• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-Density Parity-Check Codes for Noncoherent UWB Communication Systems

    2017-05-09 01:39:38ZhonghuaLiangJunshanZangXiaojunYangXiaodaiDongHuanshengSong
    China Communications 2017年7期

    Zhonghua Liang , Junshan Zang , Xiaojun Yang , Xiaodai Dong 3,, Huansheng Song

    1 School of Information Engineering, Chang’an University, Xi’an 710064, China

    2 Jushri Technologies Inc, Shanghai, China

    3 Department of Electrical and Computer Engineering, University of Victoria, BC 8W 3P6, Canada

    * The corresponding author, email: lzhxjd@hotmail.com

    I. INTRODUCTION

    Noncoherent UWB communication systems have received considerable attention from both academia and industry due to their low-complexity and low-power consumption without the need for channel estimation and accurate synchronization [1]. Correspondingly, there is an impellent need for simple noncoherent UWB receivers, such as energy detectors(EDs) and autocorrelation receivers (AcRs)[1]. The ED collects the energy of the received signal over a given time and frequency window. Typically, ED receivers are used in conjunction with noncoherent pulse position modulation (NC-PPM) to avoid complicated decision threshold computation. The AcR collects energy from all multipath components and selectively accumulates signal energy via the delay ofTdseconds. Accordingly transmitted reference (TR) signaling with AcR offers low-complexity reception [2-4]. TR signaling consists of a reference pulse and a data pulse with a large delay interval which can avoid inter-pulse interference (IPI) [5]. NC-PPM and TR systems have been widely developed as the two popular noncoherent UWB systems[1-8]. However, a long wideband delay line is a challenge for the implementation of TR systems [6-7]. Hence transmitted reference pulse cluster (TRPC) was proposed as an improved TR signaling to address this problem with the compact and uniform spacing between reference and data pulses [9]. Therefore, in this paper, NC-PPM, TR, and TRPC systems are considered as the three investigated noncoherent UWB systems.

    In order to guarantee reliable data transmission, several forward correction (FEC)codes, such as Reed-Solomon and convolutional codes were employed in noncoherent UWB systems [10-12]. Results reported in the previous work [12] show that significant performance gains can be obtained using the FEC codes. However, to make full use of the benefits of channel coding for applications with low cost and low power consumption, it is still interesting to develop more powerful FEC codes for noncoherent UWB systems.

    Based on the above discussion, Low-density parity-check (LDPC) codes are considered in this paper. Actually, LDPC codes have been used in several radio communication systems[13-18] due to their excellent property of approaching Shannon limits [19]. Therefore, in order to evaluate the performance of LDPC codes in low-rate UWB systems, in this paper LDPC codes are introduced to noncoherent UWB communication systems. Moreover, a comprehensive performance comparison between the LDPC codes and other exiting FEC codes is presented for the three investigated noncoherent UWB communication systems.

    The reminder of this paper is organized as follows. Section II describes the system model for the three investigated noncoherent UWB communication systems. Section III introduces two LDPC coding schemes with different parity-check matrix, and section IV gives the LDPC decoding procedure for the three investigated noncoherent UWB communication systems. In section V, some simulation results and discussion are presented. Finally, section VI provides the concluding remarks.

    Two LDPC codes and the corresponding decoding procedures are presented in this paper for noncoherent UWB systems.

    II. SYSTEM MODEL

    In this section, we introduce the signal models for the three investigated noncoherent UWB communication systems, and the UWB channel models specified in the IEEE 802.15.4a standard.

    2.1 Noncoherent pulse position modulation signaling

    2.2 Transmitted reference signaling

    2.3 Transmitted reference pulse cluster signaling

    2.4 IEEE 802.15.4a channel model

    The UWB channel models described in the IEEE 802.15.4a standard can be written as[21]

    III. CODING SCHEMES

    Several FEC codes, such as Reed-Solomon and convolutional codes, have been used in noncoherent UWB communication systems[10], [12]. In this section, two speci fic LDPC codes with different parity-check matrices are considered for the three investigated noncoherent UWB communication systems to obtain higher coding gains.

