• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Signaling Loads in NO Stack 5G Mobile Network

    2017-05-09 01:39:15XinSuJieZengYuanChenChangpengGuLipingRong
    China Communications 2017年7期

    Xin Su, Jie Zeng*, Yuan Chen, Changpeng Gu, Liping Rong

    1 Research Institute of Information Technology, Tsinghua University, Beijing, China

    2 Chongqing University of Posts and Telecommunications, Chongqing, China

    * The correspondence author, e-mail: zengjie@tsinghua.edu.cn

    I. INTRODUCTION

    Mobile Internet and Machine Type Communications are recognized as the main driving force of investigating the 5G for future mobile network. There is speculation that the volume of the global mobile data traffic is expected to increase more than 200 times from 2010 to 2020, while the number of the mobile communication terminals will reach 26 billion in 2020[1]. And the 5G network is expected to support a wide range of new services and applications with very diverse requirements,mainly including 3D video, Ultra HD screen,cloud computing, virtual reality, etc. These business scenarios need 5G network to provide higher traffic volume, low latency, the connection of huge number of devices, etc. In order to meet these challenges, 5G should not only improve the link capacities, but also need a more flexible and scalable architecture with the introduction of new technologies. Network Function Virtualization (NFV) and Software Defined Network (SDN) are two promising technologies to provide such flexibility and scalability for 5G network and are expected to play a signi ficant role in the construction of 5G network architecture.

    The main idea of NFV is the decoupling of physical network equipment from the functions that run on them. NFV promises Telecommunication Service Providers(TSPs)with more flexibility to expose their network capabilities and services to users and other services, and the ability to deploy or support new network services faster and cheaper so as to realize better service agility. SDN decouples control and data planes leveraging standard protocols enabling remote management and operation of data planes to third-party elements. The programmability and centralized control of SDN greatly improves the flexibility of networking, and simplifies network management. Then the 5G network architecture based on above two technologies is proposed.SoftRAN [2] has been studied the applicability of the SDN principles for the radio interface, which is a framework for decoupling of control and data planes inside the radio nodes.CHARISMA[3] presents a hierarchical, distributed-intelligence 5G architecture whose objective is the development of an open access, converged 5G network. In [4], the author proposed a 5G mobile network architecture based on SDN and NFV, which includes data layer, control layer and application layer.Among them, the control layer is consisted of Radio Access Network(RAN) and Core Network(CN) controller which is in charge of different control functions. [5] presents a two-layer architecture which is consisted of a radio network and a network cloud, and is integrating various enablers such as small cells,massive Multiple-Input Multiple-Output(MIMO)[14], control/user plane split, NFV and SDN. [6] introduces a SDN-based architecture which defines a harmonization layer that allows orchestrating radio and heterogeneous transport domains.

    “NO Stack” is the abbreviation of “Not Only Stack”[7]. In NO Stack architecture, it pushes down the layer-by-layer protocol stacks and encapsulates all protocol layers as modules.Thus protocol stack is reserved and can be implemented by orchestrating associated modules.Further, we adapt the SDN principles to decouple the control/user/manage plane function of each protocol layer, thus the protocol layers of user plane are flat which can be reconstructed flexibly, the protocols of control plane are concentrated in the SDN controller so that the operators can control the network in a uni fied and coordinated manner, the management functions are communicate with control plane functions via the open North-Interface of SDN controller and is in charge of the customized needs of varied business.

    Benefiting from these features, the proposed framework is very flexible and can support many new functions beyond conventional protocol stack.

    Fig. 1 General framework of NO stack

    In this paper, we first propose a compatible network architecture, which decouples the management plane, the control plane and the user plane based on NO Stack, a Software Defined Network enabled framework. And then we mainly make detail procedures for the attachment, service request and dedicated bearer activation/deactivation for our proposal network architecture. Finally, in order to evaluate signaling loads of the procedures compare with the legacy Long Term Evolution(LTE) architecture[16][17], we establish a clear analytical mode of the application and system states. Simulation results show that our proposal network architecture with elaborated signaling procedures has much impact on the signaling loads compare with the additional LTE architecture.

    The rest of the paper is organized as follows. Our proposal network architecture and the major modified procedures are presented in the Section II and Section III respectively.Section IV gives a clear analytical model of the signaling loads for the new network architecture. Section V is the simulation results and evaluation under the signaling loads model.And we draw our conclusion in the Section VI.

    II. U/C/M DECOUPLED ARCHITECTURE

    To enable intelligent flexibility and network programmability, inspired by NO Stack that explained brie fly above, we propose a U/C/M(User/Control/Management) decoupled LTE/EPC architecture. Our proposal, as showed in Fig.2, follows the line with the SDN (Software De fine Network) principle and provides a high level functional view of novel architecture.

