• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Forwarding Method for Full-Duplex Two-Way Relay Networks

    2017-05-08 13:18:54ShuangshuangHanXiangChengLiuqingYang
    China Communications 2017年4期

    Shuangshuang Han, Xiang Cheng, Liuqing Yang

    1 The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences,Beijing, China and Qingdao Academy of Intelligent Industries, Qingdao, China

    2 The State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing, China

    3 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523 USA

    I. INTRODUCTION

    Full-duplex transmission has attracted a great number of attention in recent years, which is also an important optional technique for 5G wireless communication systems[1]-[3].Full-duplex relay techniques can achieve higher link capacity and obtain lower end-to-end latency[4]. Further, in order to improve spectral efficiency over one-way relay networks,two-way relay network was firstly exploited by Shannon [5] and now has drawn much attention [6]-[11] due to its potential application to enable range-rate enhancements to future cellular systems. The overall communication rate between two source terminals is approximately twice of that achieved in one-way relay networks, which makes a two-way relay network particularly attractive to bidirectional systems[12]-[14].

    Relay strategies have thus been studied in[15]-[18]. An amplify-and-forward (AF) relay amplifies its received signals and retransmits to the receivers. This simple processing enables full spatial diversity at high signal-tonoise ratios (SNRs) [19]. However, AF also enhances the noise component, it results in degraded performance (measured by symbol error rate (SER)). On the other hand, a decode/detect-and-forward (DF) relay first decodes or detects the source signal and then forwards the regenerated signals to the receivers. However,when the source-relay link suffers from deep fading (low SNRs), the decoding errors at the relay propagate to the destination.

    The authors proposed an estimate-and-forward (EF) relay strategy to improve the error performance for SISO and MIMO full-duplex two-way relay networks in this paper.

    Another relay strategy, estimate-and-forward(EF) [20], is a powerful approach for uncoded single antenna one-way relay networks. Unlike the AF and DF relays, the EF relay computes and transmits an unconstrained minimum mean squared error (MMSE) estimate, resulting an optimized relay function for all SNRs.

    This paper investigates EF relay strategy for SISO and MIMO full-duplex two-way relay networks.

    Main Contributions are summarized as follows:

    1) An EF relay for full-duplex two-way relay networks is developed, which forwards a scaled version of an unconstrained MMSE estimate of the received signal at the relay.The scaling factor is chosen to satisfy the relay average power constraint. Unlike AF and DF, the proposed EF works equally well for both low and high SNRs, and outperforms these two schemes.

    2) we theoretically analyze and prove the convergence of EF to AF and DF for two-way relay networks with arbitrary number of antennas. Thus, in low and high SNR regions,the EF converges to AF and DF, respectively.

    3) To reduce the complexity for the systems with high order constellations and/or a large number of antennas (large MIMO)[21],[22],a list EF relay is developed, which computes the MMSE estimate by using a sphere decoder to generate a list of candidate vectors. A 2×2 4-QAM MIMO relay system is discussed in Section IV.

    Fig. 1 A full-duplex two-way relay system model

    4) The generalized sphere decoder is applied by the relay node in both DF and list EF cases. In DF, the generalized sphere decoder is used to detect the transmitted signal because it is an under-determined MIMO detection problem at the relay. Similarly, for list EF case, it is used to generate the candidate list for MMSE estimate at the relay.

    The rest of this paper is organized as follows. Section II introduces the system model of a full-duplex two-way relay networks and conventional forwarding methods, where all the terminals and the relay have multiple antennas. In Section III, the EF relaying strategy for MIMO full-duplex two-way relay networks is proposed, and an approximate list EF is also developed and analyzed. Simulation results and discussions for SISO and MIMO full-duplex two-way relay networks are given in Section IV. Finally, conclusions are drawn in Section V.

    II. SYSTEM MODEL

    2.1 System model

    A full-duplex two-way relay network is illustrated in Fig. 1, where the first terminal nodehasantennas, the relayhasreceive antennas andtransmit antennas, and second terminal nodehasantennas. For simplicity, we assume only one relayin the full-duplex two-way relay network and terminalsandexchange information via the relay.