    3.1 Encoding of LDPC codes

    LDPC codes are a series of linear block codes.To encode a LDPC code, a generator matrix converted by the parity-check matrix, is required. Using the generator matrixG, we can encode the original information sequencesas

    wherecis the LDPC codeword. For an LDPC code, the circle of Tanner graph [19] determines its BER performance. The shorter the circle is, the worse the BER performance will be. Therefore, in quasi-cyclic (QC-) LDPC codes, the circulant permutation matrix is used to construct the parity-check matrix to avoid the short circle [22]. The key point of designing a good LDPC code lies in searching for the parity-check matrix without length-4 circle and length-6 circle as far as possible. In this paper, two approaches presented in [23] were employed to the coded noncoherent UWB communication systems to construct QC-LDPC codes.

    3.2 Two methods for constructing the parity-check matrix of LDPC codes

    whereAis a square submatrix of dimentor matrixGcan be obtained as

    In the first method, to ensure the uniqueness of encoding, the index matrixPcan be modi fied as

    Similarly, the modi fied parity-check matrix is given as

    In the second method, the design ofHcan avoid length-6 circle. First, exchange the columns ofHin (9) to getAwhose diagonal elements are all 1’s. When exchanging the columns ofH, the code weight and circle property remain unchanged. Then the following steps are performed to ensureAis non-singular.

    Step 1: Replace the elements 1 with 0 below the diagonal from row 1 to rowjMand judge whetherAis non-singular. IfAis singular, repeat the deleting operation untilAis nonsingular.

    Step 2: GetGfromA. We can ensure that length-6 circle is nonexistent as we just exchange the columns ofHand delete elements.

    The second method can get better performance than the first one due to the avoidance of length-6 circle.

    IV. DECODING PROCEDURES

    After encoding and transmission through the UWB channel, the received signal is given as[9]

    4.1 Decision variable for NC-PPM systems

    Then the decision variable can be defined as

    4.2 Decision variable for tr and trpc systems

    4.3 Decoding algorithm

    LDPC codes are constructed by very sparse factor graphs and have excellent error correction performance via several improved decoding algorithms [26-28]. However, considering the complexity and efficiency, the belief-propagation (BP) algorithm [19] is only considered in this paper.

    The key steps of BP decoding procedure are presented in Algorithm 1.

    ?

    Table I Parameters for LDPC codes

    Fig. 1 Relative error between the estimated training length

    Fig. 2 BER performance of RS-std, and LDPC coded NC-PPM systems in CM1 channels

    whereLrepresents the length of training varies with the training lengthL.

    V. PERFORMANCE EVALUATION AND COMPARISON

    5.1 BER evaluation of NC-PPM systems

    5.2 BER Evaluation of coded TR Systems

    5.3 BER Evaluation of coded TRPC Systems

    From the simulation results above, we also see that the performance of H1-LDPC and H2-LDPC are similar at low and medium Eb/N0values. H2-LDPC only tends to be better than H1-LDPC at high Eb/N0values. Therefore, only the BER curves of H1-LDPC are used to compare with other codes in the following.

    5.4 Comprehensive analysis

    In order to make an intuitive comparison between the three investigated systems, we evaluate their uncoded and H1-LDPC coded BER performance, respectively.

    Fig. 3 BER performance of RS-std and LDPC coded NC-PPM systems in CM8 channels

    Fig. 4 BER performance of LDPC coded TR systems in CM1 and CM8 channels

    According to Figs. 8 and 9, we see that uncoded TRPC systems outperform uncoded TR and NC-PPM systems by more than 2 On the other side, the performance gain of TR and NC-PPM systems reaches 4 dB in CM1 channels. The TRPC systems have not only better BER performance, but also greater performance gains than TR and NC-PPM systems when using LDPC codes.

    5.5 Complexity analysis

    Table III presents the computational complexity required for the investigated codes. The computational complexity is measured by consuming time with temporal resolution 0.4836 ms (i.e., 0.4836 ms is the smallest time unit).The results were obtained by averaging 1000 encoding and decoding loops in a practical simulation system. We see that compared to convolutional codes, the LDPC codes possess similar encoding complexity, however, their decoding delays are much larger. The performance improvement of LDPC codes is at the cost of complexity for both EDs and AcRs.Therefore, a trade-o ff between the performance and complexity should be considered to implement a desired system. For example,in the TRPC system, when both complexity and real-time capability are required, CC-L-nonsys code is more suitable. In the case of higher requirement on BER performance but more relaxed constrains on decoding latency, a LDPC code, such as H1-LDPC or H2-LDPC,can be considered.