    We separate out control functions from the data forwarding function of the S-GW and P-GW, and combine the control plane function of S/P-GW as well as user plane function of S/P-GW. As a result, the new xGW-C (X Gateway control plane) is centralized and runs on top of the Global Controller as an application when the xGW-U (X Gateway user plane) represents an advanced logical entity controlled by the xGW-C in the Global Controller.

    Also, the Mobility Management Entity(MME), core control entity in LTE, is converted to an application that runs on top of Global Controller, the Global Network View(GNV) module is a general database application similarly. We reconstruct the functions of the management plane function into Orchestrator.

    What’s more, we replace the control protocols that run on S1-MME and S11 interface with the SBI (Southbound Interface) protocol[8]. Open flow is a popular protocol for the southbound interface and can be employed on the SBI[15]. The Global Controller communicates to Orchestrator by the NBI (Northbound Interface), such as REST (Representational state transfer) API (Application Programming Interface).

    The architecture is composed of the following entities:

    Fig. 2 U/C/M decoupled LTE/EPC architecture

    2.1 Global controller

    Global Controller is the main component of our architecture as it controls the user traffic forwarding plane of the Evolved Node B(eNB)and GW-U. The Global Controller is responsible for user session establishment and loads monitoring on the user plane. Global Controller is an open flow controller and a collection of applications (e.g. MME, GW-C, GW-M and GNV) built on top the Global Controller over the inner API or over the REST API.

    MME is the main control entity for the E-UTRAN[9]. It communicates with a HSS for user authentication and user pro file download, and provides User Equipment(UE)with Evolved Packet System(EPS) Mobility Management (EMM) and EPS Session Management (ESM) functions using Non Access Stratum(NAS) signaling. In our architecture,the MME communicates with the Global Controller using the Controller intra API. The 3GPP interface between the MME and HSS is still maintained.

    xGW-C (X Gateway control plane): represents the control functionality of the S-GW and P-GW. It is responsible for resource management for bearer resources and IP address,Tunnel Endpoint Identi fier (TEID) assignment for GTP-U. The xGW-C allocates unique TEID value per session within S1-U interface between eNB and GW-C. With the openflow protocol, the Global Controller can set counters for the number of xGW-Us in order to get periodic load statistics. By comparing the received load statistics of the xGW-U capability,the Global Controller can easily get the load status of each xGW-U and therefore perform more efficient load balancing.

    GNV acts as HSS entity where user pro files are stored, provides authentication information and profiles to the MME in the Global Controller. Different to HSS, GNV also stores the information and states of the user plane, such as sessions, contexts, buffered data.

    2.2 xGW-U

    xGW-U (X Gateway user plane) represents an advanced logical entity controlled by the xGW-C in the Global Controller. And the advanced open flow switch that is able to encapsulate and decapsulate GTP packets can be enabled technology to implement logical entity.This switch applies the rules received from the Global Controller. It is responsible for packet forwarding between the eNB and PDN (Packet Data Network).

    2.3 eNB

    eNB is an intersection point of the access network and core network. It keeps the same radio functions in 3GPP standards while is enabled with the openflow protocol for data plane management. Therefore, the data plane is programmed according to instructions received from the Global Controller. eNB sends and receives user IP packets through a Packet Data Convergence Protocol (PDCP) and IP mapping table (kind of flow table). When eNB receives IP packets, it checks destination IP address. In the downlink, if matching entries available in the PDCP and IP mapping table,eNB sends packets on the particular PDCP connection, over the radio interface. In the uplink, packets are forwarded to the network through connected xGW.

    2.4 Orchestrator

    In legacy LTE network, the P-GW performs policy enforcement, packet filtering and charging based on the Policy and Charging Control(PCC) rules provided by a Policy and Charging Rules Function (PCRF)[10]. On preliminary stage, we consider reconstructing these management functions into Orchestrator. Therefore, when Global Control wants to obtain Quality of Service(QoS) and charging rules for the xGW-C, it could request the unified RESTful API to Orchestrator. Then Orchestrator handles the request and responses the demanded QoS and charging rules into popular format, such as JSON.

    III. LTE BASED NO STACK SIGNALING FLOWS

    In this section, we describe brie fly procedures related to signaling analysis based on our system model refer to the LTE standard. Important use case is that UE or PDN originate the services. Before explaining these situations,it is important to show how UE is initially attached to the system and at least, we also describes that dedicated bearer Activation/Deactivation procedure as supplement for service with QoS guarantee. In general, protocols of the LTE access network remain unchanged in the proposal. In contrast, the protocols related to network elements which are replaced in NO Stack architecture are rede fined or delete.

