm 2. “Available server” in Algorithm 2 denotes(10)-(14) are satis fied. Because the upper layer link is easier to get congested in fat-tree data center network, we try to avoid the packet with the larger size transferring through the upper layer link. The algorithm firstly decide whether the system checkpoint image and the delta checkpoint image are stored in the same pod. If so, a server that has enough remaining resources is selected from the pod as a recovery server. Secondly, if the size of system checkpoint image is larger than the size of delta checkpoint image, a recovery server is selected from servers in the same pod with the system checkpoint image storage server.Otherwise, a recovery server is selected from servers in the same pod with the delta checkpoint image storage server.

    V. PERFORMANCE EVALUATION

    In this section, in order to study the performance of EDCKP, we conduct several experiments to compare our EDCKP with several other checkpoint-based methods.

    5.1 Simulation setup

    In our simulation experiment, a 16-port fattree data center network is constructed. The capacity of the link on the root layer and the aggregation layer is 10 Gbps. The capacity of the link on the edge layer is 1 Gbps [15]. 1000 tasks are generated. The task size is uniformly distributed in [10 hour, 20 hour]. All tasks are randomly allocated to the virtual machines that provide the given service. The checkpoint interval is 20 min. The time to take a system checkpoint image is 60s, and the time to take a delta checkpoint image is 30s. The size of the virtual machine setup image is 1.28 GB.The size of system checkpoint image is 1.78 GB. The size of the delta checkpoint image is(143*log10T-254) MB [15], and T is the checkpoint interval. The failure rate of host server is 0.05. We vary the failure rate of edge switch from 0.01 to 0.05 with a step of 0.01. To study the performance of EDCKP, we compare EDCKP with other two methods, which are as follows:

    ·NOCKP.No checkpoint-based method is employed. When a failure event occurs, the interrupted task is restarted from the beginning.

    ·NDCKP.Network topology-aware distributed delta checkpoint-based method [15]. The checkpoint image storage server is selected based on the data center network topology.Total execution time and three types of network resource consumption are employed to measure the performance of different methods.The total execution time and the three types of network resource consumption are de fined by the following:

    ·The total execution time (TET).The total time the virtual machines take to complete all the submitted tasks.TETis defined by the following:

    whereTiis a task,tstart(Ti) is the timeTiis submitted to the cloud computing system, andtend(Ti) is the timeTiis completed by the virtual machine.

    ·Root layer packet. (RLP)The size of all packets that have transferred through root layer.RLPis de fined by the following:

    wherepktiis a packet for transferring the checkpoint image or the setup image,Xiis equal to 1 ifpktihas transferred through the root layer. Otherwise,Xiis equal to 0.

    ·Aggregation layer packet. (ALP).The size of all packets that have transferred through aggregation layer.ALPis defined by the following:

    wherepktiis a packet for transferring the checkpoint image or the setup image,Yiis equal to 1 ifpktihas transferred through the aggregation layer. Otherwise,Yiis equal to 0.

    ·Edge layer packet. (ELP).The size of all packets that have transferred through edge layer.ELPis de fined by the following:

    Fig. 3 Total execution time of all methods

    Fig. 4 The size of all packets that have transferred through root layer

    wherepktiis a packet for transferring the checkpoint image or the setup image,Ziis equal to 1 ifpktihas transferred through the edge layer. Otherwise,Ziis equal to 0.

    5.1 Performance Comparison

    The simulation results are plotted in Figs. 3-6.We have the following observations:

    · EDCKP considerably reduces the total execution time with the increase of failure rate.The performance of NDCKP is even worse than NOCKP in total execution time. The reason is that NDCKP does not take the edge switch failure into consideration. The service providing server and the checkpoint image storage server are likely in the same subnet. Therefore, the network resource consumption is lower than EDCKP. However, there is no redundancy in the edge layer. Each physical server only connects to one edge switch. When the service providing server and the checkpoint image storage server are in the same subnet, the edge switch failure interrupts the service providing and results in the inaccessibility of the checkpoint image. The interrupted task needs to be restarted from the beginning.The total execution time increases quickly.In addition, much time is taken to re-generate the checkpoint images.