    Fig. 5 BER performance of LDPC coded TRPC systems in CM1 and CM8 channels

    Fig. 6 BER performance of RS-std, CC-L-sys, CC-L-nonsys, and LDPC coded TRPC systems in CM1 channels

    Table II Abbreviations of the investigated codes

    Table III Computational Complexity Comparison

    VI. CONCLUSIONS

    In this paper, the performance of LDPC codes has been evaluated for noncoherent UWB communication systems. According to the simulation results, we show that with limited increased computational complexity, LDPC codes have better BER performance than the existing FEC codes specified in the IEEE 802.15.4a standard and those used in [11].Therefore, they can be considered as good alternatives to the FEC codes for noncoherent UWB applications with low cost and low power consumption.

    Fig. 7 BER performance of RS-std, CC-L-sys, CC-L-nonsys, and LDPC coded TRPC systems in CM8 channels

    Fig. 8 BER performance of unocded and H1-LDPC coded TR, NC-PPM and TRPC systems in CM1 channels

    ACKNOWLEDGEMENTS

    This work was supported in part by the National Natural Science Foundation of China under Grant 61271262, 61473047 and 61572083, in part by Shaanxi Provincial Natural Science Foundation under Grant 2015JM6310, and in part by the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University under Grant 310824152010 and 0009-2014G1241043.

    [1] W. Klaus, L. Geert, J. M. Gerard, et al., “Noncoherent Ultra-Wideband Systems”,IEEE Signal Processing Magazine, vol. 26, no. 4, pp 48—66,Jul., 2009.

    [2] R. Hoctor, H. Tomlinson, “Delay-Hopped Transmitted-Reference RF Communications”,Proceeding of Ultra Wideband Systems and Technologies, pp 265—269, May, 2002.

    [3] J. D. Choi, W. E. Stark, “Performance of Ultra-Wideband Communications with Suboptimal Receivers in Multipath Channels”,IEEE Journal on Selected Areas in Communications,vol. 20, no. 9, pp 1754—1766, Sept., 2002.

    [4] T. Q. S. Quek, M. Z. Win, “Analysis of UWB Transmitted-Reference Communication Systems in Dense Multipath Channels”,IEEE Journal on Selected Areas in Communications, vol. 23, no.9, pp 1863—1874, Sept., 2005.

    [5] H. Zhang, D. L. Goeckel, “Generalized Transmitted-Reference UWB Systems”,Proceeding of IEEE Conference on Ultra Wideband Systems and Technologies, pp 147—151, Nov., 2003.

    [6] M. Casu, G. Durisi, “Implementation Aspects of a Transmitted Reference UWB Receiver”,Wireless Communications and Mobile Computing,vol. 5, no. 8, pp 537—549, Aug., 2005.

    [7] N. V. Stralen, A. Dentinger, K. Welles, et al., “Delay-hopped Transmitted-reference Experimental Results”,Proceeding of IEEE Conference on Ultra Wideband Systems and Technologies, pp 93—98,May, 2002.

    [8] Z. Liang, J. Zang, X. Yang, X. Dong, H. Song, “Integration Interval Determination and Decision Threshold Optimization for Improved TRPCUWB Communication Systems”,China Communications, vol. 14, no. 5, pp 185—192, May, 2017.[9] X. Dong, L. Jin, P. Orlik, “A new Transmitted Reference Pulse Cluster System for UWB Communications”,IEEE Transaction on Vehicular Technology, vol. 57, no. 5, pp 3217—3224, May, 2008.[10] IEEE Computer Society Std.,Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wire-less Personal Area Networks (WPANs). IEEE 802.15.4a-2007 (Amendment to IEEE 802.15.4-2006), pp 1—203, 2007.

    [11] S. Lin, J. D. J. Costello,Error Control Coding. 2nd ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2004.

    [12] Z. Liang, X. Dong, T. A. Gulliver, et al., “Performance of Transmitted Reference Pulse Cluster Ultra-Wideband Systems with Forward Error Correction”,Int. J. Commun. Syst., vol. 27, no. 2,pp 265—276, Feb., 2014.

    [13] Y. Wang, D. Liu, L. Sun, et al., “Real-Time Implementation for Reduced-Complexity LDPC Decoder in Satellite Communication”,China Communications, vol. 11, no. 12, pp 94—104,Dec., 2014.

