• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soft Direct-Adaptation Based Bidirectional Turbo Equalization for MIMO Underwater Acoustic Communications

    2017-05-09 01:39:45JunyiXiShefengYanLijunXuJingTian
    China Communications 2017年7期

    Junyi Xi , Shefeng Yan *, Lijun Xu , Jing Tian

    1 Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China

    2 University of Chinese Academy of Sciences, Beijing, 100190, China

    * The corresponding author, email: sfyan@ieee.org

    I. INTRODUCTION

    Multiple-Input Multiple-Output (MIMO)Underwater Acoustic (UWA) communication presents various technique challenges for robust high data-rate transmission, such as limited bandwidth, large Doppler spread,fast time-variation, severe Inter-Symbol Interference (ISI) and Co-Channel Interference(CCI) [1-3]. Those features make the UWA channel one of the most challenging channels.Therefore, efficient equalization schemes are naturally required to improve the detection performance. One of the widely used equalization schemes to combat severe ISI is the Decision Feedback Equalizer (DFE), which can be implemented in either time domain [4] or frequency domain [5, 6]. The DFE bene fits from the interference cancellation using feedback decision symbols, thereby effectively reducing error rate for UWA transmissions.

    Motivated by the turbo decoding principle,turbo equalization is another powerful technology that could achieve satisfactory performance in the complicated UWA channels[7]. Different from the traditional DFEs with one-time iteration, turbo equalizers benefit from the soft-information exchange between the equalizer and the decoder, and implement detection iteratively. The initially proposed turbo equalizer is based on the MaximumA Posteriori(MAP) criterion [8], whose computational complexity is prohibitively high in the severe ISI channel. To achieve a performance-complexity tradeoff, more practical Minimum Mean Squared Error based Linear turbo Equalizer (MMSE-LE) [9] and Decision Feedback turbo Equalizer (MMSE-DFE) [10]are proposed. However, the hard-decision based MMSE-DFE suffers from catastrophic error propagation, thus resulting in even worse performance than the MMSE-LE. One of the effective means to deal with error propagation effect is replacing the feedback hard-decision symbols with more accurate soft-decision symbols, thus making the whole equalization system more robust, such as the Soft ISI Cancellation based turbo Equalizer (SICE) [11]and the Soft-Decision Feedback turbo Equalizer (SDFE) [12]. Bidirectional structure is another novel method to suppress error propagation. This ideal was first developed for the traditional hard-decision DFE by combining a conventional DFE with a time-reversed DFE[13]. Then, the bidirectional structure is incorporated with the Virtual Time Reversal Mirror(VTRM) technique for UWA communication systems [14]. In [15], a soft-in soft-out bidirectional turbo DFE with a low-complexity combining scheme is proposed and it is said to approach the performance of the MAP turbo equalizer after a large number of iterations.Recently, a bidirectional SDFE with an extrinsic information combining scheme is proposed for MIMO systems and its performance improvement over the single-direction one has been verified by a UWA communication experiment [16].

    The aforementioned turbo equalizers either assume that the Channel Impulse Response(CIR) is perfectly known or require explicit channel coefficients estimation. Therefore,accurate CIR estimation plays a critical role in these Channel-Estimation based Turbo Equalizers (CE-TEQs). One main drawback of the CE-TEQ is the high computational complexity of the large-dimension matrix inversion in computing the equalizer coefficients, especially in a long delay-spread channel. Furthermore, to track the time-varying channel,channel re-estimation should be made by using the previous detected symbols, which will definitely lead to much more computational burden [17]. As an alternative to the CE-TEQ,the Direct-Adaptation based Turbo Equalizer(DA-TEQ) adapts equalizer coefficients directly without any channel estimation [18-20],thus saving large amounts of computational cost. However, most existing DA-TEQs suffer from a slow convergence rate due to the hard-decision error used to update equalizer coefficients. Recently, a Soft DA-TEQ utilizing theapriorisoft decision to direct the equalizer coefficients adaptation, namely, the Soft DA-TEQ, is proposed for MIMO UWA communication systems [21]. The derivation of the Soft DA-TEQ is based on the Expectation Maximization (EM) algorithm [22],which greatly speeds the convergence rate during turbo iterations.

    In this paper, the authors propose a Soft Direct-Adaptation based Bidirectional Turbo Equalizer (Soft DA-BTEQ) for MIMO systems.

    In this paper, we propose a Soft Direct-Adaptation based Bidirectional Turbo Equalizer(Soft DA-BTEQ) for MIMO systems. Compared with existing schemes, there are two enhanced features in the new equalization scheme.

    First, the proposed scheme adopts the Soft DA-TEQ embedded with the Fast self-Optimized LMS (FOLMS) algorithm [23] to implement equalization. Due to relatively higher accuracy of soft decision error and self-adaptation of the step size, the combination of both the algorithms yields a faster convergence rate. Meanwhile, the second-order Phase-Locked Loop (PLL) [24] for MIMO systems is also employed during the equalization process, thus channel tracking in the time-varying UWA environment could be achieved.