    · EDCKP and NDCKP consume less root layer network resource than NOCKP. Taking fat-tree topology into consideration,EDCKP and NDCKP tend to avoid storing the checkpoint image in different pods with the source virtual machine. Therefore, the checkpoint image transfer does not consume the root layer network resource. In addition, NOCKP needs to fetch the virtual machine setup image when a failure occurs.

    · EDCKP and NDCKP consume more aggregation and edge layer network resources than NOCKP. The network resource is consumed to transfer the checkpoint image.EDCKP consumes more aggregation layer network resources than NDCKP. Taking the edge switch failure into consideration, EDCKP tends to store the checkpoint image in different subnets with the service providing server. Therefore, more aggregation layer network resources are consumed.

    Therefore, among all methods achieving the highest service reliability, EDCKP consumes the least network resource.

    VI. CONCLUSION

    In this paper, we propose EDCKP, a checkpoint-based fault tolerance method for service reliability enhancement in cloud computing system. The problem is divided into two sub-problems: edge switch failure-aware storage server selection for checkpoint image and recovery server selection. Two optimal server selection algorithms have been proposed to solve the problem. The simulation results show that the proposed checkpoint-based method can efficiently ensure the service reliability and reduce the root layer network resource consumption in cloud computing systems. Our on-going research includes investigating the performance of the methods in different experimental settings and implementing the proposed EDCKP method in a real cloud computing platform.

    ACKNOWLEDGMENT

    The work presented in this study is supported by Beijing Natural Science Foundation (4174100),NSFC (61602054), and the Fundamental Research Funds for the Central Universities.

    [1] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis,and A. Vakali, “Cloud computing: distributed internet computing for IT and scienti fic research,”Internet Computing, IEEE,vol. 13, no. 5, pp. 10-13, 2009.

    [2] X. He, P. Shenoy, R. Sitaraman, and D. Irwin,“Cutting the Cost of Hosting Online Services Using Cloud Spot Markets,” presented at theThe 25th International ACM Symposium on High-Performance Parallel and Distributed Computing(HPDC), 2015.

    [3] Y. Ma, S. Wang, P. C. K. Hung, C. H. Hsu, Q. Sun,and F. Yang, “A Highly Accurate Prediction Algorithm for Unknown Web Service QoS Values,”IEEE Transactions on Services Computing,vol. 9,no. 4, pp. 511-523, 2016.

    [4] E. Bauer and R. Adams,Reliability and availability of cloud computing: John Wiley & Sons, 2012.

    [5] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King,“Component ranking for fault-tolerant cloud applications,”Services Computing, IEEE Transactions on,vol. 5, no. 4, pp. 540-550, 2012.

    [6] Y. Zhang, Z. Zheng, and M. R. Lyu, “BFTCloud:A byzantine fault tolerance framework for voluntary-resource cloud computing,” inCloud Computing (CLOUD), 2011 IEEE International Conference on, 2011, pp. 444-451.

    [7] J. Liu, S. Wang, A. Zhou, and F. Yang, “PFT-CCKP:A proactive fault tolerance mechanism for data center network,” in2015 IEEE 23rd International Symposium on Quality of Service (IWQoS), 2015,pp. 79-80.

    [8] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang,“Offloading mobile data traffic for QoS-aware service provision in vehicular cyber-physical systems,”Future Generation Computer Systems,vol. 61, pp. 118-127, 2016.

    [9] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue,“Survivable virtual infrastructure mapping in virtualized data centers,” inCloud Computing(CLOUD), 2012 IEEE 5th International Conference on, 2012, pp. 196-203.

    [10] J. Lin, C. Chen, and J. Chang, “QoS-aware data replication for data intensive applications in cloud computing systems,” 2013.

    [11] T. Knauth and C. Fetzer, “VeCycle: Recycling VM Checkpoints for Faster Migrations,” presented at theProceedings of the 16th Annual Middleware Conference, Vancouver, BC, Canada, 2015.

    [12] D. Jung, S. Chin, K. Chung, H. Yu, and J. Gil, “An eき cient checkpointing scheme using price history of spot instances in cloud computing environment,” inNetwork and Parallel Computing,ed: Springer, 2011, pp. 185-200.