    [14] F. N. Chen, “Proposal of a Novel Euclidean Geometry LDPC Coded MB-OFDM UWB System”,Proceeding of International Conference on Multimedia Technology, pp 1—4, Oct., 2010.

    [15] Y. Li, N. Ge, L. Yin, et al., “Performance Studies of a MB-OFDM UWB Systems Using Reduced-complexity Algorithm for LDPC Decoder”,Proceeding of 4th International Conference on Wireless Communications, Networking and Mobile Computing, pp 1—4, Oct., 2008.

    [16] X. Ye, F. Gao, “A Decode-and-Forward Scheme for LDPC Coded Three-Way Relay Fading Channels”,China Communications, vol. 12, no. 8, pp 46—54, Aug., 2015.

    [17] H. Xu, D. Feng, C. Sun, B. Bai, “Algebraic-Based Nonbinary LDPC Codes with Flexible Field Orders and Code Rates”,China Communications,vol. 14, no. 4, pp 111—119, Apr., 2017.

    [18] L. Mu, C. Liang, Z. Liu, D. Pan, “Construction of Regular Rate-Compatible LDPC Convolutional Codes”,China Communications, vol. 13, no. 8,pp 97—102, Aug., 2016.

    [19] H. He,Principle and Application of LDPC. Chongwen District, Beijing: Posts and Telecom Press,2009.

    [20] Y-L. Chao, R. A. Scholtz, “Ultra-Wideband Transmitted Reference Systems”,IEEE Transactions on Vehicular Technology, vol. 54, no. 5, pp 1556—1569, May, 2005.

    [21] A. F. Molisch, K. Balakrishnan, C. C. Chong, et al.,“IEEE 802.15.4a channel model - final report”,IEEE 802.15.4a channel model - final report,2004.

    [22] Q. Huang, Q. Diao, S. Lin, et al., “Cylic and Quasi-Cylic LDPC Codes on Constraint Parity-Check Matrices and Their Trapping Sets”,IEEE Trans.Inf. Theory., vol. 58, no. 5, pp 2648—2671, May,2012.

    [23] D. Xu, Y. Xiao.Theory Analysis and Good Code Design for LDPC Codes. Master’s thesis, Beijing Jiaotong University, Beijing, 2007.

    [24] Z. Liang, X. Dong, T. A. Gulliver, “Performance of Coded Transmitted Reference Pulse Cluster UWB Systems”,Proceeding of 42nd AsilomarConference on Signals, Systems and Computers,pp 1990—1995, Oct., 2008.

    Fig. 9 BER performance of unocded and H1-LDPC coded TR, NC-PPM and TRPC systems in CM8 channels

    [25] L. Jin, X. Dong, Z. Liang, “Integration Interval Determination Algorithms for BER Minimization in UWB Transmitted Reference Pulse Cluster Systems”,IEEE Trans. Wireless Commun., vol. 9,no. 8, pp 2408—2414, Aug., 2010.

    [26] K. Ma, Y. Li, H. Zhang, “Fast Weighted Bit Flipping Algorithm for Higher-Speed Decoding of Low-Density Parity-Check Codes”,China Communications, vol. 10, no. 9, pp 114—119, Sept.,2013.

    [27] D. Wang, M. Dong, C. Chen, et al., “Construction of LDPC Codes for the Layered Decoding Algorithm”,China Communications, vol. 9, no. 7, pp 99—107, Jul., 2012.

    [28] J. Huang, L. Zhang, “Relative-Residual-Based Dynamic Schedule for Belief Propagation Decoding of LDPC Codes”,China Communications,vol. 8, no. 5, pp 47—53, May, 2011.