    3.1 UE Attach procedure

    UE attach diagram is shown in Fig.3. Unused network elements of LTE are removed from the figure where new additions are shown by dotted lines. Firstly, Global Controller gets the update location information of UE from GNV when UE sends an attachment request and this will happen after the Identity/Authentication/Ciphered successful checking. And the checking procedure is responsible for MME module integrated in the Global Controller. In the update location information, IP address assigned to UE is provided as a Served Party IP address.Fig.3 does not show detail procedure inside of Global controller due to none one message existing here. Although these procedures do not appear as a form of signaling interaction, a series of internal API is invoked in the Global Controller instead.

    In the traditional case, MME is responsible to create a unique link interface address. But in the new architecture, UE creates a unique address and verify the duplication. And all requests are considered as data plane traffic and are routed to the Global Controller by a flow table in xGW-U. The new proposal uses Initial Context Setup message only for creating a context between Global Controller and eNB.RRC connection recon figuration message is a response from eNB for UE attach a message After the UE attachment is completed from eNB to Global Controller. Global Controller will first store or update UE state provided by MME module. Thus, UE is considered as EMM-REGISTERED and ECM-CONNECTED state and prepare to transmit or receive data flow with xGW-U on the data plane. So far, the UE attach procedure is complete.

    Fig. 3 Attach procedure

    Fig. 4 UE triggered Service request procedure

    3.2 Service Request triggered by the UE

    When data traffic is emitted by a UE in IDLE state (ECM-idle and RRC-idle) [11], the UE performs the procedure illustrated in Fig.4.Firstly, signalling related to RRC connection setup is sent interactively between UE and eNB, which are reserved for the traditional procedure. After the connection is established,UE sends Service Request to Global Controller passing through the eNB. Next step,Global Controller process this request involving MME module and GNV and respond Initial Context Setup Request to eNB. At least, after eNB sends the AS Security Setup and RRC connection Reconfiguration to UE,it can forward the data flow coming from UE to xGW-U. Meanwhile, Global Controller process the flow table request and distribute new flow table entry which can steer data flow from UE to PDN to each xGW-Us. Thus, all connectivity is set up in the control plane and user plane, allowing the UE to receive and send data traffic.

    3.3 Network Triggered Service Request

    Similar to service triggered by UE, this case occurs when UE is ECM-idle or RRC-idle state, and data is coming from the PDN, Global Controller needs to originate corresponding signaling of paging to wake up the UE through the eNB. In the new architecture, xGW-U receives the data and looks for matched flow table entries under the guidance of the open flow protocol. Since UE stand in idle states, there will be no flow table entries to steer data flow to UE.Therefore, xGW-U will inform the Global Controller with incoming data and no UE routes. As a result, Global Controller calls the MME module performing the paging request with UE ID and IP address. This call flow is shown in Fig.3, while receiving the paging request, UE initiates the UE triggered Service Request procedure upon reception of paging indication from eNB. The relevant procedure is not discussed here. In this phase, Global Controller adds flow table entries to xGW-U. In ideal condition that xGW-U can store buffering packets until it receives the response from Global Controller and now xGW-U has flow entries to forward data flow to UE.

    3.4 Dedicated Bearer Activation/Deactivation

    There are two types of EPS bearers in traditional LTE: default and dedicated. Our proposal also supports two types of EPS bearers through the new network entity Orchestrator. When a UE attaches to the network, an IP address to be used in a PDN is assigned, connecting to a PDN, and a default EPS bearer is established all at the same time. When a user who has been using a service through a default bearer attempts to use a service which requires higher QoS that the current default bearer cannot provide, a dedicated bearer is established on demand. Dedicated bearer activation/deactivation procedures requested by UE are shown in Fig.6. The most speci fic setups are the Policy Request and Policy Response. As described in the section 2, Orchestrator stores PCC rules to the xGW-C, then Global Control could invoked the uni fied RESTful API provided Orchestrator to obtain QoS and charging rules for the xGW-C.After the Global Controller has the policy rules,it notices the eNB to allocate enough air resources for UE to establish the dedicated bearer with demanded QoS. On the core network side, Global Controller con figures the xGW-Us through the con figuration messages. From these messages, xGW-Us build dynamically flow tables to match dedicated bearer flow from the UE or PDN.

    Fig. 5 Network triggered service request procedure

    IV. ANALYTICAL MODEL

    The analysis of the states of the application is modeled based on queuing theory. Each application with typethas two states that the may or may not require a different QoS level offered by the dedicated bearer. Furthermore,the average arrival rateof type t application is thus:

    Fig. 7 describes the transitions of applications states, RRC states and dedicated bearer states.

    Fig. 6 Dedicated bearer activation/deactivation

    Fig. 7 States transitions model

    Table I Application and Detail Settings

    V. SIMULATION RESULTS AND ANALYSIS

    We analyze three types of application and detail settings are shown in the table I.