    Second, the Soft DA-TEQ is extended to the bidirectional structure, where a conventional Soft DA-TEQ is combined with a time-reversed Soft DA-TEQ. Based on the MMSE criterion, a weighted linear combining scheme is then derived for bidirectional combining. Attributed to low correlation between the outputs of the opposite-direction equalizers, the bidirectional diversity gain can be exploited, and the error propagation caused by the wrong decision symbols can be effectively eliminated. Both the simulation and experimental results show that the Soft DA-BTEQ achieves a lower Bit Error Rate (BER) than the single-direction Soft DA-TEQ, and the soft direct-adaptation type equalizers have a faster convergence rate than the hard ones.

    The rest of this paper is organized as follows. Section 2 provides a short introduction of system model and preliminaries. Section 3 introduces the Soft DA-BTEQ, including the Soft DA-TEQ and the bidirectional combining scheme. Section 4 and Section 5 present the simulation and experimental results, respectively. Finally, Section 6 concludes this paper.

    II. SYSTEM MODEL AND PRELIMINARIES

    Consider a MIMO system withNtransducers andMhydrophones. The transmitting process is depicted in Figure 1. The information finite impulse response filter and the noise is assumed as Additive White Gaussian Noise(AWGN). Thus, the received baseband signal of them-th hydrophone at timekis expressed as

    Next, several definitions of the traditional turbo equalizer are introduced. According to the Gaussian distributed assumption, the

    Fig. 1 Structure of the transmission system

    III. PROPOSED SOFT DIRECTADAPTATION BASED BIDIRECTIONAL TURBO EQUALIZER (SOFT DA-BTEQ)

    The structure of the proposed Soft DA-BTEQ for MIMO systems is depicted in Figure 2,where two Soft DA-TEQs runs in parallel:one is the conventional Soft DA-TEQ and the other is the time-reversed Soft DA-TEQ. The time-reversed Soft DA-TEQ is implemented with the Time-Reversal (TR) operations mounted at both ends of the conventional one.

    3.1 Soft direct-adaptation based turbo equalizer (Soft DA-TEQ)

    Modified from the Hard DA-TEQ, the Soft DA-TEQ utilizes thea priorisoft decisions from last turbo iteration to adjust the equalizer’s coefficients [21]. Bene fiting from the EM algorithm [22], the Soft DA-TEQ provides the maximum likelihood estimation of the coefficients and achieves a faster convergence rate than the hard one. In this paper, the Soft DA-TEQ is incorporated with the FOLMS algorithm and the second-order PLL to track the time-varying channel, and then implemented with bidirectional structure to eliminate error propagation effect.

    Fig. 2 Structure of the proposed Soft DA-BTEQ

    The equalization process of the Soft DATEQ can be divided into two phases: the training phase and the decision-directed phase.In the training phase, the training sequence known to the receiver is used to adjust the equalizer coefficients first, thus making sure that the algorithm is convergent. After that,previous detected symbols are adopted to update the coefficients in the decision-directed phase. The output of the equalizer and the coefficients updated via the LMS algorithm are given by

    It is worth noting that no signal is fed back to the equalizer in the first-time equalization and it is equivalent to implementing a linear equalization. Since the residual ISI and CCI cancellations are not perfectly addressed, the equalized results may not be satisfactory. In the next iterations, the estimated symbol vecspectively. With the interferences suppressed,the equalized result becomes more accurate than the previous iteration and the detection performance is improved. The iteration will continue until the equalizer converges.

    3.2 Bidirectional combining scheme

    The decision-feedback type equalizers suffer from error propagation which is caused by the feedback wrong decision symbols. To this end, a conventional Soft DA-TEQ is combined with a time-reversed Soft DA-TEQ to harvest bidirectional diversity and suppress error propagation. The diversity brought by the bidirectional structure can be explained by the following reason. If the channel impulse response is unsymmetrical, which is always the case in UWA systems, its equivalent time-reversed channel is different from the original one, which results in different error patterns and locations in the outputs of the opposite-directional equalizers. Besides, in this conventional equalizer, a primary error induces a burst of secondary errors that proceed in a forward direction. When the signal is processed using time-reversed equalizer, the error propagation runs in a backward direction. In other words, their error propagation directions are opposite. Both the factors result in a low correlation between the errors of two equalizers which provides bidirectional diversity to improve performance.