    三级毛片av免费| 精品国内亚洲2022精品成人| 精品一区二区三区av网在线观看| 搞女人的毛片| 人人妻,人人澡人人爽秒播| 国产精品免费一区二区三区在线| 两个人视频免费观看高清| 国产精品一区www在线观看| 欧美中文日本在线观看视频| 欧美高清成人免费视频www| 久久精品91蜜桃| 少妇丰满av| 97在线视频观看| 一个人观看的视频www高清免费观看| 亚洲四区av| 日本三级黄在线观看| 一个人看视频在线观看www免费| 国内精品美女久久久久久| 九九久久精品国产亚洲av麻豆| 在线观看美女被高潮喷水网站| 国产精品美女特级片免费视频播放器| 欧美潮喷喷水| 日韩欧美 国产精品| 国产私拍福利视频在线观看| 欧美成人一区二区免费高清观看| 亚洲图色成人| 亚洲色图av天堂| 精品人妻视频免费看| 久久精品影院6| 插阴视频在线观看视频| 国产精品久久电影中文字幕| 欧美激情久久久久久爽电影| 日本五十路高清| 国产黄a三级三级三级人| 国产成人影院久久av| 国产91av在线免费观看| 尾随美女入室| 国产精品无大码| or卡值多少钱| 99热6这里只有精品| 欧美潮喷喷水| 一区二区三区高清视频在线| www.色视频.com| 一夜夜www| 麻豆av噜噜一区二区三区| 神马国产精品三级电影在线观看| 亚洲熟妇中文字幕五十中出| 中文字幕精品亚洲无线码一区| 久久久精品大字幕| 大型黄色视频在线免费观看| 国产精品日韩av在线免费观看| 国产片特级美女逼逼视频| 国产成人a区在线观看| 你懂的网址亚洲精品在线观看| 国产成人91sexporn| 久久韩国三级中文字幕| 老熟女久久久| 午夜福利在线观看免费完整高清在| 国产熟女午夜一区二区三区 | 色哟哟·www| 王馨瑶露胸无遮挡在线观看| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 日韩伦理黄色片| 国精品久久久久久国模美| 美女视频免费永久观看网站| 看免费成人av毛片| 日本vs欧美在线观看视频 | 精品熟女少妇av免费看| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 国产精品人妻久久久影院| 免费观看的影片在线观看| 观看免费一级毛片| 日韩人妻高清精品专区| 黑人猛操日本美女一级片| 人妻少妇偷人精品九色| 亚洲性久久影院| 黄片无遮挡物在线观看| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 免费观看av网站的网址| 午夜激情久久久久久久| 狂野欧美激情性bbbbbb| 国产午夜精品一二区理论片| 亚洲欧美精品专区久久| 91精品国产国语对白视频| 极品教师在线视频| 免费看光身美女| av免费观看日本| 国产免费视频播放在线视频| 观看免费一级毛片| 欧美亚洲 丝袜 人妻 在线| 99九九线精品视频在线观看视频| 久久99热6这里只有精品| 国产伦在线观看视频一区| 国产极品天堂在线| 七月丁香在线播放| 亚洲精品日本国产第一区| 夜夜爽夜夜爽视频| 在线观看免费日韩欧美大片 | 亚洲精品成人av观看孕妇| 亚洲性久久影院| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 精品亚洲成国产av| 在线看a的网站| 男女国产视频网站| 亚洲精品国产av蜜桃| 久久久国产精品麻豆| 成人国产av品久久久| 国产亚洲精品久久久com| 少妇精品久久久久久久| 最新的欧美精品一区二区| 欧美性感艳星| 久久精品国产a三级三级三级| 在线天堂最新版资源| 草草在线视频免费看| 精品国产国语对白av| 观看免费一级毛片| 免费人妻精品一区二区三区视频| av卡一久久| 99热这里只有是精品50| 亚洲精品乱码久久久久久按摩| 中国国产av一级| 成人二区视频| 在线天堂最新版资源| 久久久久久伊人网av| 亚洲四区av| 久久国产精品男人的天堂亚洲 | 人人妻人人澡人人爽人人夜夜| 久久久久久久久大av| 在现免费观看毛片| 久久久久久久久久成人| 日韩精品有码人妻一区| 久久久久网色| 内射极品少妇av片p| 日韩精品有码人妻一区| 亚洲欧美一区二区三区国产| 国产伦在线观看视频一区| 日韩不卡一区二区三区视频在线| 国语对白做爰xxxⅹ性视频网站| 一级毛片aaaaaa免费看小| 最新的欧美精品一区二区| 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 熟女人妻精品中文字幕| 午夜福利,免费看| 最新中文字幕久久久久| 色婷婷久久久亚洲欧美| 午夜福利,免费看| 亚洲天堂av无毛| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 