    Furthermore, we propose four application scenarios: the first one is an ‘All Default Bearer’ scenario, which only uses default bearer to support all types of application. The last three scenarios need multi-level QoS guarantee. The second scenario assumes the voice is supported by dedicated bearer, while media streaming and background applications still are supported by default bearer. In the third scenario, 10%of streaming and voice traffic are supported by dedicated bearers, while 90% of streaming traffic and background are supported by default bearer. In the fourth scenario, total voice and media streaming are supported by dedicated bearer, while Background is supported by default bearer.

    Fig. 8 NO stack and LTE signaling loads depending on inactivity timer

    Fig. 9 shows the percentage increase in signaling load of three application scenarios(2,3 and 4) requesting different QoS level compared to the ‘All Default Bearer’ scenario 1 in NO Stack architecture.

    We can observe that each scenario requesting QoS guarantee has always higher signaling load than ‘All Default Bearer’ scenario, and signaling load is also higher when requested QoS level is higher. This is because that dedicated bearer is used to meet the QoS requirement in addition to default bearer. Once a session with QoS level is coming, the complete signaling procedure for dedicated bearer deployment is triggered. The results show that the increasing of signaling load is faster with inactivity timer increasing when QoS level is higher such as scenario 4, where increasing of scenario 2 and scenario 3 is moderate relative.

    Fig. 9 Signaling load compared all default bearer scenario

    VI. CONCLUSIONS

    In this paper, we present an analytical model to evaluate the comparison between NO Stack architecture proposed in our previous study and standard LTE architecture model in terms of signaling load. NO stack rede fined the system architecture especially in core network so as to simplify the complex signaling procedure provided in LTE standard. Although the simulation result shows that signaling load decreases obviously in NO Stack regardless the value of inactivity timer, the deployment of application scenario with high QoS level using dedicated bearers could have a signi ficant impact on the performances of core network processing signaling. Therefore, NO Stack is more suitable for multi-bearer deployment. In future work, we will further analyze the performance of NO Stack on system level platform using advanced simulator NS3.

    ACKNOWLEDGEMENT

    This work was supported by the Chinas 863 Project (No. 2015AA01A706), the National Science and Technology Major Project (No. 2016ZX03001017), the Science and Technology Program of Beijing(No. D161100001016002), and the Science and Technology Cooperation Projects (No.2015DFT10160B).

    [1] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020. 2016.

    [2] Gudipati, A., et al. SoftRAN: Software defined radio access network. in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software de fined networking. 2013. ACM.

    [3] Parker, M.C., et al. CHARISMA: Converged heterogeneous advanced 5G cloud-RAN architecture for intelligent and secure media access. in 2016 European Conference on Networks and Communications (EuCNC). 2016.

    [4] Zhang, J., W. Xie, and F. Yang. An architecture for 5G mobile network based on SDN and NFV.in 6th International Conference on Wireless,Mobile and Multi-Media (ICWMMN 2015).2015. IET.

    [5] Agyapong, P.K., et al., Design considerations for a 5G network architecture. IEEE Communications Magazine, 2014. 52(11): p. 65-75.

    [6] Iovanna, P., et al. SDN-based architecture to support Synchronization in a 5G framework. in Precision Clock Synchronization for Measurement,Control, and Communication (ISPCS), 2016 IEEE International Symposium on. 2016. IEEE.

    [7] Zeng, J., L. Rong, and X. Su. NO stack: A software-defined framework for 5G mobile network. in Telecommunications (ICT), 2016 23rd International Conference on. 2016. IEEE.

    [8] Speci fication, O.S. http://archive.open flow.org/documents/open flow-spec-v1.1.0.pdf.

    [9] 3rd Generation Partnership Project. TS 23.202,Network architecture[S]. 2016.

    [10] 3rd Generation Partnership Project. TS 23.203,Policy and charging control architecture[S]. 2016.

    [11] 3rd Generation Partnership Project. TS 36.304 version 8.10.0 Release 8, User Equipment (UE)procedures in idle mode [S]. 2011,

    [12] BASSIL R, CHEHAB A, ELHAJJ I, et al. Signaling oriented denial of service on LTE networks; proceedings of the ACM International Symposium on Mobility Management and Wireless Access,F, 2012 [C].

    [13] 3rd Generation Partnership Project. TR 36.822 version 11.0.0, LTE Radio Access Network (RAN)enhancements for diverse data applications[S].2012.

    [14] W. Feng, Y. Wang, N. Ge, J. Lu, and J. Zhang,“Virtual MIMO in multi-cell distributed antenna systems: coordinated transmissions with largescale CSIT,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 10, pp. 2067-2081,Oct. 2013.

