• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CSMA/CN+: Improving the Performance of Collision Noti fication for Wireless LANs

    2017-05-09 01:39:08QinglinZhaoFangxinXuShangguangWang
    China Communications 2017年7期

    Qinglin Zhao*, Fangxin Xu, Shangguang Wang

    1 The Faculty of Information Technology, Macau University of Science and Technology, Avenida Wei Long, Taipa, Macau, China

    2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China* The corresponding author, email: zqlict@hotmail.com

    I. INTRODUCTION

    Today, wireless portable devices such as smartphones and notebooks are ubiquitous.While people leverage these devices to access Internet and collectively share data [1], the simultaneous data transmissions of these devices often lead to serious physical-layer interferences. These interferences will signi ficantly lower system performance. Under these interferences, how to coordinate data transmission has received a great deal of attention [2][3].

    On the other hand, MAC-layer protocols often also lead to poor system performance due to serious collisions between data transmissions. IEEE 802.11 MAC protocol, carrier sense multiple access with collision avoidance(CSMA/CA) [1], has generally been built in these devices. In 802.11 networks, a sender infers a collision occurrence from the absence of an ACK feedback, only after it completes the entire frame transmission. To detect the collision early, CSMA/CN (collision notification)[5], which is compatible with conventional 802.11 protocols, has recently been proposed and has attracted a great deal of attention such as [6][7].

    In CSMA/CN, when a receiver infers that the receiving frame gets corrupted, it will send its signature (i.e., a unique pseudo-noise sequence) as a CN to the sender. On the other hand, the sender, while transmitting the frame,constantly executes correlation (between the receiver’s signature and the arriving signal) to detect whether a CN arrives. Once detecting an arrival of the CN (i.e., when the correlation result is larger than a threshold), the sender aborts the ongoing transmission immediately,thereby avoiding continuing to transmit the erroneous frame.

    In this paper, we propose a novel design called CSMA/CN+to enhance CSMA/CN in low SINR. The enhancement is at the cost of slightly increasing the software-implementation complexity.

    In CSMA/CN, the sender, depending on the detection result, will determine whether to continue or abort an ongoing transmission at any time. Consequently, the CN detection performance (namely, the successful detection probability and the false-alarm probability of the CN) has a significant impact on the efficiency of CSMA/CN. By “false alarm”,we mean that the receiver does not send back a CN but the sender detects it mistakenly. In[8], we point out: the false-alarm probability of the CN is a dominating factor that influences the system performance significantly,and therefore we should keep this probability below a threshold in order to achieve high performance. The false-alarm probability defalse-alarm probability is a decreasing function of . To keep the false-alarm probability below a threshold, we should keep unchanged.Therefore, in high SINR, we should reduce L, while in low SINR, we should increase L.Assume that in high SINR, a signature with fixed length (e.g., 20 bytes suggested in [8])may fulfill the desired false-alarm requirement. However, in low SINR, the false-alarm requirement might be violated signi ficantly (as illustrated in Fig. 2 in [8]), leading to disastrous effects (for example, it might force senders to abort almost all ongoing transmissions).This motivates us to reduce the false-alarm in low SINR, while maintaining as high performance as CSMA/CN in high SINR.

    In this paper, we propose CSMA/CN+ to overcome this drawback of CSMA/CN. In CSMA/CN+, we introduce an additional signature. The receiver, adapting to channel conditions and self-signal suppression capability,determines whether to send back zero, one,or two signatures (which are called a CN+noti fication) to the sender. In high SINR, the receiver transmits one signature; and therefore CSMA/CN+ reduces to CSMA/CN, achieving as high performance as CSMA/CN (as shown in Figure 7). In low SINR, the receiver transmits two signatures; and therefore the sender infers a CN occurrence only after detecting the arrivals of the two signatures (instead of detecting the arrival of one signature as in CSMA/CN), thereby reducing the false-alarm probability. In very low SINR, the receiver does not transmit signatures; and therefore CSMA/CN+ excludes the false alarm completely. In this way, we alleviate the adverse impact of the false alarm and therefore improve the system performance. Our design is applicable for CSMA/CN-supporting wireless networks, e.g., wireless LANs and wireless multi-hop networks (note that the authors in[5] presented their design mainly focusing on a two-link network, which is the fundamental component of multi-hop networks; our design is applicable for such a two-link network as well). Our improvement is at the cost of slightly increasing the software-implementation complexity (the overhead incurred is explained in Section 2.6). In this paper, we first present the design of CSMA/CN+. We then apply the design in a wireless LAN, and theoretically analyze the detection performance of the noti fication and the saturation throughput (where each sender always has frames to transmit). Extensive simulations verify that CSMA/CN+ can remarkably improve the system throughput of CSMA/CN and our analysis is very accurate.