国产伦理片在线播放av一区| 国产成人免费观看mmmm| 国产精品一区www在线观看| 不卡视频在线观看欧美| xxx大片免费视频| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频 | a级毛色黄片| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 午夜激情福利司机影院| 国产白丝娇喘喷水9色精品| 欧美精品国产亚洲| 国产精品蜜桃在线观看| 交换朋友夫妻互换小说| 久久午夜福利片| 国产一区有黄有色的免费视频| 如何舔出高潮| 亚洲欧美一区二区三区黑人 | www.av在线官网国产| 交换朋友夫妻互换小说| 美女内射精品一级片tv| 欧美高清成人免费视频www| 日韩精品有码人妻一区| 三级国产精品片| 国产欧美亚洲国产| 成人影院久久| 国产高清三级在线| 国产熟女午夜一区二区三区 | 日韩视频在线欧美| 日韩伦理黄色片| 麻豆成人午夜福利视频| 久久久久久久久久久免费av| 免费av中文字幕在线| 极品教师在线视频| 男人舔奶头视频| 国产免费视频播放在线视频| 精品一品国产午夜福利视频| 精品国产一区二区久久| 国产日韩欧美视频二区| 三级经典国产精品| 久久影院123| 99久久人妻综合| 伊人亚洲综合成人网| 久久青草综合色| 国产色爽女视频免费观看| 亚洲av国产av综合av卡| 婷婷色综合www| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 亚洲不卡免费看| 91久久精品电影网| 大片免费播放器 马上看| 一级毛片aaaaaa免费看小| 少妇丰满av| 亚洲国产精品成人久久小说| 五月开心婷婷网| 国产亚洲91精品色在线| 国产精品久久久久久久久免| 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 亚洲性久久影院| 精品午夜福利在线看| 国产无遮挡羞羞视频在线观看| 人体艺术视频欧美日本| 亚洲欧洲精品一区二区精品久久久 | 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 亚洲熟女精品中文字幕| 一级黄片播放器| 久久国产精品大桥未久av | 女人久久www免费人成看片| 欧美国产精品一级二级三级 | √禁漫天堂资源中文www| 久久久久久久大尺度免费视频| 三级国产精品欧美在线观看| 精品久久久精品久久久| 精品少妇黑人巨大在线播放| 男女国产视频网站| 中文字幕人妻熟人妻熟丝袜美| 久久久午夜欧美精品| av国产久精品久网站免费入址| 欧美变态另类bdsm刘玥| 日韩三级伦理在线观看| 高清毛片免费看| 国产亚洲5aaaaa淫片| 亚洲va在线va天堂va国产| 尾随美女入室| 伦理电影免费视频| 免费少妇av软件| 久久精品久久久久久噜噜老黄| 97精品久久久久久久久久精品| 色94色欧美一区二区| 97在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩视频精品一区| 99热这里只有是精品在线观看| 成年美女黄网站色视频大全免费 | 国产深夜福利视频在线观看| 五月伊人婷婷丁香| 妹子高潮喷水视频| 日韩欧美 国产精品| 美女内射精品一级片tv| 人人妻人人爽人人添夜夜欢视频 | 涩涩av久久男人的天堂| 精华霜和精华液先用哪个| 人妻少妇偷人精品九色| 熟女电影av网| 亚洲高清免费不卡视频| 午夜福利,免费看| 国产亚洲欧美精品永久| 日日啪夜夜爽| 看非洲黑人一级黄片| 国产乱来视频区| 天堂中文最新版在线下载| 国精品久久久久久国模美| 人人妻人人看人人澡| 精品午夜福利在线看| 亚洲精品乱码久久久v下载方式| av播播在线观看一区| 国产 精品1| 国产有黄有色有爽视频| 亚洲国产最新在线播放| 国产在线视频一区二区| 天美传媒精品一区二区| 在线播放无遮挡| 一边亲一边摸免费视频| 国产高清三级在线| 成人国产av品久久久| 人人妻人人爽人人添夜夜欢视频 | 国产一区有黄有色的免费视频| 少妇丰满av| 国产69精品久久久久777片| 久久99一区二区三区| 国模一区二区三区四区视频| 黄色日韩在线| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| 80岁老熟妇乱子伦牲交| 多毛熟女@视频| 国产亚洲av片在线观看秒播厂| 26uuu在线亚洲综合色| 色视频www国产| 男女啪啪激烈高潮av片| 一区二区三区乱码不卡18| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 