    [15] Bo L, Ming C, Chao H U, et al. Optimizing the Resource Utilization of Datacenter Networks with OpenFlow[J]. China Communications,2016, 13(3):1-11.

    [16] CHEN, Jengyueng, YANG, et al. A Novel Smart Forwarding Scheme in LTE-Advanced Networks[J]. China Communications, 2015,12(3):120-131.

    [17] Huang C, Chen Q, Tang L. Hybrid inter-cell interference management for ultra-dense heterogeneous network in 5G[J]. Science China Information Sciences, 2016, 59(8):082305.

    精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| 人妻 亚洲 视频| 国产一级毛片在线| 国产免费一区二区三区四区乱码| 在线观看三级黄色| 搡女人真爽免费视频火全软件| 成人毛片60女人毛片免费| 亚洲第一区二区三区不卡| 中国美白少妇内射xxxbb| 欧美一级a爱片免费观看看| 久久精品国产亚洲av天美| 亚洲av综合色区一区| 在线 av 中文字幕| 美女福利国产在线| 各种免费的搞黄视频| 亚洲真实伦在线观看| 亚洲欧美一区二区三区黑人 | av不卡在线播放| 多毛熟女@视频| 国产午夜精品久久久久久一区二区三区| www.av在线官网国产| 99热这里只有是精品50| 最近2019中文字幕mv第一页| 日韩成人av中文字幕在线观看| 久久久久久伊人网av| 一级毛片 在线播放| 三级国产精品欧美在线观看| 91精品一卡2卡3卡4卡| 亚洲精品国产av蜜桃| 人妻人人澡人人爽人人| 精品久久久久久久久av| 午夜福利网站1000一区二区三区| 男人添女人高潮全过程视频| 国产69精品久久久久777片| 精品少妇内射三级| 在线观看三级黄色| 又粗又硬又长又爽又黄的视频| 久久久久久久久大av| 日韩不卡一区二区三区视频在线| 精品一区二区免费观看| 久久精品久久久久久噜噜老黄| 午夜福利网站1000一区二区三区| 寂寞人妻少妇视频99o| 波野结衣二区三区在线| 伊人久久精品亚洲午夜| 97超碰精品成人国产| 日韩精品免费视频一区二区三区 | 久久亚洲国产成人精品v| 人妻制服诱惑在线中文字幕| 高清午夜精品一区二区三区| 人体艺术视频欧美日本| 人妻 亚洲 视频| 免费人成在线观看视频色| 老女人水多毛片| 亚洲国产成人一精品久久久| 97在线人人人人妻| 97在线人人人人妻| 乱码一卡2卡4卡精品| 亚洲国产毛片av蜜桃av| 日日摸夜夜添夜夜添av毛片| 青春草视频在线免费观看| 黄色欧美视频在线观看| 观看免费一级毛片| tube8黄色片| 又黄又爽又刺激的免费视频.| 亚洲成人一二三区av| 中文字幕免费在线视频6| 狠狠精品人妻久久久久久综合| 亚洲图色成人| 啦啦啦啦在线视频资源| 在线观看www视频免费| 国产精品伦人一区二区| 丝袜喷水一区| 人妻一区二区av| 夫妻性生交免费视频一级片| 亚洲电影在线观看av| 蜜桃久久精品国产亚洲av| 国产 精品1| 亚洲av免费高清在线观看| 高清欧美精品videossex| 亚洲精品第二区| 国产爽快片一区二区三区| 在线观看人妻少妇| 极品少妇高潮喷水抽搐| 亚洲av在线观看美女高潮| 国产午夜精品一二区理论片| kizo精华| 大香蕉久久网| 久久久久久久久久久免费av| 国产白丝娇喘喷水9色精品| 日本黄大片高清| 亚洲真实伦在线观看| 少妇被粗大猛烈的视频| 亚洲欧美成人综合另类久久久| 十分钟在线观看高清视频www | 久久久久精品久久久久真实原创| 又大又黄又爽视频免费| 国产成人91sexporn| 99久久中文字幕三级久久日本| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| 噜噜噜噜噜久久久久久91| 嫩草影院入口| 我要看黄色一级片免费的| 在线观看美女被高潮喷水网站| 好男人视频免费观看在线| 51国产日韩欧美| 国产欧美日韩一区二区三区在线 | 婷婷色综合www| 色视频在线一区二区三区| 搡老乐熟女国产| 欧美精品国产亚洲| 色吧在线观看| 黑人高潮一二区| xxx大片免费视频| 国产亚洲91精品色在线| 在线观看三级黄色| 一本—道久久a久久精品蜜桃钙片| 观看av在线不卡| 亚洲精品日韩在线中文字幕| 成年美女黄网站色视频大全免费 | 少妇被粗大的猛进出69影院 | 美女主播在线视频| 午夜日本视频在线| 蜜臀久久99精品久久宅男| 哪个播放器可以免费观看大片| 日本与韩国留学比较| 日韩人妻高清精品专区| 三级国产精品欧美在线观看| 成年美女黄网站色视频大全免费 | www.av在线官网国产| 高清视频免费观看一区二区| 亚洲av欧美aⅴ国产| 99久久精品热视频| 亚洲欧洲精品一区二区精品久久久 | 成年人免费黄色播放视频 | .