    To facilitate the bidirectional combining, a weighted linear combining scheme is considered as

    IV. SIMULATION RESULTS

    Fig. 3 Frame structure

    Fig. 4 Sound velocity pro file

    Fig. 5 BER performance comparison

    The BER performance under various Signal-to-Noise Ratios (SNRs) is demonstrated in Figure 5 by using Monte Carlo simulations with 1500 repetitions. Note that the BER curve of the Soft DA-TEQ in the first iteration is the same as that of the Hard DA-TEQ. This phenomenon can be explained by the reason that there is noa priorisoft decision symbol available in the first-time equalization, and linear equalization is adopted in the Soft DATEQ instead, which is the same case with the Hard DA-TEQ. Therefore, the Soft DATEQ equals to the Hard DA-TEQ in the firsttime equalization. After that, the Soft DATEQ usesthea priorisoft decision symbols to adjust equalizer coefficient while the Hard DA-TEQ use hard ones. After three iterations,the Soft DA-TEQ gains about 1 dB over the Hard DA-TEQ at the BER level of 10-2. With the help of the bidirectional structure, the Soft DA-BTEQ clearly outperforms the Soft DATEQ in the first iteration, and the performance gap becomes larger after three iterations. This performance enhancement is attributed to the weighted linear bidirectional combining scheme, which can effectively eliminate error propagation compared with the single-direction one. The simulation results of the Soft DA-BTEQ and the Hard DA-TEQ with the traditional LMS algorithm rather than the FOLMS algorithm are also included. As expected, not using FOLMS algorithm to adjust coefficients leads to 0.4 dB performance loss at the BER level of 10-3after three iterations for the Soft DA-BTEQ. For the Hard DATEQ, the performance improvement brought by the FOLMS is more obvious. At the BER level of 10-2, the Hard DA-TEQ with the FOLMS gains about 1.1 dB over the one with LMS after three iterations.

    Fig. 6 Estimated CIR of the 500-m transmission

    Fig. 7 Estimated CIR of the 1000-m transmission

    V. EXPERIMENTAL RESULTS

    The proposed method has been tested by a UWA communication experiment conducted in the Thousand Island Lake, Hangzhou, Zhejiang, China, in 2015. 2×4 MIMO system was considered in the experiment: two transducers and four hydrophones were placed with top ones 10 m below the lake surface. Both the transducer and hydrophone arrays were fixed vertically with 1-m spacing. The water depth was about 50 m. The experiments were conducted for two transmission ranges: 500 m and 1000 m. The processes of the encoding,interleaving, and modulation in the experiment are the same as those in the simulation,thus details are omitted here for brevity. We transmitted 138 frames and all of them were separated by some gaps to prevent inter-block interference.

    The average BER performance of the 500-m and 1000-m transmissions with different iterations using various algorithms is summarized in Table 2. As we can see, the Hard DATEQ suffers from severe error propagation and has the worst performance. It cannot achieve convergence even after five iterations. Howev-er, with the Soft DA-TEQ, more satisfactory performance is obtained, and error-free detection is achieved after five iterations for the 1000-m transmission. Note that the Hard DATEQ and the Soft DA-TEQ exhibit identical BER performance after one-time equalization and decoding, which is consistent with the simulation results. Besides, the diversity gain brought by the bidirectional structure is also obvious. For the 500-m transmission, the Hard DA-BTEQ achieves BER=0.0009 after four iterations and it even outperforms the Soft DA-TEQ. With the Soft DA-BTEQ, error-free detection can be both achieved after only three iterations for the 500-m transmission and four iterations for the 1000-m transmission.In terms of convergence rate and BER, the Soft DA-BTEQ clearly outperforms the other equalization schemes. In addition, the BER performance comparison between the LMS and the FOLMS algorithms for the 500-m transmission is demonstrated in Table 3. It is apparent that the FOLMS can achieve a lower BER when the algorithms are convergent,compared with the LMS. Although both the algorithms can finally achieve error-free detection for the Soft DA-BTEQ, the FOLMS only requires two iterations while the LMS needs three iterations.

    Table I O ptimal weighting factors for the Soft DA-BTEQ

    Fig. 8 Phase estimate for the top transducer to the top (T1-H1) and deepest (T1-H4) hydrophones

    T able II BER performance comparison among different equalization schemes

    Table III BER performance comparison between the LMS and the FOLMS algorithms for the 500-m transmission

    Fig. 9 EXIT charts of the 500-m transmission

    Fig. 10 EXIT charts of the 1000-m transmission

    VI. CONCLUSION

    A Soft DA-BTEQ is proposed for MIMO UWA communication systems. The Soft DATEQ combined with the FOLMS and the second-order PLL is extended to the bidirectional structure. The conventional Soft DATEQ and the time-reversed Soft DA-TEQ are combined with a weighted linear combining scheme. Thus, the bidirectional diversity gain is exploited and the error propagation is suppressed. The efficiency of the proposed method has been veri fied by both the simulations and UWA communication experiments.The simulation and experimental results show that the Soft DA-BTEQ achieves performance improvement over the other equalization schemes, and error-free detection can be both achieved for the 500-m and 1000-m transmissions.