一个人看视频在线观看www免费| 啦啦啦在线观看免费高清www| av在线app专区| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 少妇被粗大猛烈的视频| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 日本黄色日本黄色录像| 一级二级三级毛片免费看| 午夜视频国产福利| 男女国产视频网站| av视频免费观看在线观看| 亚洲自偷自拍三级| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕制服av| 婷婷色麻豆天堂久久| 乱系列少妇在线播放| 在线看a的网站| 亚洲欧美清纯卡通| 精品国产露脸久久av麻豆| 啦啦啦视频在线资源免费观看| 久久免费观看电影| 在线免费观看不下载黄p国产| 边亲边吃奶的免费视频| 亚洲国产色片| 日韩欧美 国产精品| 日韩亚洲欧美综合| 寂寞人妻少妇视频99o| 午夜福利影视在线免费观看| 日本免费在线观看一区| 夜夜骑夜夜射夜夜干| 精品国产一区二区三区久久久樱花| 日日爽夜夜爽网站| 国产欧美亚洲国产| 毛片一级片免费看久久久久| 久久久久久久久久久免费av| videossex国产| 欧美最新免费一区二区三区| 精品久久久精品久久久| 亚洲第一区二区三区不卡| 国模一区二区三区四区视频| 插逼视频在线观看| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 亚洲欧美一区二区三区黑人 | 国产精品偷伦视频观看了| 午夜激情福利司机影院| 男人舔奶头视频| 在线免费观看不下载黄p国产| 国产永久视频网站| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 亚洲精品,欧美精品| 国产亚洲一区二区精品| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 少妇被粗大猛烈的视频| av线在线观看网站| 各种免费的搞黄视频| 91成人精品电影| 久久久久精品久久久久真实原创| 久久久久久久久久久丰满| 日本vs欧美在线观看视频 | 伦理电影免费视频| 亚洲三级黄色毛片| 极品人妻少妇av视频| 久久国内精品自在自线图片| 亚洲国产精品专区欧美| 韩国高清视频一区二区三区| 日本免费在线观看一区| 91久久精品国产一区二区三区| 涩涩av久久男人的天堂| 少妇人妻一区二区三区视频| 一本一本综合久久| 国产探花极品一区二区| 97在线视频观看| 99热这里只有是精品50| 久久国产乱子免费精品| 成年人午夜在线观看视频| 欧美人与善性xxx| 在线观看三级黄色| 亚洲国产色片| 99精国产麻豆久久婷婷| 国产精品女同一区二区软件| 国产成人精品一,二区| 日韩中字成人| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 99九九线精品视频在线观看视频| 在线观看一区二区三区激情| 欧美日韩在线观看h| 热re99久久国产66热| 亚洲久久久国产精品| 国产 一区精品| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看| 日本vs欧美在线观看视频 | 在线精品无人区一区二区三| 97超视频在线观看视频| a级毛色黄片| 亚洲精品自拍成人| 国内精品宾馆在线| 十八禁网站网址无遮挡 | 国产成人精品一,二区| 七月丁香在线播放| 秋霞在线观看毛片| 国产极品天堂在线| 国产淫片久久久久久久久| 国产毛片在线视频| 一级毛片 在线播放| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 日本91视频免费播放| 黄片无遮挡物在线观看| 精品一区二区三区视频在线| 免费观看av网站的网址| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 街头女战士在线观看网站| 久久久久精品性色| 精品熟女少妇av免费看| 亚洲欧洲精品一区二区精品久久久 | 国产一区有黄有色的免费视频| 岛国毛片在线播放| 午夜久久久在线观看| 伊人久久国产一区二区| 午夜av观看不卡| 国产一级毛片在线| 久久国产乱子免费精品| 日韩一区二区三区影片| 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 少妇高潮的动态图| 在线观看国产h片| 日韩电影二区| 日韩制服骚丝袜av| 久久99热6这里只有精品| 亚洲av欧美aⅴ国产| 国产成人免费无遮挡视频| 久久这里有精品视频免费| 成人国产av品久久久| 国产伦理片在线播放av一区| 