    The rest of this paper is organized as follows. In Section II, we elaborate the design of CSMA/CN+. In Section III, we theoretically analyze the detection performance and the saturation throughput of CSMA/CN+. In Section IV, we verify the effectiveness of CSMA/CN+and the accuracy of our analysis Finally, Sec-tion V concludes this paper.

    II. CSMA/CN+

    In this section, we present the proposed CSMA/CN+.

    2.1 Overview of CSMA/CN+

    CSMA/CN+ is an enhancement of CSMA/CN.

    Like CMSA/CN, the sender S utilizes two antennas: one for normal data transmission and another dedicated to listening for the notification. The receiver R utilizes a single antenna for transmission or reception. R has a signature with length LR(denoted by), which is known to S. Besides, CSMA/CN+also employs three additional PHY techniques adopted in CSMA/CN: physical-layer hints [9](which inform the MAC layer of how likely some bits of a frame are in error), cross-correlation (between the known pattern and the arriving signal), and self-signal suppression(that suppresses the self-signal, rather than cancels it perfectly).

    The data transmitting and receiving process in CSMA/CN+ is similar to that in CSMA/CN, as illustrated in Figure 1. CSMA/CN+enhances CSMA/CN through reducing or excluding false alarms.

    Below, we elaborate the design of CSMA/CN+.

    2.2 CN+ parameter update at R and s

    Algorithm 1: CN+ parameter update atandspeci fies the parameter update procedure at R and S, which is newly introduced in CSMA/CN+. We assume that R intriguers the activation/deactivation operations of CSMA/CN+.When CSMA/CN+ is deactivated, CSMA/CA runs; otherwise CSMA/CN+ runs.

    Fig. 1 Basic operations of CSMA/CN+

    ?

    ?

    ?

    ?

    2.3 Data frame transmission from S to R

    Algorithm 2 specifies the data transmission process from S to R. WhenSwins the channel,it will transmit a data frame according to the

    2.4 CN+ transmission from R to S

    Algorithm 3 specifies the CN+ transmission process from R to S. Once inferring that the receiving frame gets corrupted,Raborts receiving the frame immediately, and executes the following actions according to the Flag

    2.5 CN+ detection at S

    Algorithm 4 speci fies the CN+ detection process at S. While transmitting a data frame, S will detect via correlation the noti fication from R and execute the following actions according one signature as in CSMA/CN (i.e., corr(LR)>, which means that the cross-correlation>), S will abort the ongoing transmission. In low SINR, by regarding the arrivals of two signatures as a noti fication, CSMA/CN+ may reduce the false-alarm probability signi ficantly, thereby improving the channel utilization.Here, corr(LR) and corr(L+) can be calculated by and, respectively.

    where denotes thel-th symbol of the receiving signal after the self-signal suppression, from

    2.6 Overhead and threshold setting

    CSMA/CN+ improves the performance of CSMA/CN at the cost of slightly increasing the software-implementation complexity. First,our design has the same hardware requirement as the CSMA/CN. Second, in our design, the main overhead (introduced in the sender side and implied in Algorithms 1 and 4) is that the sender should execute an additional correlation operation with a time complexity of O(1)as in CSMA/CN, when two signatures are employed. The main overhead (introduced in the receiver side and implied in Algorithm 1)is that the receiver should determine whether to transmit a noti fication and how to set L+if a notification will be transmitted. The decision has a time-complexity of O(1) as the mainly involved variable L+has a closed form and can be evaluated in a constant time.

    In our design, the receiver, adapting to channel conditions and self-signal suppression capability, prudently determines whether to send back zero, one, or two signatures to the sender. Two thresholds involving the decision are SINRth(which is the SINR threshold after self-signal suppression) and Lth(which is the threshold of notification length), as shown in Algorithm 1. In our design, the threshold settings are according to the theoretical model in [8]. We set SINRthto -10dB, because Fig. 9 in [8] shows that the system performance will deteriorate signi ficantly when SINR < -10dB.We set Lthto the half of the average payload length in a data frame, because Fig. 7 in [8]shows that a longer notification length will remarkably delay the aborting time of an erroneous transmission.