    [13] B. Nicolae and F. Cappello, “BlobCR: efficient checkpoint-restart for HPC applications on IaaS clouds using virtual disk image snapshots,” presented at theProceedings of 2011 InternationalConference for High Performance Computing,Networking, Storage and Analysis, Seattle,Washington, 2011.

    Fig. 5 The size of all packets that have transferred through aggregation layer

    Fig. 6 The size of all packets that have transferred through edge layer

    [14] í. Goiri, F. Julia, J. Guitart, and J. Torres, “Checkpoint-based fault-tolerant infrastructure for virtualized service providers,” presented at theNetwork Operations and Management Symposium (NOMS), 2010 IEEE, 2010.

    [15] N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. H.Huang, and S. Subramaniam, “Providing reliability as an elastic service in cloud computing,”inCommunications (ICC), 2012 IEEE International Conference on, 2012, pp. 2912-2917.

    [16] A. Zhou, S. Wang, Z. Zheng, C. H. Hsu, M. R. Lyu,and F. Yang, “On Cloud Service Reliability Enhancement with Optimal Resource Usage,”IEEE Transactions on Cloud Computing,vol. 4, no. 4,pp. 452-466, 2016.

    [17] P. Bod, I. Menache, M. Chowdhury, P. Mani,D. A. Maltz, et al., “Surviving failures in bandwidth-constrained datacenters,” presented at theProceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication, Helsinki, Finland, 2012.

    [18] S. Wang, A. Zhou, C. H. Hsu, X. Xiao, and F.Yang, “Provision of Data-Intensive Services Through Energy- and QoS-Aware Virtual Machine Placement in National Cloud Data Centers,”IEEE Transactions on Emerging Topics in Computing,vol. 4, no. 2, pp. 290-300, 2016.

    [19] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware checkpointing and migration on Amazon cloud spot instances,”Services Computing, IEEE Transactions on,vol. 5, no. 4, pp.512-524, 2012.

    [20] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances via checkpointing in the amazon elastic compute cloud,” presented at theCloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, 2010.

    [21] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance market,” presented at theINFOCOM, 2012 Proceedings IEEE, 2012.

    [22] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine placement for fault-tolerant consolidated server clusters,” inNetwork Operations and Management Symposium(NOMS), 2010 IEEE, 2010, pp. 32-39.

    [23] M. Shen, X. Ke, F. Li, F. Li, L. Zhu, and L. Guan,“Availability-Aware Virtual Network Embedding for Multi-tier Applications in Cloud Networks,”presented at theProceedings of the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conf on Embedded Software and Systems, 2015.

    [24] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible, “Improving Performance and Availability of Services Hosted on IaaS Clouds with Structural Constraint-Aware Virtual Machine Placement,” in2011 IEEE International Conference on Services Computing, 2011, pp. 72-79.

    [25] X. Li and C. Qian, “Traきc and failure aware VM placement for multi-tenant cloud computing,”in2015 IEEE 23rd International Symposium on Quality of Service (IWQoS), 2015, pp. 41-50.

    [26] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang,R. Chang, et al., “Cloud Service Reliability Enhancement via Virtual Machine Placement Optimization,”IEEE Transactions on Services Computing,vol. PP, no. 99, pp. 1-1, 2016.

    [27] S. Wang, Z. Zheng, Z. Wu, M. R. Lyu, and F.Yang, “Reputation Measurement and Malicious Feedback Rating Prevention in Web Service Recommendation Systems,”IEEE Transactions on Services Computing,vol. 8, no. 5, pp. 755-767, 2015.

    [28] S. Wang, L. Huang, C.-H. Hsu, and F. Yang,“Collaboration reputation for trustworthy Web service selection in social networks,”Journal of Computer and System Sciences,vol. 82, no. 1,Part B, pp. 130-143, 2016.

    [29] R. N. Mysore, A. Pamboris, N. Farrington, N.Huang, P. Miri, S. Radhakrishnan, et al., “Port-Land: a scalable fault-tolerant layer 2 data center network fabric,”SIGCOMM Comput. Commun. Rev.,vol. 39, no. 4, pp. 39-50, 2009.