午夜久久久在线观看| 日日啪夜夜爽| 男女啪啪激烈高潮av片| av卡一久久| 中文资源天堂在线| 亚洲精品色激情综合| 人人妻人人看人人澡| 国产成人精品无人区| 国产精品嫩草影院av在线观看| av有码第一页| 国产成人免费无遮挡视频| 久久鲁丝午夜福利片| 成人漫画全彩无遮挡| 在线观看免费视频网站a站| 99久久精品热视频| 久热久热在线精品观看| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 一本久久精品| 亚洲精品色激情综合| 国产欧美日韩一区二区三区在线 | 国产熟女午夜一区二区三区 | av黄色大香蕉| 日韩中字成人| 男人狂女人下面高潮的视频| 天天躁夜夜躁狠狠久久av| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 丰满少妇做爰视频| 大香蕉久久网| 青春草亚洲视频在线观看| 久久久精品免费免费高清| 欧美另类一区| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 精品久久国产蜜桃| 赤兔流量卡办理| 精品久久久久久久久av| 精品视频人人做人人爽| 中国三级夫妇交换| av黄色大香蕉| 成人国产麻豆网| 午夜精品国产一区二区电影| 草草在线视频免费看| 自线自在国产av| 亚洲综合色惰| 91成人精品电影| 国产成人免费观看mmmm| 精品人妻一区二区三区麻豆| 亚洲欧美成人综合另类久久久| 午夜精品国产一区二区电影| 国产极品粉嫩免费观看在线 | 嫩草影院入口| 伦理电影大哥的女人| 日日爽夜夜爽网站| 久久久久久久久久成人| 人人澡人人妻人| 久久av网站| 色视频在线一区二区三区| 国产伦在线观看视频一区| 综合色丁香网| 亚洲国产日韩一区二区| 国产av国产精品国产| 国产精品一区二区三区四区免费观看| 久久6这里有精品| www.av在线官网国产| 国产成人a∨麻豆精品| 亚洲成色77777| 一级毛片我不卡| 久久人妻熟女aⅴ| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说| 成人毛片a级毛片在线播放| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区| 51国产日韩欧美| 男人舔奶头视频| 免费黄网站久久成人精品| 欧美另类一区| 色网站视频免费| 青春草国产在线视频| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜添av毛片| 最后的刺客免费高清国语| 国产亚洲5aaaaa淫片| 国产亚洲av片在线观看秒播厂| 9色porny在线观看| 午夜福利在线观看免费完整高清在| 亚洲成人一二三区av| 美女国产视频在线观看| 国产伦理片在线播放av一区| 春色校园在线视频观看| 久久国产乱子免费精品| 男女无遮挡免费网站观看| 91久久精品国产一区二区成人| 国产永久视频网站| 精品亚洲乱码少妇综合久久| 欧美性感艳星| 男女免费视频国产| 国产爽快片一区二区三区| 一级片'在线观看视频| 国产精品一区二区三区四区免费观看| 国产黄色视频一区二区在线观看| 精品久久久久久电影网| 久久亚洲国产成人精品v| 99久久精品国产国产毛片| av免费观看日本| 午夜免费观看性视频| 王馨瑶露胸无遮挡在线观看| 国产精品偷伦视频观看了| 国产日韩欧美在线精品| 久久 成人 亚洲| 国产黄色免费在线视频| av在线老鸭窝| 亚洲,一卡二卡三卡| 天天操日日干夜夜撸| 亚洲图色成人| 久久综合国产亚洲精品| 国产成人精品无人区| 欧美成人午夜免费资源| 久久影院123| 寂寞人妻少妇视频99o| 亚洲人成网站在线播| 国产视频首页在线观看| 亚洲第一区二区三区不卡| 亚洲国产成人一精品久久久| 亚洲精品国产成人久久av| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久久久免| 免费av中文字幕在线| 国产av码专区亚洲av| 热re99久久精品国产66热6| 国产亚洲欧美精品永久| 女人久久www免费人成看片| 麻豆乱淫一区二区| 亚洲国产欧美在线一区| 人人妻人人澡人人爽人人夜夜| 国产亚洲一区二区精品| 高清av免费在线| 大陆偷拍与自拍| 美女视频免费永久观看网站| 黑人猛操日本美女一级片| 高清午夜精品一区二区三区| 婷婷色av中文字幕| 免费av中文字幕在线| 日本免费在线观看一区| 国产91av在线免费观看| 成人漫画全彩无遮挡| 两个人的视频大全免费| 九九爱精品视频在线观看| 9色porny在线观看| 亚洲av欧美aⅴ国产| 丁香六月天网| 一二三四中文在线观看免费高清|