    2.7 Hidden and exposed node problems

    In this section, we discuss the behavior of CSMA/CN+ when hidden and exposed node problems occur. We assume that all nodes (i.e.,A, B, C, and D) in Figure 2 support CSMA/CN+, and C always transmit frames to D.

    Hidden node problem. Figure 2(a) illustrates this problem, where A and C are hidden nodes each other in terms of B. If A transmits a frame to B, C’s transmission will interfere with B’s reception. Therefore, B will send a notification consisting of its signature to A;then A aborts its transmission immediately, releasing the channel for possible transmissions of A’s neighbors, as done in CSMA/CN. In short, in this situation, CSMA/CN+ reduces to CSMA/CN.

    Fig. 2 (a) Hidden node problem and (b) exposed node problem in CSMA/CN+

    Exposed node problem. Figure 2(b) illustrates this problem, where B and C are exposed nodes each other, and thereby they cannot transmit frame simultaneously. Like [5],we also assume that the CMAP scheme [10]is used here that allows B and C to transmit in parallel according to an interference-map mechanism. When B transmits frames to A, at the same time it will also perform correlation operations to detect whether to receive a noti-fication from A. However, B is in a very low SINR state due to C’s interference. This might cause B to frequently trigger false alarms(which forces B to abort almost all ongoing transmissions) if only one signature with a short fixed length acts as a noti fication. Then,CSMA/CN+ can be used to determine whether to introduce an additional signature and how to set its length. In short, in this situation,CSMA/CN+ has great potential to improve the performance of CSMA/CN signi ficantly.

    III. PERFORMANCE OF CSMA/CN+ IN A WIRELESS LAN

    In this section, we model the saturation throughput of CSMA/CN+ in a wireless LAN.

    3.1 Performance of CN+ detection

    The performance of detecting a notification signi ficantly affects the system throughput in CSMA/CN+. Two performance metrics are associated with the detection performance:

    · the false alarm probability, namely, the probability that R does not send a noti fication but S detects it mistakenly;

    · the successful detection probability, namely, the probability that R sends a notification and S detects it successfully.

    where Q(·) is the tail probability of the standard normal distribution, f(·) and g(·) are from [8].

    Fig. 3 CSMA/CN+ in low SINR for a wireless LAN

    3.2 Calculation of CN+ length

    In [8], we show that to achieve a high throughput, we should ensure that the false

    With CSMA/CN+, to achieve a high throughput in low SINR, we use two sig-

    3.3 Saturation throughput of CSMA/CN+

    For a complete analysis of the saturation throughput, pleases refer to [8].

    IV. MODEL VERIFICATION

    In this section, we show the performance of CN+ detection and the saturation throughput of CSMA/CN+.

    4.1 Performance of CN+ detect

    Figure 4 (a) and (b), respectively, plot the false-alarm probability and the successful detection probability when SINR increases from-15dB to 5 dB. From this figure, we have the following observations:

    · When SINR > -5dB, the CN+ detection performance of CSMA/CN+ (i.e., the probabilities of false alarm and successful detection) is almost the same as that of CSMA/CN. This indicates that in this regime, CSMA/CN+ should produce as high throughput as CSMA/CN, since the false alarm probability is the dominating factor that in fluences the system performance.

    4.2 Saturation throughput of CSMA/CN+

    · CSMA/CN+ achieves the highest throughput. The reason is that when the SINR is low, the condition of detecting two signatures significantly lowers the false-alarm probability (which makes normal transmissions successful with high probability),while the sender may still abort erroneous transmissions with high probability immediately.

    · CSMA/CN achieves the lowest throughput which is almost 0. The reason is that the low SINR triggers a high false-alarm probability, which forces senders to abort almost all ongoing transmissions.

    · CSMA/CA achieves a throughput which is between those of CSMA/CN and CSMA/CN+. The reason is that CSMA/CA neither triggers a false-alarm (so it is better than CSMA/CN) nor aborts erroneous transmissions early (so it is worse than CSMA/CN+).