    ACKNOWLEDGEMENTS

    This work has been performed in the Key Project “Theory and technologies of data acquisition and reliable transmission for mobile underwater sensor node” supported by National Natural Science Foundation of China (No.61431020).

    [1] S. Roy, T. M. Duman, V. McDonald, and J. G.Proakis, “High-rate communication for underwater acoustic channels using multiple transmitters and space-time coding: Receiver structures and experimental results,”IEEE Journal of Oceanic Engineering, vol. 32, no. 3, pp. 663-688,Jul. 2007.

    [2] A. C. Singer, J. K. Nelson, and S. S. Kozat, “Signal processing for underwater acoustic communications,”IEEE Communications Magazine, vol.47, no. 1, pp. 90-96, Jan. 2009.

    [3] M. Stojanovic and J. Preisig, “Underwater acoustic communication channels: Propagation models and statistical characterization,”IEEE Communications Magazine, vol. 47, no. 1, pp.84-89, Jan. 2009.

    [4] M. Stojanovic, J. A. Catipovic, and J. G. Proakis,“Phase-coherent digital communications for underwater acoustic channels,”IEEE Journal of Oceanic Engineering, vol. 19, no. 1, pp. 100-111,1994.

    [5] H. Sun, Y. Guo, X. Kuai, and E. Chen, “Iterative block DFE for underwater acoustic single carrier system,”China Communications, vol. 9, no. 7,pp. 121-126, 2012.

    [6] C. He, S. Huo, Q. Zhang, H. Wang, and J. Huang,“Multi-channel iterative FDE for single carrier block transmission over underwater acoustic channels,”China Communications, vol. 12, no. 8,pp. 55-61, 2015.

    [7] Y. R. Zheng, J. Wu, and C. Xiao, “Turbo equalization for single-carrier underwater acoustic communications,”IEEE Communications Magazine,vol. 53, no. 11, pp. 79-87, Nov. 2015.

    [8] C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Didier, et al., “Iterative correction of intersymbol interference: Turbo-equalization,”European Transactions on Telecommunications, vol. 6, no. 5, pp. 507-511, Sept.-Oct.1995.

    [9] M. Tuchler, A. C. Singer, and R. Koetter, “Minimum mean squared error equalization using a priori information,”IEEE Transactions on Signal Processing, vol. 50, no. 3, pp. 673-683, Mar.2002.

    [10] M. Tuchler, R. Koetter, and A. C. Singer, “Turbo equalization: Principles and new results,”IEEE Transactions on Communications, vol. 50, no. 5,pp. 754-767, May 2002.

    [11] J. Wu, L. Wang, and C. Xiao, “Low-complexity soft-interference cancellation turbo equalisation for multi-input multi-output systems with multilevel modulations,”IET Communications,vol. 9, no. 5, pp. 728-735, 2015.

    [12] A. Rafati, H. Lou, and C. Xiao, “Low-complexity soft-decision feedback turbo equalization for MIMO systems with multilevel modulations,”IEEE Transactions on Vehicular Technology, vol.60, no. 7, pp. 3218-3227, 2011.

    [13] J. Balakrishnan, “Bidirectional decision feedback equalization and MIMO channel training,” Cornell University, Ithaca, NY, 2002.

    [14] H. C. Song, “Bidirectional equalization for underwater acoustic communication,”Journal of the Acoustical Society of America, vol. 131, no. 4,pp. EL342-EL347, Apr. 2012.

    [15] S. Jeong and J. Moon, “Soft-in soft-out DFE and bi-directional DFE,”IEEE Transactions on Communications, vol. 59, no. 10, pp. 2729-2741, Oct.2011.

    [16] W. Duan and Y. R. Zheng, “Bidirectional soft-decision feedback turbo equalization for MIMO systems,”IEEE Transactions on Vehicular Technology, vol. 65, no. 7, pp. 4925-4936, Jul. 2016.

    [17] Z. Yang and Y. R. Zheng, “Iterative channel estimation and turbo equalization for multiple-input multiple-output underwater acoustic communications,”IEEE Journal of Oceanic Engineering, vol. 41, no. 1, pp. 232-242, 2016.

    [18] P. A. v. Walree and G. Leus, “Robust underwater telemetry with adaptive turbo multiband equalization,”IEEE Journal of Oceanic Engineering,vol. 34, no. 4, pp. 645-655, 2009.

    [19] J. W. Choi, T. J. Riedl, K. Kim, A. C. Singer, and J.C. Preisig, “Adaptive linear turbo equalization over doubly selective channels,”IEEE Journal of Oceanic Engineering, vol. 36, no. 4, pp. 473-489,Oct. 2011.

    [20] C. Laot, A. Glavieux, and J. Labat, “Turbo equalization: Adaptive equalization and channel decoding jointly optimized,”IEEE Journal on Selected Areas in Communications, vol. 19, no.9, pp. 1744-1752, Sep. 2001.