    In the first time slot, the two terminalsandsend the transmitted signalsandto the relay. The relay receives the signal fromand itself, which is given as

    In the second time slot, the relay receives the signals fromandand generates and transmits the processed signal to the opposite terminal. In this paper, we assume that the relay node has full knowledge of the loop interference channel and the transmitted signal by itself; thus, the signal from the loop channel can be perfectly removed. Therefore, the received signal would be derived as

    Throughout this paper, we assume the channel state information is available at the relay and the two terminal nodes. Furthermore,we assume that there is only one relay in this full-duplex two-way relay network for simplicity. But the extension to include multiple relays is straightforward but omitted due to space limitation.

    2.2 Conventional forward strategies

    The performance of relay networks depends critically on the relay function. Several relay functions of memoryless forwarding strategies are discussed here. We takeas the destination for an example, and then similar process could be implemented for terminal

    1) Amplify-and-forward:Within the classical relay strategies, AF relaying is the most basic relay strategy. For each transmit symbol, the relay retransmits a scaled version of the received signal. Thus, a linear relay function is used.Furthermore, to satisfy the average power constraint, the AF relay function can be given as

    Due to its low complexity and easy implementation, the AF relaying is one of the most attractive cooperative diversity schemes for relay networks. No detection process at the relay facilitates the use of simple relay units. However, the main disadvantage is the performance loss due to the noise amplification at the relay.

    2) Decode-and-forward:DF relay has attracted much attention recently because it outperforms AF in the high SNR region. It detects data from the incoming signal, remodulates and forwards the processed signal to the destination. It may use an ML decoder for detection of data from the incoming signal. The detected signal vector may be given as

    Note that Eq. (6) represents an under-determined MIMO detection, where the number of the unknowns is more than the number of equations. The generalized sphere decoder for rank-deficient MIMO systems can be employed to perform (6) here. While can be directly transmitted tothe relay power constraints must be satisfied. Therefore, the DF relay function can be given as

    III. ESTIMATE AND FORWARD

    3.1 Estimate-and-forward

    In this paper, EF relay is developed for full-duplex two-way relay networks, which achieves the advantages of AF and DF for all SNRs without switching between algorithms(AF and DF).

    The main idea is described here. Unlike DF and AF, the EF relay transmits a soft information with uncertainty to the receiver. The soft information is generated by scaling the unconstrained MMSE solution of the received signal at. Assuming equal priori probabilities for all transmitted symbols, the MMSE estimate of the received signalat the relay can be given as

    Therefore, Eq. (8) can be computed as

    As with AF and DF relaying, to satisfy the relay power constraint, the scaling factor is given by

    By using the total probability law, the PDF of the received signalcan be derived as

    3.2 Analysis of EF performance

    In this subsection, we show theoretically that EF approximates AF and DF in low SNR and high SNR regions. We assume that the constellation is symmetric, i.e.,For simplification, we definein this section.

    Low SNR Case:When the receive SNR at the relay is low, by using Eq. (8), the MMSE estimate can be derived as Eq. (14). Because of the fact that the constellation is symmetric and thusis an even function inthe above equality could be derived as

    From Eq. (15), we see that EF converges to AF in the low SNR region, but in a slightly different from the pure AF. This can be further simplified for different constellations.

    High SNR Case:We assume the ML detection isfor high SNR, by splitting out the ML solution, the MMSE estimate can be derived as Eq. (16)shown in the bottom at this page. whereFor allwe havethemust be great thanIn other words, it is lower bounded bywith probability one as SNR goes to infinity. Therefore, we have

    The MMSE estimate thus approximates to be

    which is in fact DF relaying. Consequently, in the high SNR region, EF converges to DF.

    3.3 List estimate-and-forward

    For large MIMO systems, most of the terms in the sum of Eq. (10) are small and contribute very little to the sum, especially in the high SNRs. Intuitively, one can find a subset ofto compute the sum in Eq. (10).Assume that this subset can be denoted by,and then we can approximate (10) to be

    In this paper, we use the size of the listto obtain the trade-offs between the computational accuracy and complexity. Thus,is small,is computed with low complexity. In the high SNR region, because of the limit of exponential functionwe can derive

    Eq. (20) represents an under-determined MIMO sphere detection problem, which can be solved by the generalized sphere decoder.