国产精品久久| 男女啪啪激烈高潮av片| 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 夫妻午夜视频| 99久国产av精品国产电影| 久久精品国产亚洲网站| 久久久a久久爽久久v久久| 国产av码专区亚洲av| 日韩伦理黄色片| 国产国拍精品亚洲av在线观看| 国产高清国产精品国产三级| 99九九线精品视频在线观看视频| 搡老乐熟女国产| 免费观看无遮挡的男女| 日本欧美国产在线视频| 色婷婷av一区二区三区视频| 亚洲精品日韩av片在线观看| 日韩av在线免费看完整版不卡| av视频免费观看在线观看| 水蜜桃什么品种好| 久久6这里有精品| 色视频在线一区二区三区| 久久久久久久精品精品| 欧美日韩视频高清一区二区三区二| 久久影院123| 9色porny在线观看| 国产精品熟女久久久久浪| 一本一本综合久久| 99九九在线精品视频 | 美女中出高潮动态图| 免费少妇av软件| 不卡视频在线观看欧美| av有码第一页| 国产成人精品无人区| 又大又黄又爽视频免费| 亚洲综合色惰| 又大又黄又爽视频免费| 国产欧美日韩综合在线一区二区 | 五月天丁香电影| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 99国产精品免费福利视频| 亚洲激情五月婷婷啪啪| 七月丁香在线播放| 亚洲欧美日韩卡通动漫| 国产精品嫩草影院av在线观看| 久久99热6这里只有精品| av在线老鸭窝| 国产成人freesex在线| 22中文网久久字幕| 97超视频在线观看视频| 国产免费视频播放在线视频| 丝袜在线中文字幕| 亚洲性久久影院| 美女大奶头黄色视频| 国产男女内射视频| 国产精品99久久99久久久不卡 | 国产日韩一区二区三区精品不卡 | 好男人视频免费观看在线| 丝袜在线中文字幕| 国产一区二区三区综合在线观看 | 精品卡一卡二卡四卡免费| 亚洲人与动物交配视频| 丁香六月天网| 少妇高潮的动态图| 日日啪夜夜撸| 久久久久精品久久久久真实原创| 免费大片18禁| 亚洲av免费高清在线观看| 九九爱精品视频在线观看| 亚洲欧美日韩东京热| 日本色播在线视频| 有码 亚洲区| 精品少妇久久久久久888优播| 国产精品久久久久成人av| 欧美日韩亚洲高清精品| 欧美高清成人免费视频www| .国产精品久久| 深夜a级毛片| 桃花免费在线播放| 黄色毛片三级朝国网站 | 亚洲国产精品一区二区三区在线| av免费观看日本| 伦理电影免费视频| 久久精品国产亚洲网站| 美女中出高潮动态图| 在线看a的网站| 一级片'在线观看视频| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 老司机影院毛片| 99热国产这里只有精品6| 黄色毛片三级朝国网站 | 国产欧美日韩综合在线一区二区 | 久久久久久久亚洲中文字幕| 亚洲av日韩在线播放| 国产亚洲欧美精品永久| 最近的中文字幕免费完整| 免费大片黄手机在线观看| 免费大片黄手机在线观看| av免费观看日本| 亚洲欧洲精品一区二区精品久久久 | 熟女av电影| 亚洲av国产av综合av卡| 9色porny在线观看| 亚洲国产欧美日韩在线播放 | 亚洲婷婷狠狠爱综合网| av在线老鸭窝| 22中文网久久字幕| 日韩成人av中文字幕在线观看| 如何舔出高潮| h日本视频在线播放| 国产成人91sexporn| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 18禁在线无遮挡免费观看视频| 免费少妇av软件| 成人毛片a级毛片在线播放| 日韩强制内射视频| 免费看日本二区| av专区在线播放| 夫妻性生交免费视频一级片| 美女主播在线视频| 午夜激情久久久久久久| 免费黄色在线免费观看| 99re6热这里在线精品视频| 69精品国产乱码久久久| 91久久精品国产一区二区成人| 亚洲国产成人一精品久久久| 九草在线视频观看| 精品久久久久久电影网| 老司机影院成人| 国产在线男女| 国产探花极品一区二区| 日韩伦理黄色片| 欧美少妇被猛烈插入视频| 欧美xxxx性猛交bbbb| 少妇精品久久久久久久| 国产精品久久久久久久电影| av又黄又爽大尺度在线免费看| 曰老女人黄片| 午夜视频国产福利| 久久免费观看电影| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| 国产淫语在线视频| 在线观看av片永久免费下载| 精品午夜福利在线看| 黄色视频在线播放观看不卡| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 亚洲内射少妇av| 99热这里只有是精品在线观看| 不卡视频在线观看欧美| 久久久午夜欧美精品| 狂野欧美激情性xxxx在线观看| 青春草国产在线视频| 日本黄色日本黄色录像| 女人精品久久久久毛片| 久久精品夜色国产| 亚洲性久久影院| 少妇人妻 视频| av女优亚洲男人天堂| 久热这里只有精品99| 色网站视频免费| 