    [21] W. Duan and Y. R. Zheng, “Soft direct-adap-tive turbo equalization for MIMO underwater acoustic communications,” inOCEANS 2015 -MTS/IEEE Washington, 2015, pp. 1-6.

    [22] A. P. Dempster, N. M. Laird, and D. B. Rubin,“Maximum likelihood from incomplete data via the EM algorithm,”Journal of the Royal Statistical Society, vol. 39, no. 1, pp. 1-38, 1977.

    [23] P. Bragard and G. Jourdain, “A fast self-optimized LMS algorithm for non-stationary identification: Application to underwater equalization,” inProc. IEEE Int. Conf. Acoustics, Speech,Signal Processing (ICASSP), 1990, vol. 3, pp.1425-1428.

    [24] M. Stojanovic, J. Catipovic, and J. G. Proakis,“Adaptive multichannel combining and equalization for underwater acoustic communications,”Journal of the Acoustical Society of America, vol. 94, no. 3, pp. 1621-1631, Sep. 1993.

    国产成人免费观看mmmm| 一二三四中文在线观看免费高清| 在线观看免费日韩欧美大片| 久久久国产精品麻豆| 精品视频人人做人人爽| 国产精品国产三级国产专区5o| 王馨瑶露胸无遮挡在线观看| 制服人妻中文乱码| 国产免费现黄频在线看| 天堂中文最新版在线下载| 天堂俺去俺来也www色官网| 美女福利国产在线| 一级片'在线观看视频| 欧美日韩视频精品一区| 亚洲成人av在线免费| 精品人妻在线不人妻| 欧美亚洲日本最大视频资源| 日日摸夜夜添夜夜爱| 又大又黄又爽视频免费| 国产免费福利视频在线观看| 考比视频在线观看| 香蕉精品网在线| 精品久久久精品久久久| 成人国语在线视频| 亚洲精品日韩在线中文字幕| 亚洲人成网站在线观看播放| 欧美3d第一页| 欧美xxxx性猛交bbbb| 精品国产乱码久久久久久小说| 国产一区二区激情短视频 | 国产爽快片一区二区三区| 中国三级夫妇交换| 亚洲av欧美aⅴ国产| 亚洲精品美女久久av网站| 一级爰片在线观看| 国内精品宾馆在线| 大片电影免费在线观看免费| 插逼视频在线观看| 精品人妻在线不人妻| 亚洲五月色婷婷综合| av国产精品久久久久影院| 色婷婷av一区二区三区视频| av福利片在线| 男女啪啪激烈高潮av片| 欧美变态另类bdsm刘玥| 少妇 在线观看| 在线观看三级黄色| 国产av码专区亚洲av| 超碰97精品在线观看| 国产成人a∨麻豆精品| 国产片内射在线| 国产熟女午夜一区二区三区| 国产av码专区亚洲av| 日韩制服丝袜自拍偷拍| 亚洲综合精品二区| 黑人高潮一二区| 人成视频在线观看免费观看| 成年动漫av网址| 丝袜在线中文字幕| 97人妻天天添夜夜摸| 一区二区三区四区激情视频| 大码成人一级视频| av网站免费在线观看视频| 少妇的逼水好多| 老司机亚洲免费影院| 69精品国产乱码久久久| 久久鲁丝午夜福利片| 国产xxxxx性猛交| 免费黄色在线免费观看| 亚洲综合精品二区| 丝袜美足系列| 又大又黄又爽视频免费| 精品国产露脸久久av麻豆| 亚洲人与动物交配视频| av女优亚洲男人天堂| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品秋霞免费鲁丝片| 亚洲精品aⅴ在线观看| 人人妻人人爽人人添夜夜欢视频| 一区二区三区精品91| videos熟女内射| 亚洲国产精品成人久久小说| 亚洲内射少妇av| 少妇的丰满在线观看| 国产精品偷伦视频观看了| 成人毛片a级毛片在线播放| 日韩精品免费视频一区二区三区 | 哪个播放器可以免费观看大片| 精品国产一区二区三区久久久樱花| av在线app专区| 欧美3d第一页| 精品人妻熟女毛片av久久网站| 免费高清在线观看日韩| 国产精品无大码| 国产精品女同一区二区软件| 久久精品久久久久久久性| 日韩电影二区| 国产免费福利视频在线观看| 国产精品三级大全| 妹子高潮喷水视频| 国产成人精品在线电影| 少妇被粗大猛烈的视频| 一本久久精品| 两个人免费观看高清视频| 亚洲av日韩在线播放| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 国产一区二区三区av在线| 日本av手机在线免费观看| 飞空精品影院首页| 国产有黄有色有爽视频| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 