    Fig. 2 Error performance of relay strategies in a single antenna full-duplex twoway relay network (16-QAM)

    Fig. 3 Error performance of relay strategies in a 2×2 full-duplex two-way relay network (16-QAM)

    IV. SIMULATION RESULTS

    In this section, the performance measured by SER for different strategies (the proposed list EF, EF, DF, and AF) are compared in SISO and MIMO full-duplex two-way relay networks, where the power at the source and the relay are equaland noise varianceAt the second terminal, the received signal (3) is decoded by using the sphere decoder. We choose the list sizeof the proposed list EF to be 4.

    First, the SER performance for a SISO full-duplex two-way relay system with a 16 QAM is given in Fig. 2, which compares the proposed EF relays with the classical relays(AF and DF) for different SNRs. As expected,both list EF and exact EF achieve performance gains over DF and AF. For example, at anof 10-3, the proposed exact EF gains 2 dB and 3 dB over the DF and AF relay, respectively.Furthermore, according to Section III-A, exact EF needs to compute all the 162=256 terms inwhile list EF only computes 4 terms according to Eq. (18) in Section III-C. Nevertheless, list EF performs approximately the same to exact EF over all SNRs. Therefore, although list EF generates only an approximate MMSE estimate, its performance is excellent and computational complexity is low. Another interesting observation is that AF outperforms DF in the low SNR region, while it performs worse than DF in the high SNR region. However, the proposed two EF strategies obtain the optimized performance for all SNRs without switching between algorithms.

    In order to evaluate the benefits of the proposed EF relay for MIMO full-duplex twoway relay networks. The SER performance of different relay strategies for a 2×2 16-QAM relay network is given in Fig. 3. The two proposed EF relay schemes are compared with the classical DF and AF schemes. From Section III-C, exact EF needs to compute all the 162+2=65536 terms. In contrast, list EF (4 terms ) significantly reduces the computational complexity. Note that EF outperforms DF and AF strategies. For example, at anof 10-3,it gains 1.5 dB and 3 dB over DF and AF, respectively. Furthermore, with a small list sizelist EF approaches the performance of the exact EF case withwith negligible performance loss.

    V. CONCLUSIONS

    For SISO and MIMO full-duplex two-way relay networks, this paper proposed an estimate-and-forward (EF) relay strategy to improve the error performance. It was shown that this relay strategy outperforms AF and DF across all SNRs, which overcome the disadvantages of the latter two schemes. Furthermore,for a MIMO full-duplex two-way relay network with a large number of antennas and/or high order constellations, List EF relay was also proposed to reduce the computational complexity. It uses the generalized sphere decoder for generating the reduced candidate list. Thus, the computational complexity is reduced especially for large MIMO full-duplex or half-duplex two-way relay networks, while still achieving almost the same performance as the exact EF relay. Consequently, it offers a flexible trade-off between the performance and the complexity by choosing different size of the candidate list.The simulation results confirm the performance gain of the proposed exact EF and list EF over AF and DF relay cases.

    ACKNOWLEDGEMENT

    This work was supported in part by the National Natural Science Foundation of China 61501461, 61471269, 61622101 and 61571020; the National 973 Project under grant 2013CB336700, the National 863 Project under grant SS2015AA011306, the National Science Foundation under grant number CNS-1343189 and ECCS-1232305, and the Early Career Development Award of SKLMCCS (Y3S9021F34).

    [1] Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo, “Full-duplex wireless communications:Challenges, solutions, and future research directions,”IEEE Proceedings, vol. 104, no. 7, pp.1369–1409, Jul. 2016.

    [2] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S.Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportuni- ties,”IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp.1637–1652, Sep. 2014.

    [3] D. Kim, H. Lee, and D. Hong, “A survey of inband full-duplex transmission: From the perspective of PHY and MAC layers,”IEEE Commun.Surveys Tutorials, vol. 17, no. 4, pp. 2017–2046,Fourthquarter 2015.

    [4] Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L.Hanzo, “Full duplex techniques for 5G networks:self-interference cancellation, protocol design,and relay selection,”IEEE Commun. Mag., vol.53, no. 5, pp. 128–137, May 2015.