    国产精品女同一区二区软件| 日本午夜av视频| 亚洲第一青青草原| 成年av动漫网址| 天堂俺去俺来也www色官网| 老司机亚洲免费影院| 亚洲av免费高清在线观看| 久久 成人 亚洲| 丰满迷人的少妇在线观看| 久久人人爽av亚洲精品天堂| 国产人伦9x9x在线观看 | 丰满少妇做爰视频| 男女边吃奶边做爰视频| 美女主播在线视频| 18在线观看网站| 男女下面插进去视频免费观看| 国产免费福利视频在线观看| 久久久久久久久久人人人人人人| 久久亚洲国产成人精品v| 国产不卡av网站在线观看| 1024香蕉在线观看| 日本欧美视频一区| 国产xxxxx性猛交| 久久国产精品男人的天堂亚洲| tube8黄色片| 国产xxxxx性猛交| 国产精品香港三级国产av潘金莲 | 欧美日韩一级在线毛片| 在线观看免费日韩欧美大片| 亚洲激情五月婷婷啪啪| 久久久久久久久久久久大奶| 熟女电影av网| 日韩熟女老妇一区二区性免费视频| 老汉色av国产亚洲站长工具| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产深夜福利视频在线观看| 亚洲三区欧美一区| 久久国内精品自在自线图片| 男男h啪啪无遮挡| 啦啦啦在线免费观看视频4| 国产成人免费无遮挡视频| 午夜福利视频精品| 国产免费一区二区三区四区乱码| av国产久精品久网站免费入址| av国产久精品久网站免费入址| 99九九在线精品视频| 性色avwww在线观看| 咕卡用的链子| 黄色毛片三级朝国网站| 王馨瑶露胸无遮挡在线观看| 热re99久久国产66热| 青青草视频在线视频观看| 色哟哟·www| 久久久国产一区二区| 少妇的丰满在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲美女视频黄频| 99热国产这里只有精品6| 男人操女人黄网站| 久久精品国产自在天天线| 日本wwww免费看| 桃花免费在线播放| 免费av中文字幕在线| 夫妻午夜视频| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久久久大奶| 91午夜精品亚洲一区二区三区| 亚洲欧美精品自产自拍| 最近中文字幕2019免费版| 97在线视频观看| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区黑人 | 精品一区在线观看国产| 日韩av免费高清视频| 十分钟在线观看高清视频www| 1024视频免费在线观看| 中文字幕另类日韩欧美亚洲嫩草| 美女脱内裤让男人舔精品视频| 女人久久www免费人成看片| 久久鲁丝午夜福利片| 久久av网站| 国产又色又爽无遮挡免| 久久久精品免费免费高清| 久久久精品免费免费高清| 日韩欧美一区视频在线观看| 一级黄片播放器| 亚洲欧美中文字幕日韩二区| 亚洲精品国产av成人精品| 欧美日韩国产mv在线观看视频| 久久国产亚洲av麻豆专区| 精品第一国产精品| 国产人伦9x9x在线观看 | 香蕉精品网在线| 蜜桃国产av成人99| 欧美 亚洲 国产 日韩一| 久久精品夜色国产| 欧美日韩av久久| 日韩 亚洲 欧美在线| 侵犯人妻中文字幕一二三四区| 精品少妇一区二区三区视频日本电影 | 97在线视频观看| 久久久久视频综合| av又黄又爽大尺度在线免费看| 精品国产一区二区久久| 国产欧美日韩综合在线一区二区| 一区二区三区精品91| 99香蕉大伊视频| 国产精品亚洲av一区麻豆 | 男人操女人黄网站| 最黄视频免费看| 成人国语在线视频| 97在线视频观看| 久久韩国三级中文字幕| 国产精品免费视频内射| 99久久人妻综合| 精品视频人人做人人爽| 国产毛片在线视频| 肉色欧美久久久久久久蜜桃| 在线观看免费日韩欧美大片| av免费在线看不卡| av天堂久久9| 精品卡一卡二卡四卡免费| 少妇 在线观看| 午夜精品国产一区二区电影| 日本91视频免费播放| 国产又爽黄色视频| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| 精品福利永久在线观看| 午夜日本视频在线| 波多野结衣一区麻豆| 七月丁香在线播放| www.熟女人妻精品国产| 人人澡人人妻人| 咕卡用的链子| 亚洲欧美日韩另类电影网站| 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看| 精品国产一区二区三区四区第35| 欧美激情 高清一区二区三区| 国产有黄有色有爽视频| 91午夜精品亚洲一区二区三区| 亚洲av男天堂| 免费av中文字幕在线| 久久97久久精品| 中文乱码字字幕精品一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲图色成人| 男女无遮挡免费网站观看| 国产精品二区激情视频| 久久精品国产亚洲av高清一级| 久久99蜜桃精品久久| 成人国产av品久久久| 美女视频免费永久观看网站| 国产精品久久久久久久久免| 天天躁狠狠躁夜夜躁狠狠躁| 看免费成人av毛片| av网站免费在线观看视频| 