热99久久久久精品小说推荐| 亚洲天堂av无毛| 啦啦啦中文免费视频观看日本| 女的被弄到高潮叫床怎么办| 精品国产露脸久久av麻豆| 国产男人的电影天堂91| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 99香蕉大伊视频| 91精品国产国语对白视频| 久久人人97超碰香蕉20202| 性高湖久久久久久久久免费观看| 国产一区亚洲一区在线观看| 国产日韩欧美视频二区| 亚洲中文av在线| 国产国语露脸激情在线看| 美女内射精品一级片tv| 青春草视频在线免费观看| 精品人妻偷拍中文字幕| 久久久久久久精品精品| 国产色爽女视频免费观看| 最近最新中文字幕大全免费视频 | 国产在线免费精品| 一区在线观看完整版| 啦啦啦视频在线资源免费观看| av线在线观看网站| 国产永久视频网站| 久久青草综合色| av线在线观看网站| 日韩av不卡免费在线播放| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 在线天堂最新版资源| 亚洲国产欧美在线一区| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| av片东京热男人的天堂| 在线免费观看不下载黄p国产| 免费在线观看完整版高清| 日韩中字成人| 精品一区二区三区视频在线| 国产欧美亚洲国产| 极品人妻少妇av视频| 一本大道久久a久久精品| 精品一品国产午夜福利视频| 日韩中字成人| a 毛片基地| 亚洲成av片中文字幕在线观看 | 最近最新中文字幕免费大全7| a级毛片黄视频| 蜜桃在线观看..| 哪个播放器可以免费观看大片| 精品国产国语对白av| 国产xxxxx性猛交| 这个男人来自地球电影免费观看 | 国产精品一区二区在线不卡| 97在线人人人人妻| 日产精品乱码卡一卡2卡三| 久久精品久久精品一区二区三区| 夜夜爽夜夜爽视频| 99香蕉大伊视频| 欧美人与性动交α欧美软件 | 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 婷婷色综合大香蕉| 9热在线视频观看99| 欧美人与善性xxx| 日韩制服骚丝袜av| 99热全是精品| 美女脱内裤让男人舔精品视频| 九色成人免费人妻av| 黄网站色视频无遮挡免费观看| 久久久久国产网址| 一级a做视频免费观看| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 中文精品一卡2卡3卡4更新| 一边摸一边做爽爽视频免费| 插逼视频在线观看| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av天美| 亚洲av日韩在线播放| 在线观看美女被高潮喷水网站| 精品亚洲成a人片在线观看| 男女边摸边吃奶| xxxhd国产人妻xxx| 精品一品国产午夜福利视频| 国产成人91sexporn| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 男女国产视频网站| 一个人免费看片子| 欧美bdsm另类| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区 | 欧美激情 高清一区二区三区| 草草在线视频免费看| 亚洲国产色片| 国产男女超爽视频在线观看| 青青草视频在线视频观看| 新久久久久国产一级毛片| 亚洲精品自拍成人| 欧美人与性动交α欧美软件 | 一本久久精品| 久久久久国产网址| 在线观看国产h片| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕亚洲精品专区| 午夜日本视频在线| 久久国内精品自在自线图片| 国产欧美亚洲国产| 成人18禁高潮啪啪吃奶动态图| 丝瓜视频免费看黄片| 日韩av不卡免费在线播放| 毛片一级片免费看久久久久| 欧美激情 高清一区二区三区| 一级毛片 在线播放| 人妻系列 视频| 一级毛片黄色毛片免费观看视频| 久久青草综合色| 精品一品国产午夜福利视频| 日韩大片免费观看网站| 成年av动漫网址| 最近最新中文字幕大全免费视频 | 亚洲国产精品一区二区三区在线| 精品少妇内射三级| 深夜精品福利| 欧美另类一区| 日本欧美视频一区| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| 春色校园在线视频观看| videosex国产| 黄色怎么调成土黄色| 巨乳人妻的诱惑在线观看| 99香蕉大伊视频| 一二三四在线观看免费中文在 | 校园人妻丝袜中文字幕| 少妇的逼水好多| 美女国产视频在线观看| 国产精品蜜桃在线观看| 大香蕉久久成人网| 少妇 在线观看| 99视频精品全部免费 在线| 搡老乐熟女国产| 国产一区有黄有色的免费视频| 18在线观看网站| 婷婷色综合www| 精品人妻熟女毛片av久久网站| 亚洲内射少妇av| 高清毛片免费看| 99精国产麻豆久久婷婷| 少妇的逼好多水| 亚洲伊人色综图| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲日产国产| 午夜影院在线不卡| 美女国产视频在线观看| 亚洲美女搞黄在线观看| 日本色播在线视频| 