    [5] C. E. Shannon, “Two-way communication channels,” inProc. 4th Berkeley Symp. on Math. Statist. and Prob., vol. 1, 1961, pp. 611–644.

    [6] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal training design for amplify and forward relay networks,”IEEE Trans.Wireless Commun., vol. 7, no. 5, pp. 1907–1916,May 2008.

    [7] S. Bagheri, F. Verde, D. Darsena, and A. Scaglione, “Randomized decode-and-forward strategies for two-way relay networks,”IEEE Trans.Wireless Commun., vol. 10, no. 12, pp. 4214–4225, Dec. 2011.

    [8] R. Vaze and R. Heath, “On the capacity and diversity-multiplexing tradeoff of the two-way relay channel,”IEEE Trans. Inf. Theory, vol. 57,no. 7, pp. 4219 –4234, Jul. 2011.

    [9] B. Zhong and Z. Zhang, “Opportunistic two-way full-duplex relay selection in underlay cognitive networks,”IEEE Systems Journal, vol. PP, no. 99,pp. 1–10, 2016.

    [10] J. Wang, F. Shu, R.-q. Chen, Y.-d. Cui, Y. Chen,and J. Li, “Adaptive robust beamformer formulti-pair two-way relay networks with imperfect channel state information,”Frontiers of Information Technology & Electronic Engineering,vol. 17, no. 3, pp. 265–280, 2016. [Online]. Available: http://dx.doi.org/10.1631/FITEE.1500134

    [11] Z. Zhang, Z. Ma, Z. Ding, M. Xiao, and G. Karagiannidis, “Full-duplex two-way and one-way relaying: Average rate, outage probability and tradeoffs,”IEEE Trans. Wireless Commun., vol. PP,no. 99, pp. 1–1, 2016.

    [12] Q. You, Z. Chen, and Y. Li, “A multihop transmission scheme with detect-and-forward protocol and network coding in two-way relay fading channels,”IEEE Trans. Veh. Technol., vol. 61, no. 1, pp. 433–438, Jan. 2012.

    [13] F. Gao, R. Zhang, and Y. C. Liang, “Optimal channel estimation and training design for twoway relay networks,”IEEE Trans. Commun., vol.57, no. 10, pp. 3024–3033, Oct. 2009.

    [14] T. Cui, F. Gao, T. Ho, and A. Nallanathan, “Distributed space time coding for two-way wireless relay networks,”IEEE Trans. Signal Process., vol.57, no. 2, pp. 658 –671, Feb. 2009.

    [15] Y. Zou, J. Zhu, X. Wang, and V. Leung, “Improving physical-layer security in wireless communications using diversity techniques,”IEEE Network,vol. 29, no. 1, pp. 42–48, Jan. 2015.

    [16] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,”IEEE Trans.Wireless Commun., vol. 5, no. 12, pp. 3524–3536, Dec. 2006.

    [17] G. Liu, F. Yu, H. Ji, V. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,”IEEE Communications Surveys Tutorials, vol. 17, no. 2, pp. 500–524, Secondquarter 2015.

    [18] J. Wang, F. Shu, X. Huang, and Y. Wang, “Optimal coherent combining scheme for relay networks,”Wireless Personal Communications, vol.88, no. 3, pp. 575–585, 2016. [Online]. Available:http: //dx.doi.org/10.1007/s11277-016-3179-y

    [19] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,”IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062 – 3080, Dec. 2004.

    [20] K. S. Gomadam and S. A. Jafar, “Optimal relay functionality for SNR maximization in memoryless relay networks,”IEEE J. Sel. Areas Commun.,vol. 25, no. 2, pp. 390 –401, Feb. 2007.

    [21] Z. Zhang, X. Wang, K. Long, A. Vasilakos, and L. Hanzo, “Large-scale MIMO-based wireless backhaul in 5G networks,”IEEE Wireless Commun., vol. 22, no. 5, pp. 58–66, Oct. 2015.

    [22] S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to large-scale MIMOs,”IEEE Communications Surveys Tutorials, vol. 17, no.4, pp. 1941–1988, Fourthquarter 2015.

    [23] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for space-time codes,”IEEE Commun. Lett., vol. 4, no. 5, pp. 161–163, May 2000.