日韩大片免费观看网站| 国产片特级美女逼逼视频| 亚洲国产精品国产精品| 亚洲中文av在线| 日韩大片免费观看网站| 久久国内精品自在自线图片| 国产在线男女| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| 国产精品蜜桃在线观看| www.av在线官网国产| 草草在线视频免费看| 亚洲欧美清纯卡通| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 美女内射精品一级片tv| 国产免费又黄又爽又色| 日韩一本色道免费dvd| 亚洲欧美日韩卡通动漫| 精品亚洲成国产av| av福利片在线观看| 亚洲精品色激情综合| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999| 少妇人妻 视频| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| 六月丁香七月| 赤兔流量卡办理| 又大又黄又爽视频免费| 亚洲国产色片| 亚洲欧美成人精品一区二区| 最新中文字幕久久久久| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放 | 亚洲精品久久久久久婷婷小说| 国产精品一区二区在线不卡| 99久久人妻综合| 久久久久久久久久久久大奶| 中国国产av一级| 特大巨黑吊av在线直播| 亚洲欧美一区二区三区黑人 | 国产精品三级大全| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 亚洲精品,欧美精品| 国产免费视频播放在线视频| av黄色大香蕉| 亚洲电影在线观看av| 黑人高潮一二区| 狂野欧美激情性bbbbbb| 伦理电影大哥的女人| 2018国产大陆天天弄谢| 国产一级毛片在线| 大话2 男鬼变身卡| 噜噜噜噜噜久久久久久91| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 18禁在线播放成人免费| 丝袜喷水一区| av免费观看日本| 国产精品熟女久久久久浪| 色5月婷婷丁香| 女人精品久久久久毛片| 久久精品夜色国产| 人妻一区二区av| 我的女老师完整版在线观看| a级毛色黄片| 日本-黄色视频高清免费观看| 人人澡人人妻人| 欧美97在线视频| 精品久久久久久久久亚洲| 女性被躁到高潮视频| 免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片| 久久99热6这里只有精品| 亚洲av二区三区四区| 男女国产视频网站| 国产91av在线免费观看| 亚洲第一区二区三区不卡| 国产综合精华液| 欧美97在线视频| 成人黄色视频免费在线看| 国产精品熟女久久久久浪| 国产探花极品一区二区| 欧美精品国产亚洲| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 久久99热这里只频精品6学生| 十八禁高潮呻吟视频 | 在线观看美女被高潮喷水网站| 国产爽快片一区二区三区| 国产有黄有色有爽视频| 中国国产av一级| 观看免费一级毛片| 日韩中字成人| 久久久久精品性色| 黄色一级大片看看| 国产精品欧美亚洲77777| videos熟女内射| 亚洲精品视频女| 一区二区三区免费毛片| 国产毛片在线视频| 十分钟在线观看高清视频www | 久久毛片免费看一区二区三区| 99久久中文字幕三级久久日本| a级毛色黄片| 日本免费在线观看一区| 视频中文字幕在线观看| 日本91视频免费播放| 少妇被粗大猛烈的视频| 欧美精品亚洲一区二区| 九九在线视频观看精品| 中国国产av一级| 国产色爽女视频免费观看| 一区在线观看完整版| 精品人妻熟女av久视频| 女性生殖器流出的白浆| 国产精品一区二区在线不卡| 99热这里只有是精品50| 国产真实伦视频高清在线观看| 国产成人aa在线观看| 欧美区成人在线视频| 欧美日韩视频高清一区二区三区二| 一级毛片aaaaaa免费看小| 亚洲av成人精品一二三区| 日本黄色片子视频| a级毛片在线看网站| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 久久久国产一区二区| 亚洲不卡免费看| 亚洲av国产av综合av卡| 热re99久久国产66热| 国产伦精品一区二区三区四那| 免费播放大片免费观看视频在线观看| 麻豆成人午夜福利视频| .