    The above observations manifest that CSMA/CN+ is very effective in improving the system performance of CSMA/CN. In addition, the simulation results well match with the corresponding theoretical results, indicating that the theoretical model is very accurate.

    Figure 7 compares the normalized throughput between CSMN/CN+ and CSMA/CN, as SINR varies from -15dB to 5dB, where n=30 and the packet size = 1500 bytes. From this figure, we have the following observations.

    Fig. 4 (a) Probability of false alarm, and (b) probability of successful detection for the CN+ noti fication

    · In low SINR (say, below -6dB), CSMA/CN+ may achieve far higher throughput than CSMA/CN. The reason is explained as follows. In low SINR, using a single signaprobability significantly, making most normal transmissions successful in CSMA/CN+. Note that the throughput of CSMA/CN+ increases as SINR varies from -15dB to -9dB, but decreases as SINR varies from-9dB to -7dB. This is because when SINR increases to a threshold, the overhead (introduced by the additional signature) will exceed the gain of reducing the false-alarm probability.

    Fig. 5 Saturation throughput vs. L+

    Fig. 6 Comparison of saturation throughput among CSMA/CA, CSMA/CN, and CSMA/CN+

    V. CONCLUSION

    In this paper, we propose a novel design called CSMA/CN+ to enhance CSMA/CN in low SINR. The enhancement is at the cost of slightly increasing the software-implementation complexity. We then apply the design in a wireless LAN, and theoretically analyze the system throughput. Extensive simulations verify the effectiveness of the proposed design and the accuracy of the proposed theoretical model. Our design is applicable for CSMA/CN-supporting wireless networks. This study will greatly promote the practicality of CSMA/CN.

    Fig. 7 Comparison of saturation throughput between CSMN/CN+ and CSMA/CN,as SINR varies from -15dB to 5dB

    ACKNOWLEDGEMENTS

    This work is supported by the Macao FDCTMOST grant 001/2015/AMJ, and Macao FDCT grants 056/2017/A2 and 005/2016/A1.

    Reference

    [1] G. Yang, S. He, Z. Shi, J. Chen, “Promoting Co-operation by the Social Incentive Mechanism in Mobile Crowdsensing”, IEEE Communications Magazine, vol. 55, no. 3, pp 86-92, March, 2017.

    [2] W. Feng, Y. Wang, N. Ge, J. Lu, and J. Zhang,“Virtual MIMO in multi-cell distributed antenna systems: coordinated transmissions with largescale CSIT”, IEEE Journal on Selected Areas in Communications, vol. 31, no. 10, pp 2067-2081,October, 2013.

    [3] W. Feng, Y. Wang, D. Lin, N. Ge, J. Lu, and S.Li, “When mmWave communications meet network densification: a scalable interference coordination perspective”, IEEE Journal on Selected Areas in Communications, Accepted for publication, April, 2017.

    [4] ANSI/IEEE Std 802.11, Part 11: wireless LAN medium access control (MAC) and physical layer(PHY) speci fications, 1999 Edition (R2007).

    [5] S. Sen, R. R. Choudhury, and S. Nelakuditi,“CSMA/CN: carrier sense multiple access with collision notification”, IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp 544—556, April,2012.

    [6] X. Ji, J. Wang, M. Liu, Y. Yan, P. Yang, and Y. Liu,“Hitchhike: Riding control on preambles”, Proceedings of IEEE INFOCOM, pp 2499—2507,May, 2014.

    [7] S. Lv, X. Dong, Y. Lu, X. Du, X. Wang, Y. Dou, and X. Zhou, “3D pipeline contention: Asymmetric full duplex in wireless networks”, Proceedings of IEEE INFOCOM, pp. 790—798, May 2014.

    [8] F. Xu, Q. Zhao, and Y. Zeng, “How Well Does CSMA/CN Work in WLANs?”, IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp.7662-7669, September, 2016.

    [9] M. Vutukuru, H. Balakrishnan, and K. Jamieson,“Cross-layer wireless bit rate adaptation”, ACM SIGCOMM Computer Communication Review,vol. 39, no. 4, pp. 3—14, August, 2009.

    [10] M. Vutukuru, K. Jamieson, and H. Balakrishnan,“Harnessing exposed terminals in wireless networks”, in Proc. 5th USENIX NSDI, pp. 59—72,April, 2008.