    好男人在线观看高清免费视频| 精品欧美国产一区二区三| av片东京热男人的天堂| 亚洲无线观看免费| 在线观看66精品国产| 久久欧美精品欧美久久欧美| 国产黄a三级三级三级人| 大型黄色视频在线免费观看| www.999成人在线观看| 欧美日韩乱码在线| 在线免费观看不下载黄p国产 | 国产欧美日韩精品亚洲av| 日韩av在线大香蕉| 蜜桃久久精品国产亚洲av| 99国产精品一区二区三区| 亚洲真实伦在线观看| 九色成人免费人妻av| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 午夜免费成人在线视频| 91av网站免费观看| 日本黄色片子视频| 亚洲自偷自拍图片 自拍| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区| 久久这里只有精品19| 美女被艹到高潮喷水动态| 久久国产精品影院| 亚洲av免费在线观看| www.www免费av| 国产日本99.免费观看| www国产在线视频色| 国产在线精品亚洲第一网站| 曰老女人黄片| 美女午夜性视频免费| 五月玫瑰六月丁香| 免费人成视频x8x8入口观看| 亚洲精品乱码久久久v下载方式 | 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 欧美精品啪啪一区二区三区| 草草在线视频免费看| 欧美zozozo另类| 精品午夜福利视频在线观看一区| 国产亚洲av高清不卡| 国产精品久久久人人做人人爽| 男女之事视频高清在线观看| 午夜成年电影在线免费观看| 免费av不卡在线播放| 亚洲美女视频黄频| 亚洲成av人片免费观看| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 久久久国产精品麻豆| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看 | 成在线人永久免费视频| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 国产精品免费一区二区三区在线| 久久性视频一级片| 国产成人精品久久二区二区免费| 久久国产乱子伦精品免费另类| 免费看美女性在线毛片视频| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 日本精品一区二区三区蜜桃| 午夜激情福利司机影院| 国产1区2区3区精品| 国内少妇人妻偷人精品xxx网站 | 黑人巨大精品欧美一区二区mp4| 精品国产美女av久久久久小说| 午夜a级毛片| 亚洲精品中文字幕一二三四区| 成人鲁丝片一二三区免费| 久久精品亚洲精品国产色婷小说| 国产精品久久久av美女十八| 18美女黄网站色大片免费观看| 国内久久婷婷六月综合欲色啪| 国产精品亚洲一级av第二区| 国产精品日韩av在线免费观看| 99久久国产精品久久久| 欧美激情久久久久久爽电影| 亚洲av美国av| 好男人在线观看高清免费视频| 美女被艹到高潮喷水动态| 欧美+亚洲+日韩+国产| 综合色av麻豆| 成熟少妇高潮喷水视频| 又紧又爽又黄一区二区| 亚洲中文av在线| 午夜激情福利司机影院| 国产亚洲精品一区二区www| 村上凉子中文字幕在线| 一个人观看的视频www高清免费观看 | 国产v大片淫在线免费观看| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 俺也久久电影网| 人妻丰满熟妇av一区二区三区| 成人av一区二区三区在线看| 色综合站精品国产| 久久久久性生活片| 91九色精品人成在线观看| 一级a爱片免费观看的视频| 久久中文字幕人妻熟女| 欧美成人免费av一区二区三区| 亚洲av片天天在线观看| 在线观看一区二区三区| 久久久久九九精品影院| 亚洲av成人一区二区三| 国产aⅴ精品一区二区三区波| 少妇熟女aⅴ在线视频| 日韩成人在线观看一区二区三区| 日本 欧美在线| 级片在线观看| 亚洲av成人不卡在线观看播放网| 狠狠狠狠99中文字幕| 特大巨黑吊av在线直播| 身体一侧抽搐| 亚洲精品中文字幕一二三四区| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| av在线天堂中文字幕| 国产单亲对白刺激| 亚洲电影在线观看av| 免费高清视频大片| 亚洲人成伊人成综合网2020| 亚洲国产精品合色在线| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 国产激情偷乱视频一区二区| 99re在线观看精品视频| 国产精品久久视频播放| 久久久久久久久中文| 亚洲欧美日韩无卡精品| 中国美女看黄片| 久久人妻av系列| 999久久久国产精品视频| 成在线人永久免费视频| 国产综合懂色| 男人舔奶头视频| а√天堂www在线а√下载| 欧美国产日韩亚洲一区| 精品电影一区二区在线| 