日韩制服骚丝袜av| 国产一区二区 视频在线| 亚洲综合精品二区| 一级a爱视频在线免费观看| 自线自在国产av| 欧美在线黄色| 老司机影院毛片| 亚洲人成电影观看| 亚洲伊人久久精品综合| 国产亚洲最大av| 咕卡用的链子| 蜜桃国产av成人99| 国产又色又爽无遮挡免| 熟女电影av网| 欧美日韩成人在线一区二区| 国产成人精品婷婷| 亚洲精品久久午夜乱码| 欧美成人午夜精品| 日韩精品免费视频一区二区三区| 成人亚洲欧美一区二区av| 一区二区三区精品91| 亚洲欧洲日产国产| 国产在视频线精品| 天堂俺去俺来也www色官网| 久久婷婷青草| 叶爱在线成人免费视频播放| 69精品国产乱码久久久| 2018国产大陆天天弄谢| 亚洲,一卡二卡三卡| 一级毛片黄色毛片免费观看视频| 午夜日本视频在线| 亚洲av.av天堂| 啦啦啦在线免费观看视频4| 性色av一级| 国产毛片在线视频| 电影成人av| 中国三级夫妇交换| av卡一久久| 成年av动漫网址| 亚洲国产精品999| 中文天堂在线官网| 国产97色在线日韩免费| 在线观看免费高清a一片| 免费黄色在线免费观看| 欧美在线黄色| 熟女电影av网| 亚洲美女视频黄频| 亚洲国产精品一区三区| a级毛片黄视频| 97在线人人人人妻| 国产白丝娇喘喷水9色精品| 欧美+日韩+精品| 国产不卡av网站在线观看| 黄频高清免费视频| 成人国产av品久久久| 免费在线观看完整版高清| 亚洲av欧美aⅴ国产| 各种免费的搞黄视频| 久久国产亚洲av麻豆专区| 婷婷色av中文字幕| 午夜福利乱码中文字幕| 亚洲国产精品一区二区三区在线| 日日撸夜夜添| 色播在线永久视频| 蜜桃国产av成人99| 欧美激情 高清一区二区三区| 麻豆av在线久日| 91久久精品国产一区二区三区| 国产精品嫩草影院av在线观看| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 69精品国产乱码久久久| 国产精品女同一区二区软件| 在线免费观看不下载黄p国产| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| 免费不卡的大黄色大毛片视频在线观看| 日韩免费高清中文字幕av| 精品亚洲成a人片在线观看| 黄色配什么色好看| 亚洲美女黄色视频免费看| 91久久精品国产一区二区三区| 一级黄片播放器| 少妇被粗大的猛进出69影院| 在线看a的网站| 久久久久视频综合| 国语对白做爰xxxⅹ性视频网站| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 亚洲欧美精品自产自拍| 成人国语在线视频| 91精品伊人久久大香线蕉| 妹子高潮喷水视频| 国产不卡av网站在线观看| 日韩av在线免费看完整版不卡| 可以免费在线观看a视频的电影网站 | 青草久久国产| 国产片内射在线| 亚洲精品第二区| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 熟女少妇亚洲综合色aaa.| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 人妻人人澡人人爽人人| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| 日韩不卡一区二区三区视频在线| 中文字幕av电影在线播放| 在线观看www视频免费| 看免费成人av毛片| 最新中文字幕久久久久| 久久精品久久精品一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲第一青青草原| 两性夫妻黄色片| 综合色丁香网| 超碰97精品在线观看| 99re6热这里在线精品视频| 亚洲精品,欧美精品| 欧美日韩视频高清一区二区三区二| 欧美 日韩 精品 国产| 亚洲国产日韩一区二区| 男人操女人黄网站| 亚洲色图综合在线观看| 女的被弄到高潮叫床怎么办| 美女高潮到喷水免费观看| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频| 精品亚洲成国产av| 满18在线观看网站| 又粗又硬又长又爽又黄的视频| 九色亚洲精品在线播放| 久久久欧美国产精品| 欧美日韩成人在线一区二区| 国产综合精华液| 久久久久久久国产电影| 久久国产精品大桥未久av| 美女国产视频在线观看| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 永久网站在线| 国产一区亚洲一区在线观看| 女性被躁到高潮视频| 欧美变态另类bdsm刘玥| 午夜日本视频在线| 美女xxoo啪啪120秒动态图| 成人二区视频| 欧美最新免费一区二区三区| 成人国语在线视频| 老司机影院毛片| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 国产精品香港三级国产av潘金莲 | 老汉色∧v一级毛片| 国产高清不卡午夜福利| 大码成人一级视频| 