    АⅤ资源中文在线天堂| 亚洲中文字幕一区二区三区有码在线看| 日本五十路高清| 色综合亚洲欧美另类图片| 麻豆国产97在线/欧美| 久久韩国三级中文字幕| 如何舔出高潮| 亚洲美女视频黄频| 亚洲欧美日韩卡通动漫| 少妇熟女欧美另类| 欧美高清成人免费视频www| 日本黄色视频三级网站网址| 久久精品国产亚洲av香蕉五月| a级毛片a级免费在线| 国产精品嫩草影院av在线观看| 久久精品国产亚洲网站| 啦啦啦啦在线视频资源| 好男人在线观看高清免费视频| 18禁在线播放成人免费| 简卡轻食公司| 青青草视频在线视频观看| 国产国拍精品亚洲av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 在线播放国产精品三级| 国产亚洲欧美98| 51国产日韩欧美| 舔av片在线| 午夜福利在线观看吧| 婷婷色av中文字幕| 欧美人与善性xxx| av在线蜜桃| 久久久成人免费电影| 观看美女的网站| 亚洲人与动物交配视频| 亚洲av成人精品一区久久| 国语自产精品视频在线第100页| 黄片无遮挡物在线观看| 成人漫画全彩无遮挡| 久99久视频精品免费| 老师上课跳d突然被开到最大视频| 九草在线视频观看| 黄片wwwwww| 黄色视频,在线免费观看| 亚洲国产色片| 青春草视频在线免费观看| 变态另类成人亚洲欧美熟女| av免费观看日本| 中文字幕熟女人妻在线| 非洲黑人性xxxx精品又粗又长| 成人综合一区亚洲| 日韩欧美 国产精品| 在线免费观看的www视频| 国产精品久久久久久av不卡| 直男gayav资源| 久久久久国产网址| avwww免费| 亚洲精品粉嫩美女一区| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 三级国产精品欧美在线观看| 国产精品,欧美在线| 免费搜索国产男女视频| 在线播放国产精品三级| 亚洲av二区三区四区| 精品国产三级普通话版| 最近中文字幕高清免费大全6| 久久久国产成人精品二区| 看黄色毛片网站| 欧美一区二区精品小视频在线| 国产一区亚洲一区在线观看| 亚洲国产色片| 亚洲人成网站在线观看播放| 91久久精品电影网| 淫秽高清视频在线观看| 麻豆精品久久久久久蜜桃| av专区在线播放| 国产精品一区二区性色av| 精品午夜福利在线看| 一本久久精品| 中文在线观看免费www的网站| 日本成人三级电影网站| av免费在线看不卡| 好男人在线观看高清免费视频| 精品久久久噜噜| 亚洲第一区二区三区不卡| 日日撸夜夜添| 麻豆国产av国片精品| 国产日韩欧美在线精品| 国产高清不卡午夜福利| 哪里可以看免费的av片| 免费在线观看成人毛片| 国产午夜精品论理片| ponron亚洲| 哪里可以看免费的av片| av女优亚洲男人天堂| 成人综合一区亚洲| 最好的美女福利视频网| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 国产一区二区在线av高清观看| 国产老妇伦熟女老妇高清| 天堂网av新在线| 国产精品久久久久久久电影| 高清日韩中文字幕在线| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 天堂网av新在线| 国内精品一区二区在线观看| 久久久久久伊人网av| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 日本成人三级电影网站| 国国产精品蜜臀av免费| 性欧美人与动物交配| 岛国毛片在线播放| 国产高清视频在线观看网站| 日韩 亚洲 欧美在线| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3| 亚洲第一区二区三区不卡| 天堂√8在线中文| 国产真实乱freesex| 国产精品麻豆人妻色哟哟久久 | 国产伦一二天堂av在线观看| 国产精品一区二区三区四区免费观看| 女同久久另类99精品国产91| 欧美日本亚洲视频在线播放| 亚洲精品亚洲一区二区| 久久99蜜桃精品久久| 国产真实伦视频高清在线观看| 久久久欧美国产精品| 在线播放国产精品三级| 啦啦啦观看免费观看视频高清| 国产精品人妻久久久久久| 一个人看的www免费观看视频| 看十八女毛片水多多多| 成人特级黄色片久久久久久久| 2022亚洲国产成人精品| 人人妻人人澡欧美一区二区| 啦啦啦观看免费观看视频高清| 久久久久久久亚洲中文字幕| 日本在线视频免费播放| 亚洲丝袜综合中文字幕| 伊人久久精品亚洲午夜| 男的添女的下面高潮视频| 亚洲真实伦在线观看| 国产三级在线视频| 国内精品宾馆在线| 免费在线观看成人毛片| 国产 一区 欧美 日韩| 99热精品在线国产| 91狼人影院| 在线天堂最新版资源| 五月伊人婷婷丁香| 日日摸夜夜添夜夜爱| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| 