黄频高清免费视频| 日日夜夜操网爽| 亚洲自拍偷在线| 中亚洲国语对白在线视频| 亚洲在线自拍视频| 一级a爱片免费观看的视频| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 国产三级在线视频| 久久久久九九精品影院| 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| 国产精品久久视频播放| 国产午夜精品论理片| 他把我摸到了高潮在线观看| 成年免费大片在线观看| 国产午夜福利久久久久久| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 不卡一级毛片| 最近最新中文字幕大全免费视频| 啦啦啦观看免费观看视频高清| 亚洲精品一区av在线观看| 老鸭窝网址在线观看| 久久久精品大字幕| av欧美777| 午夜精品在线福利| 欧美绝顶高潮抽搐喷水| 老汉色av国产亚洲站长工具| 成年免费大片在线观看| 精品国产亚洲在线| 岛国在线免费视频观看| 中文字幕久久专区| 在线观看一区二区三区| 免费在线观看成人毛片| 日韩中文字幕欧美一区二区| av视频在线观看入口| 国产69精品久久久久777片 | 国产成人aa在线观看| 日本熟妇午夜| 久久久久久久午夜电影| 制服人妻中文乱码| 国产成人系列免费观看| 亚洲国产色片| 变态另类成人亚洲欧美熟女| 久久久久久国产a免费观看| 久久久久国产一级毛片高清牌| 日本成人三级电影网站| 少妇丰满av| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区| 国产综合懂色| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 免费av不卡在线播放| 视频区欧美日本亚洲| 熟女少妇亚洲综合色aaa.| 身体一侧抽搐| 在线观看午夜福利视频| 91九色精品人成在线观看| 国产私拍福利视频在线观看| 99久久精品国产亚洲精品| av福利片在线观看| 精品久久久久久久毛片微露脸| 日本在线视频免费播放| 国产男靠女视频免费网站| 这个男人来自地球电影免费观看| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 身体一侧抽搐| www.www免费av| 亚洲一区二区三区不卡视频| 亚洲国产欧美人成| 国产精品永久免费网站| 日韩欧美精品v在线| 久久九九热精品免费| 一本综合久久免费| 成人特级av手机在线观看| 国产精品久久电影中文字幕| 国产三级在线视频| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 免费大片18禁| 麻豆一二三区av精品| 国产伦精品一区二区三区视频9 | 男女那种视频在线观看| 国产精品香港三级国产av潘金莲| av片东京热男人的天堂| 国产乱人视频| 久久九九热精品免费| 国内精品一区二区在线观看| 亚洲无线在线观看| 久久久精品大字幕| 一区福利在线观看| xxxwww97欧美| 日韩免费av在线播放| 最近最新免费中文字幕在线| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 天堂网av新在线| 国产一区二区在线观看日韩 | 一卡2卡三卡四卡精品乱码亚洲| 好男人电影高清在线观看| 这个男人来自地球电影免费观看| 亚洲午夜精品一区,二区,三区| 欧美日韩中文字幕国产精品一区二区三区| 夜夜躁狠狠躁天天躁| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器 | 视频区欧美日本亚洲| 午夜久久久久精精品| 久久国产乱子伦精品免费另类| 精品一区二区三区视频在线 | 免费av毛片视频| 免费看日本二区| 国内少妇人妻偷人精品xxx网站 | 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 精品福利观看| 香蕉丝袜av| 亚洲 欧美一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲男人的天堂狠狠| 国产精品久久久久久亚洲av鲁大| 在线观看日韩欧美| 1000部很黄的大片| 给我免费播放毛片高清在线观看| www日本在线高清视频| 国产三级黄色录像| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲人成网站高清观看| 国产91精品成人一区二区三区| 亚洲精品456在线播放app | 婷婷丁香在线五月| 欧美又色又爽又黄视频| 国产美女午夜福利| ponron亚洲| 日本一二三区视频观看| 黑人巨大精品欧美一区二区mp4| а√天堂www在线а√下载| 午夜日韩欧美国产| 综合色av麻豆| 中文字幕高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看毛片的网站| 