国产精品国产三级国产专区5o| 亚洲欧美精品自产自拍| 一本久久精品| 99国产综合亚洲精品| 一区二区三区四区激情视频| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 18+在线观看网站| 啦啦啦在线观看免费高清www| 久久久久久人妻| 国产精品成人在线| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 午夜福利乱码中文字幕| 久久人人爽人人爽人人片va| 亚洲国产毛片av蜜桃av| 七月丁香在线播放| 国产在线一区二区三区精| 波多野结衣一区麻豆| 狂野欧美激情性bbbbbb| 久久人妻熟女aⅴ| 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| 国产精品久久久av美女十八| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 亚洲国产av影院在线观看| 999精品在线视频| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 一级,二级,三级黄色视频| 国产精品嫩草影院av在线观看| 色网站视频免费| av在线播放精品| 深夜精品福利| 黄色怎么调成土黄色| 国产精品不卡视频一区二区| 一本色道久久久久久精品综合| 性色av一级| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀 | 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 亚洲成av片中文字幕在线观看 | 毛片一级片免费看久久久久| 成年人免费黄色播放视频| 成人影院久久| 欧美老熟妇乱子伦牲交| 久久影院123| 久热这里只有精品99| 久久久国产一区二区| 一个人免费看片子| 亚洲国产欧美在线一区| 久久狼人影院| 午夜久久久在线观看| 精品一区二区三卡| 成人国产av品久久久| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 久久97久久精品| 久久久久精品人妻al黑| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 综合色丁香网| 精品人妻熟女毛片av久久网站| 国产精品女同一区二区软件| 亚洲在久久综合| 欧美日韩视频高清一区二区三区二| 午夜免费男女啪啪视频观看| 丰满迷人的少妇在线观看| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 中国美白少妇内射xxxbb| 男女国产视频网站| 免费在线观看完整版高清| 久久久久人妻精品一区果冻| 伦精品一区二区三区| 黑人欧美特级aaaaaa片| 伦精品一区二区三区| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| av天堂久久9| 国产成人午夜福利电影在线观看| 久久ye,这里只有精品| 另类亚洲欧美激情| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 在线观看美女被高潮喷水网站| 人妻一区二区av| 9色porny在线观看| 99re6热这里在线精品视频| 国产精品女同一区二区软件| 在线天堂中文资源库| 国产av国产精品国产| 成年人免费黄色播放视频| 国产av国产精品国产| 黄色一级大片看看| 毛片一级片免费看久久久久| 在线天堂最新版资源| 又黄又粗又硬又大视频| 99精国产麻豆久久婷婷| 午夜老司机福利剧场| 久久女婷五月综合色啪小说| 国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 王馨瑶露胸无遮挡在线观看| 精品熟女少妇av免费看| 亚洲国产精品成人久久小说| 丝袜人妻中文字幕| 久久99热6这里只有精品| 只有这里有精品99| 女人被躁到高潮嗷嗷叫费观| 日韩不卡一区二区三区视频在线| 国产亚洲精品第一综合不卡 | 午夜免费男女啪啪视频观看| 在线观看国产h片| 深夜精品福利| 午夜福利视频精品| 国产熟女欧美一区二区| www日本在线高清视频| 最近最新中文字幕大全免费视频 | 69精品国产乱码久久久| 黑人巨大精品欧美一区二区蜜桃 | 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 成年美女黄网站色视频大全免费| 国产 精品1| 国产极品天堂在线| 香蕉精品网在线| 人人妻人人澡人人看| 男女午夜视频在线观看 | 欧美+日韩+精品| 最近中文字幕高清免费大全6| 国产一区二区激情短视频 | 久久久国产欧美日韩av| 又粗又硬又长又爽又黄的视频| 成年动漫av网址| 伦理电影免费视频| 亚洲,欧美精品.