久久亚洲精品不卡| 高清毛片免费观看视频网站| 欧美变态另类bdsm刘玥| 精品国产三级普通话版| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 丰满乱子伦码专区| 99热这里只有精品一区| 国产精品一区二区性色av| 我要看日韩黄色一级片| 99热这里只有精品一区| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 久久精品国产鲁丝片午夜精品| 久久精品91蜜桃| 97在线视频观看| 国产精品久久久久久久久免| 久久久久久大精品| 国产91av在线免费观看| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 欧美日韩国产亚洲二区| 99热只有精品国产| 青春草国产在线视频 | 丰满的人妻完整版| 桃色一区二区三区在线观看| 麻豆成人av视频| 又粗又爽又猛毛片免费看| 18+在线观看网站| 久久久久免费精品人妻一区二区| 国产女主播在线喷水免费视频网站 | 亚洲一级一片aⅴ在线观看| 淫秽高清视频在线观看| 99在线视频只有这里精品首页| 婷婷色av中文字幕| 亚洲成av人片在线播放无| 免费观看人在逋| 成人欧美大片| 国产午夜福利久久久久久| 欧美最新免费一区二区三区| 一区二区三区高清视频在线| 国产极品天堂在线| 男人舔女人下体高潮全视频| 深夜精品福利| 深爱激情五月婷婷| 国产精品久久久久久av不卡| 日韩一区二区三区影片| 中文字幕久久专区| 小说图片视频综合网站| 久久精品国产亚洲av香蕉五月| 观看美女的网站| 免费在线观看成人毛片| 尤物成人国产欧美一区二区三区| av在线老鸭窝| 国产精品乱码一区二三区的特点| 天堂中文最新版在线下载 | 1000部很黄的大片| 亚洲国产欧美在线一区| 69人妻影院| 美女cb高潮喷水在线观看| 最近视频中文字幕2019在线8| 免费搜索国产男女视频| 久久99热6这里只有精品| av黄色大香蕉| 中国美白少妇内射xxxbb| 欧美一区二区精品小视频在线| www日本黄色视频网| 国产精品三级大全| 亚洲五月天丁香| 夜夜夜夜夜久久久久| 免费av观看视频| 日产精品乱码卡一卡2卡三| 美女cb高潮喷水在线观看| 国产亚洲精品久久久com| 一本精品99久久精品77| 国产黄片美女视频| 国产精品福利在线免费观看| 国产一区亚洲一区在线观看| 毛片女人毛片| 精品久久久久久成人av| 熟妇人妻久久中文字幕3abv| 国产三级在线视频| 最近视频中文字幕2019在线8| 久久午夜亚洲精品久久| 国产精品蜜桃在线观看 | 1024手机看黄色片| 欧美成人免费av一区二区三区| 亚洲在久久综合| 日韩中字成人| 亚洲av一区综合| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 婷婷色综合大香蕉| 日韩成人av中文字幕在线观看| 夜夜夜夜夜久久久久| 亚洲,欧美,日韩| 欧美日韩在线观看h| 偷拍熟女少妇极品色| 国产日本99.免费观看| 在线国产一区二区在线| 亚洲精品自拍成人| 国产成人精品婷婷| 日本一二三区视频观看| 亚洲欧美日韩高清在线视频| 成人毛片60女人毛片免费| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 日韩一区二区视频免费看| 成人毛片a级毛片在线播放| 有码 亚洲区| 午夜激情福利司机影院| 在线播放无遮挡| 黑人高潮一二区| 观看美女的网站| 男人狂女人下面高潮的视频| 国产成人一区二区在线| 亚洲精品久久久久久婷婷小说 | 91久久精品电影网| 99热只有精品国产| 99久国产av精品国产电影| 亚洲不卡免费看| 久久久久国产网址| 在线观看一区二区三区| 一级二级三级毛片免费看| 精品欧美国产一区二区三| av黄色大香蕉| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 给我免费播放毛片高清在线观看| 国产又黄又爽又无遮挡在线| 一进一出抽搐gif免费好疼| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 天堂av国产一区二区熟女人妻| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看 | 国产成人精品一,二区 | 18禁裸乳无遮挡免费网站照片| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 国产精品人妻久久久影院| 嫩草影院入口| 直男gayav资源| 永久网站在线| 免费人成视频x8x8入口观看| 伦精品一区二区三区| 国产成人精品婷婷| 国产在视频线在精品| 深夜a级毛片| 国产人妻一区二区三区在| 在线观看免费视频日本深夜| 