国产精品久久| 18禁在线播放成人免费| 久久精品熟女亚洲av麻豆精品| 成人国产麻豆网| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 免费av中文字幕在线| 亚洲图色成人| 街头女战士在线观看网站| 国产精品99久久99久久久不卡 | 人妻人人澡人人爽人人| 下体分泌物呈黄色| 五月开心婷婷网| 成人特级av手机在线观看| 久久久国产欧美日韩av| 又大又黄又爽视频免费| 精品少妇内射三级| 亚洲国产精品国产精品| 永久网站在线| 9色porny在线观看| videos熟女内射| 久久久午夜欧美精品| 亚洲成人手机| 免费人成在线观看视频色| 少妇人妻一区二区三区视频| 日韩亚洲欧美综合| 精品视频人人做人人爽| 五月伊人婷婷丁香| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 黑人高潮一二区| 啦啦啦啦在线视频资源| 欧美日韩一区二区视频在线观看视频在线| 国产综合精华液| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| av黄色大香蕉| 又大又黄又爽视频免费| 国产精品99久久99久久久不卡 | 日本午夜av视频| 男人和女人高潮做爰伦理| av有码第一页| 黑人高潮一二区| 精品人妻一区二区三区麻豆| 99热国产这里只有精品6| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 插阴视频在线观看视频| 成年人免费黄色播放视频 | 老司机影院成人| 亚洲国产日韩一区二区| 午夜久久久在线观看| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线观看日韩| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 下体分泌物呈黄色| 我的老师免费观看完整版| 在线 av 中文字幕| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 最近中文字幕2019免费版| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 99九九在线精品视频 | 亚洲,一卡二卡三卡| www.av在线官网国产| 日日摸夜夜添夜夜爱| 国产在线免费精品| 国产av国产精品国产| 免费看光身美女| av国产精品久久久久影院| 亚洲av二区三区四区| 王馨瑶露胸无遮挡在线观看| 亚洲av二区三区四区| 国模一区二区三区四区视频| 色网站视频免费| 午夜91福利影院| 高清午夜精品一区二区三区| 最后的刺客免费高清国语| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| av福利片在线观看| 国产成人免费无遮挡视频| av有码第一页| 美女内射精品一级片tv| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 大陆偷拍与自拍| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 中文乱码字字幕精品一区二区三区| 成人毛片60女人毛片免费| 欧美日韩av久久| 亚洲av国产av综合av卡| 日本黄色片子视频| av免费观看日本| 中文字幕免费在线视频6| 观看av在线不卡| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 啦啦啦啦在线视频资源| 如日韩欧美国产精品一区二区三区 | 亚洲精品视频女| 建设人人有责人人尽责人人享有的| 日本av免费视频播放| 国产精品蜜桃在线观看| 免费播放大片免费观看视频在线观看| 成年av动漫网址| 国产伦精品一区二区三区视频9| 高清在线视频一区二区三区| 最近最新中文字幕免费大全7| 久久久a久久爽久久v久久| 国产亚洲91精品色在线| 久久狼人影院| 91久久精品国产一区二区三区| 久久av网站| 久久 成人 亚洲| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 黑丝袜美女国产一区| 精品少妇内射三级| 天堂中文最新版在线下载| 狂野欧美白嫩少妇大欣赏| 国产亚洲5aaaaa淫片| 亚洲av不卡在线观看| 日韩精品有码人妻一区| 伊人久久国产一区二区| 亚洲一级一片aⅴ在线观看| 精品久久久噜噜| 久久人人爽人人爽人人片va| 国产淫语在线视频| 欧美少妇被猛烈插入视频| 久久久久久久久久成人| 久久国产亚洲av麻豆专区| 国产熟女欧美一区二区| 大香蕉97超碰在线| 在线观看av片永久免费下载| 少妇 在线观看| 国产真实伦视频高清在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国产色婷婷99| 国产亚洲最大av| 国产精品人妻久久久久久| 国产高清有码在线观看视频| 插逼视频在线观看| 2021少妇久久久久久久久久久| 日韩欧美 国产精品| 久久99热6这里只有精品| 成人黄色视频免费在线看| 国产爽快片一区二区三区| 日韩精品有码人妻一区| 久久久国产欧美日韩av| 久久久国产一区二区| 赤兔流量卡办理| 9色porny在线观看| 黄色一级大片看看| 精品国产国语对白av| 大话2 男鬼变身卡| 99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 纯流量卡能插随身wifi吗| 日韩大片免费观看网站| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 国产在线男女| 精品熟女少妇av免费看| 国产 精品1| 亚洲精品日韩av片在线观看| 亚洲精品一区蜜桃|