| 最近中文字幕高清免费大全6| 性高湖久久久久久久久免费观看| 高清欧美精品videossex| 天天操日日干夜夜撸| 韩国av在线不卡| 免费观看a级毛片全部| 午夜精品国产一区二区电影| 久久久久久伊人网av| 夜夜爽夜夜爽视频| 青春草亚洲视频在线观看| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线观看99| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 国产一区二区三区av在线| 熟妇人妻不卡中文字幕| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 黄色怎么调成土黄色| 国产精品一区二区在线观看99| 高清欧美精品videossex| 母亲3免费完整高清在线观看 | 久久人人97超碰香蕉20202| 亚洲av.av天堂| 日韩电影二区| 国产综合精华液| 90打野战视频偷拍视频| 五月天丁香电影| 2022亚洲国产成人精品| 亚洲精品国产av蜜桃| 久久久久久伊人网av| 久久精品熟女亚洲av麻豆精品| 搡老乐熟女国产| 国产在线免费精品| 免费日韩欧美在线观看| 黑人欧美特级aaaaaa片| 伦精品一区二区三区| 热re99久久国产66热| 制服丝袜香蕉在线| 国产乱来视频区| 日韩中字成人| 国产日韩欧美在线精品| 精品第一国产精品| 久久国产精品大桥未久av| 精品一区二区三区视频在线| 欧美精品一区二区免费开放| 伊人久久国产一区二区| 男女边吃奶边做爰视频| 国产在线视频一区二区| 亚洲成人手机| 最近最新中文字幕大全免费视频 | av片东京热男人的天堂| 国产av一区二区精品久久| 黄片播放在线免费| 性高湖久久久久久久久免费观看| 国产精品久久久久成人av| 精品人妻偷拍中文字幕| 国产成人欧美| 99热网站在线观看| 国产淫语在线视频| 欧美精品av麻豆av| 久久久久国产网址| 国产精品久久久久成人av| 日韩人妻精品一区2区三区| 黄网站色视频无遮挡免费观看| 观看av在线不卡| 国产乱人偷精品视频| 2018国产大陆天天弄谢| 欧美人与善性xxx| 99九九在线精品视频| 亚洲av日韩在线播放| 日韩一区二区三区影片| 日韩伦理黄色片| 极品少妇高潮喷水抽搐| 国产激情久久老熟女| 欧美人与善性xxx| 精品卡一卡二卡四卡免费| 亚洲欧美一区二区三区黑人 | 丝袜喷水一区| 国产亚洲午夜精品一区二区久久| 精品人妻熟女毛片av久久网站| 大片免费播放器 马上看| 插逼视频在线观看| 美国免费a级毛片| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 美女大奶头黄色视频| 精品一区二区三区视频在线| 亚洲精品aⅴ在线观看| 人妻系列 视频| 精品久久久久久电影网| 久久久精品免费免费高清| 国产成人av激情在线播放| 性高湖久久久久久久久免费观看| 久久久久网色| 黄片无遮挡物在线观看| 亚洲精品一区蜜桃| 一级a做视频免费观看| 99国产精品免费福利视频| 最后的刺客免费高清国语| 日韩一本色道免费dvd| 亚洲国产成人一精品久久久| 少妇的丰满在线观看| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 日韩av不卡免费在线播放| 三上悠亚av全集在线观看| 亚洲av福利一区| 国产毛片在线视频| 美国免费a级毛片| 亚洲精品日韩在线中文字幕| 日韩制服丝袜自拍偷拍| 一级毛片电影观看| 久久鲁丝午夜福利片| 国内精品宾馆在线| 汤姆久久久久久久影院中文字幕| 自线自在国产av| 午夜久久久在线观看| 久久久久国产网址| 精品一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕 | 午夜日本视频在线| 免费高清在线观看视频在线观看| 18禁观看日本| 大码成人一级视频| 久久久久久久久久成人| 我要看黄色一级片免费的| 国产黄频视频在线观看| 日本91视频免费播放| 丰满迷人的少妇在线观看| 久久女婷五月综合色啪小说| 欧美xxxx性猛交bbbb| 99热国产这里只有精品6| 国产日韩欧美在线精品| 精品少妇久久久久久888优播| 国产有黄有色有爽视频| 麻豆精品久久久久久蜜桃| 国产麻豆69| 午夜免费男女啪啪视频观看| 好男人视频免费观看在线| 男女边摸边吃奶| 黑人巨大精品欧美一区二区蜜桃 | 久久亚洲国产成人精品v| 18禁在线无遮挡免费观看视频| 美女大奶头黄色视频| 内地一区二区视频在线| 欧美少妇被猛烈插入视频| 女性生殖器流出的白浆| 午夜激情av网站| 亚洲av成人精品一二三区| 另类亚洲欧美激情| 亚洲国产最新在线播放| 只有这里有精品99| tube8黄色片| 校园人妻丝袜中文字幕| 欧美xxⅹ黑人| 国产一级毛片在线| 国产男人的电影天堂91| 久久久久精品人妻al黑| 国产精品久久久久久精品电影小说| 男人操女人黄网站| 夜夜爽夜夜爽视频| 中文字幕av电影在线播放| 亚洲第一区二区三区不卡| 啦啦啦啦在线视频资源| 亚洲国产欧美在线一区| 久久久久国产网址| 国产精品99久久99久久久不卡 | 伦理电影大哥的女人| 国产黄色视频一区二区在线观看| 成人国产麻豆网| a级毛色黄片| 69精品国产乱码久久久| 亚洲国产看品久久| 天堂8中文在线网| 欧美xxⅹ黑人| 国产精品久久久久久久久免| 国产激情久久老熟女| 亚洲av电影在线进入| 黄网站色视频无遮挡免费观看| 在线观看三级黄色| 欧美最新免费一区二区三区| 另类精品久久| 午夜久久久在线观看| 国产av码专区亚洲av| 丝袜在线中文字幕| 欧美少妇被猛烈插入视频| 精品熟女少妇av免费看| 香蕉精品网在线| 日韩av免费高清视频|