欧美成人a在线观看| 国产伦一二天堂av在线观看| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 国产乱人偷精品视频| 欧美又色又爽又黄视频| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产成人一区二区在线| 免费观看a级毛片全部| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 亚洲成人av在线免费| 国产亚洲91精品色在线| 最近的中文字幕免费完整| 国产成人一区二区在线| 精品国产三级普通话版| 国内精品宾馆在线| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 午夜精品一区二区三区免费看| 日本五十路高清| 成人无遮挡网站| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 久久久久久久久大av| 亚洲人成网站在线播| 中文欧美无线码| 国产中年淑女户外野战色| 欧美不卡视频在线免费观看| 久久久成人免费电影| 简卡轻食公司| 国产精品一区二区三区四区免费观看| 亚洲欧洲日产国产| 国产成人精品一,二区 | 赤兔流量卡办理| 99在线人妻在线中文字幕| 级片在线观看| 国产伦精品一区二区三区视频9| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品久久久久久一区二区三区| 51国产日韩欧美| 边亲边吃奶的免费视频| 日韩欧美精品免费久久| 欧美区成人在线视频| 日日摸夜夜添夜夜爱| 伊人久久精品亚洲午夜| 一夜夜www| 91狼人影院| a级毛片a级免费在线| 国产色婷婷99| 九色成人免费人妻av| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区视频9| 成人亚洲精品av一区二区| 国产亚洲5aaaaa淫片| 久99久视频精品免费| av在线蜜桃| 日本欧美国产在线视频| av.在线天堂| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 97热精品久久久久久| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 九草在线视频观看| 夜夜爽天天搞| 亚洲成人av在线免费| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 国产高清不卡午夜福利| 亚洲欧美清纯卡通| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 女同久久另类99精品国产91| 在现免费观看毛片| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影小说 | 亚洲精品自拍成人| 国产视频内射| 久久国产乱子免费精品| 亚洲人成网站在线播| 免费观看a级毛片全部| 干丝袜人妻中文字幕| 2021天堂中文幕一二区在线观| 久久精品国产亚洲网站| 日韩欧美精品v在线| 国产一级毛片在线| 午夜a级毛片| 亚洲精品乱码久久久v下载方式| 搡女人真爽免费视频火全软件| 人妻久久中文字幕网| 免费看a级黄色片| 亚洲最大成人手机在线| 亚洲av成人精品一区久久| 免费人成在线观看视频色| avwww免费| 欧美成人免费av一区二区三区| 日本五十路高清| 成人性生交大片免费视频hd| 色综合色国产| 久久久久久国产a免费观看| 日本一本二区三区精品| 热99在线观看视频| 免费看日本二区| 日本五十路高清| 国产中年淑女户外野战色| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片| 国产在线男女| 日韩欧美一区二区三区在线观看| 欧美3d第一页| 久久99精品国语久久久| 亚洲国产精品成人久久小说 | 九九久久精品国产亚洲av麻豆| 国产成人影院久久av| 麻豆成人av视频| 国产亚洲91精品色在线| 久久久欧美国产精品| 深爱激情五月婷婷| 伦理电影大哥的女人| 欧美xxxx黑人xx丫x性爽| 夜夜看夜夜爽夜夜摸| 久久久色成人| 中文字幕av成人在线电影| 人妻系列 视频| 深夜a级毛片| 精品久久久久久成人av| 日日撸夜夜添| 一级毛片aaaaaa免费看小| 九九热线精品视视频播放| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 久久久欧美国产精品| 91久久精品国产一区二区三区| 中国美白少妇内射xxxbb| 69人妻影院| 黄色日韩在线| 老司机影院成人| 国产精品综合久久久久久久免费| 日韩一区二区三区影片| 精品人妻偷拍中文字幕| 日韩亚洲欧美综合| 国产免费男女视频| 