国产精品免费视频内射| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| videossex国产| 日韩欧美一区视频在线观看| 只有这里有精品99| 啦啦啦在线免费观看视频4| 国产乱人偷精品视频| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 少妇人妻精品综合一区二区| 国产在线视频一区二区| 久久久久久伊人网av| 亚洲国产色片| 黄片小视频在线播放| av免费观看日本| 99九九在线精品视频| 久久精品aⅴ一区二区三区四区 | 亚洲av成人精品一二三区| 亚洲欧美一区二区三区久久| 午夜影院在线不卡| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 精品亚洲成国产av| 母亲3免费完整高清在线观看 | 国产一区二区 视频在线| 欧美日韩精品网址| 久久国产精品男人的天堂亚洲| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 欧美精品av麻豆av| 18禁观看日本| 国产熟女欧美一区二区| 有码 亚洲区| 亚洲精品在线美女| 大陆偷拍与自拍| 欧美精品国产亚洲| 黄网站色视频无遮挡免费观看| 亚洲成色77777| 色哟哟·www| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 国产片内射在线| 久久精品国产亚洲av天美| 亚洲欧美一区二区三区黑人 | 蜜桃在线观看..| 欧美bdsm另类| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| 日本wwww免费看| 欧美精品亚洲一区二区| 国产精品二区激情视频| 最近最新中文字幕免费大全7| 欧美精品亚洲一区二区| 黄色一级大片看看| 成年女人毛片免费观看观看9 | 999精品在线视频| 成年美女黄网站色视频大全免费| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 欧美日韩视频高清一区二区三区二| 99久久人妻综合| 国产黄色免费在线视频| 午夜日韩欧美国产| 成人午夜精彩视频在线观看| 国产熟女午夜一区二区三区| 午夜日韩欧美国产| 亚洲第一青青草原| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区国产| 捣出白浆h1v1| xxx大片免费视频| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 夫妻午夜视频| 日韩制服丝袜自拍偷拍| 男女边摸边吃奶| 大片免费播放器 马上看| 午夜影院在线不卡| 在线天堂最新版资源| 亚洲精品一二三| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 日日爽夜夜爽网站| 国产极品粉嫩免费观看在线| 在线观看免费高清a一片| 国产在线一区二区三区精| 超色免费av| 欧美人与性动交α欧美软件| 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 超碰97精品在线观看| 欧美xxⅹ黑人| 国产av国产精品国产| 国产精品国产av在线观看| 日韩制服骚丝袜av| 国产无遮挡羞羞视频在线观看| av.在线天堂| av国产精品久久久久影院| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 日韩中文字幕欧美一区二区 | 曰老女人黄片| 看十八女毛片水多多多| 多毛熟女@视频| videos熟女内射| 成人手机av| 亚洲国产精品成人久久小说| 女人久久www免费人成看片| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 视频在线观看一区二区三区| 精品久久久精品久久久| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 久久久久久免费高清国产稀缺| 大话2 男鬼变身卡| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 最近最新中文字幕大全免费视频 | 男女免费视频国产| 七月丁香在线播放| 丝袜在线中文字幕| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 国产不卡av网站在线观看| 美女国产视频在线观看| 欧美成人精品欧美一级黄| 久久免费观看电影| 欧美 亚洲 国产 日韩一| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 一区福利在线观看| 亚洲精品乱久久久久久| 香蕉精品网在线| 超色免费av| 欧美日韩av久久| 美女脱内裤让男人舔精品视频| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看| 成年女人毛片免费观看观看9 | 免费黄色在线免费观看| 亚洲av日韩在线播放| 丝袜美足系列| 