精品一区二区免费观看| 亚洲真实伦在线观看| 99久久精品国产国产毛片| 色综合色国产| 激情 狠狠 欧美| a级一级毛片免费在线观看| 日日撸夜夜添| 一卡2卡三卡四卡精品乱码亚洲| 欧美日本亚洲视频在线播放| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 国产精品99久久久久久久久| 久久久久久大精品| 久久这里有精品视频免费| 丰满人妻一区二区三区视频av| 亚洲图色成人| 婷婷色综合大香蕉| 男人狂女人下面高潮的视频| av在线观看视频网站免费| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 午夜精品在线福利| 国产老妇女一区| 男女视频在线观看网站免费| 黄色配什么色好看| 日本免费a在线| kizo精华| 久久中文看片网| 国产在视频线在精品| 国产精品一及| 老女人水多毛片| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av天美| avwww免费| 校园春色视频在线观看| 日韩中字成人| 午夜精品国产一区二区电影 | 女同久久另类99精品国产91| 成人午夜高清在线视频| 国产成人freesex在线| 国产精品精品国产色婷婷| a级一级毛片免费在线观看| 精品久久久久久久久av| 国产色婷婷99| АⅤ资源中文在线天堂| 欧美潮喷喷水| 少妇的逼好多水| 可以在线观看毛片的网站| 国产高清视频在线观看网站| 精品久久久久久久久久免费视频| 久久久久久伊人网av| 观看免费一级毛片| 美女黄网站色视频| 日本一本二区三区精品| 波多野结衣高清作品| 国产大屁股一区二区在线视频| 国产精品一及| 丝袜喷水一区| 国产男人的电影天堂91| 日韩视频在线欧美| 日本免费a在线| 三级经典国产精品| 亚洲av熟女| 成年版毛片免费区| 久久精品国产自在天天线| 精品久久久久久久末码| 麻豆久久精品国产亚洲av| 欧美3d第一页| 午夜a级毛片| 日韩一区二区视频免费看| 亚洲aⅴ乱码一区二区在线播放| 国产精品国产高清国产av| 亚洲国产精品成人久久小说 | 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 2022亚洲国产成人精品| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 久久综合国产亚洲精品| 少妇的逼水好多| a级毛片a级免费在线| 欧美潮喷喷水| 精品久久国产蜜桃| 真实男女啪啪啪动态图| 日韩欧美三级三区| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| 精品人妻偷拍中文字幕| 狂野欧美白嫩少妇大欣赏| 国产极品精品免费视频能看的| 观看美女的网站| 波多野结衣巨乳人妻| 美女黄网站色视频| 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 成人永久免费在线观看视频| 国产黄片视频在线免费观看| av.在线天堂| 在现免费观看毛片| 久久精品久久久久久噜噜老黄 | 成人美女网站在线观看视频| 哪里可以看免费的av片| 中文字幕制服av| 高清午夜精品一区二区三区 | 成人欧美大片| av免费在线看不卡| 国产在线精品亚洲第一网站| 自拍偷自拍亚洲精品老妇| 性欧美人与动物交配| 午夜福利高清视频| 久久久色成人| 不卡一级毛片| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线| 国产在线男女| 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| 日韩强制内射视频| 国产色婷婷99| 国产精品日韩av在线免费观看| 国产色婷婷99| 综合色av麻豆| 少妇的逼水好多| 一个人免费在线观看电影| kizo精华| av视频在线观看入口| 国产伦在线观看视频一区| 日韩av在线大香蕉| 国产精品一区二区在线观看99 | 高清在线视频一区二区三区 | www.av在线官网国产| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 69人妻影院| 在线a可以看的网站| 国产黄色小视频在线观看| 国语自产精品视频在线第100页| 搡老妇女老女人老熟妇| 国产亚洲精品久久久久久毛片| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 久久久久性生活片| 午夜福利高清视频| 亚洲一区高清亚洲精品| 国产三级在线视频| 蜜桃久久精品国产亚洲av| 日韩精品有码人妻一区| 亚洲天堂国产精品一区在线| 黄片wwwwww| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片|