欧美黄色片欧美黄色片| 男女边吃奶边做爰视频| 老女人水多毛片| 久久精品国产自在天天线| 97精品久久久久久久久久精品| 免费女性裸体啪啪无遮挡网站| 国产成人a∨麻豆精品| 国产成人一区二区在线| 国产精品 欧美亚洲| 日本欧美视频一区| 日本vs欧美在线观看视频| 国产一级毛片在线| 欧美日韩成人在线一区二区| av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看| 免费观看无遮挡的男女| 高清视频免费观看一区二区| 色哟哟·www| 欧美在线黄色| 成人国产av品久久久| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 欧美日韩一级在线毛片| 免费看av在线观看网站| freevideosex欧美| 亚洲精品日本国产第一区| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 国产精品二区激情视频| 精品第一国产精品| av视频免费观看在线观看| 在线观看三级黄色| 国产亚洲精品第一综合不卡| 日韩精品有码人妻一区| 国产一级毛片在线| 亚洲精品,欧美精品| 亚洲精品第二区| 久久免费观看电影| 下体分泌物呈黄色| 成年美女黄网站色视频大全免费| 一区二区三区乱码不卡18| videosex国产| 少妇猛男粗大的猛烈进出视频| 欧美+日韩+精品| 青青草视频在线视频观看| 欧美激情 高清一区二区三区| 久久热在线av| 免费看不卡的av| 欧美精品av麻豆av| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 精品人妻在线不人妻| √禁漫天堂资源中文www| 秋霞伦理黄片| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 在线观看国产h片| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 多毛熟女@视频| 少妇被粗大的猛进出69影院| 久久久精品94久久精品| 欧美精品高潮呻吟av久久| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 色吧在线观看| 亚洲国产毛片av蜜桃av| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美| 国产极品粉嫩免费观看在线| www.自偷自拍.com| 国产麻豆69| 欧美成人午夜免费资源| 极品人妻少妇av视频| 涩涩av久久男人的天堂| 可以免费在线观看a视频的电影网站 | 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| 热re99久久国产66热| 最近中文字幕2019免费版| 一本大道久久a久久精品| 免费女性裸体啪啪无遮挡网站| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版| 九色亚洲精品在线播放| 2022亚洲国产成人精品| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 日本av免费视频播放| 美女视频免费永久观看网站| av福利片在线| 女人高潮潮喷娇喘18禁视频| 一级毛片 在线播放| 国产精品久久久av美女十八| 欧美精品国产亚洲| 久久久精品免费免费高清| 国产高清国产精品国产三级| 亚洲第一青青草原| 久久久久久久精品精品| 久久精品人人爽人人爽视色| 一本久久精品| 老鸭窝网址在线观看| 久久人人爽人人片av| freevideosex欧美| 热re99久久精品国产66热6| 美女主播在线视频| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| h视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 我的亚洲天堂| 久久精品人人爽人人爽视色| 美国免费a级毛片| 男女下面插进去视频免费观看| 国产黄色视频一区二区在线观看| 亚洲精品久久久久久婷婷小说| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 岛国毛片在线播放| 精品卡一卡二卡四卡免费| 亚洲国产精品一区二区三区在线| 少妇人妻精品综合一区二区| 69精品国产乱码久久久| 伊人久久大香线蕉亚洲五| 久久久久视频综合| 18+在线观看网站| 日本av手机在线免费观看| 精品国产一区二区三区久久久樱花| 国产老妇伦熟女老妇高清| 超色免费av| 三上悠亚av全集在线观看| 色婷婷av一区二区三区视频| 久久这里有精品视频免费| 久久综合国产亚洲精品| av有码第一页| 免费日韩欧美在线观看| 日韩一本色道免费dvd| 久久精品久久久久久久性| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 在线观看三级黄色| 宅男免费午夜| 精品久久久精品久久久|