国产精品一及| 黄色丝袜av网址大全| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 成人av一区二区三区在线看| 久久久国产成人免费| 久久香蕉精品热| 免费搜索国产男女视频| 欧美激情久久久久久爽电影| 岛国在线免费视频观看| 岛国在线观看网站| 国产成人精品无人区| 国产伦精品一区二区三区四那| 美女高潮喷水抽搐中文字幕| 国产高清三级在线| 深夜精品福利| 精品久久久久久久久久免费视频| 免费电影在线观看免费观看| 一本精品99久久精品77| 国产主播在线观看一区二区| 亚洲avbb在线观看| 国产又色又爽无遮挡免费看| 国产单亲对白刺激| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 麻豆久久精品国产亚洲av| 十八禁人妻一区二区| 欧美日韩精品网址| 精品久久久久久久末码| 免费av不卡在线播放| 欧美zozozo另类| 一个人看视频在线观看www免费 | 国产激情久久老熟女| 美女免费视频网站| 婷婷丁香在线五月| 少妇丰满av| 精品久久蜜臀av无| av国产免费在线观看| 欧美中文日本在线观看视频| 亚洲成人精品中文字幕电影| 欧美3d第一页| 少妇人妻一区二区三区视频| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 999久久久国产精品视频| av女优亚洲男人天堂 | 欧美丝袜亚洲另类 | 深夜精品福利| 一级毛片女人18水好多| 日韩三级视频一区二区三区| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 亚洲成av人片在线播放无| 午夜福利免费观看在线| 久久久久免费精品人妻一区二区| 露出奶头的视频| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 国产高清videossex| 九九久久精品国产亚洲av麻豆 | 最好的美女福利视频网| 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 日本 av在线| 亚洲国产精品久久男人天堂| 久久精品国产清高在天天线| 国产在线精品亚洲第一网站| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 深夜精品福利| 日日摸夜夜添夜夜添小说| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 99国产精品99久久久久| 成在线人永久免费视频| 99国产精品一区二区三区| 狠狠狠狠99中文字幕| 欧美激情久久久久久爽电影| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 在线观看午夜福利视频| 日本黄大片高清| 香蕉国产在线看| 身体一侧抽搐| 非洲黑人性xxxx精品又粗又长| 午夜福利在线在线| 亚洲一区高清亚洲精品| avwww免费| 亚洲欧美精品综合久久99| 午夜福利欧美成人| 国产精品 欧美亚洲| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 99热只有精品国产| 国产伦精品一区二区三区四那| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 国产精品av久久久久免费| 国产亚洲精品一区二区www| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区| 久久九九热精品免费| 成人av一区二区三区在线看| 欧美色欧美亚洲另类二区| 久久久国产欧美日韩av| 人妻久久中文字幕网| 国产高清激情床上av| 高清在线国产一区| 欧美黑人欧美精品刺激| 成人精品一区二区免费| 欧美日韩乱码在线| 黄色成人免费大全| 午夜精品在线福利| 欧美又色又爽又黄视频| 成人三级做爰电影| 男女下面进入的视频免费午夜| svipshipincom国产片| 他把我摸到了高潮在线观看| 一级毛片女人18水好多| 最近视频中文字幕2019在线8| 亚洲无线观看免费| 男女视频在线观看网站免费| h日本视频在线播放| 俺也久久电影网| 免费在线观看影片大全网站| xxxwww97欧美| av欧美777| 最近最新中文字幕大全电影3| 88av欧美| 亚洲国产欧美网| 午夜亚洲福利在线播放| 三级男女做爰猛烈吃奶摸视频| 男人的好看免费观看在线视频| 免费在线观看影片大全网站| av片东京热男人的天堂| 亚洲片人在线观看| 91老司机精品| 综合色av麻豆| 国产精品国产高清国产av| 久久天躁狠狠躁夜夜2o2o| 欧美三级亚洲精品| 国产成人一区二区三区免费视频网站| 美女免费视频网站| 久久人妻av系列| 亚洲精品粉嫩美女一区| 国产亚洲精品一区二区www| 国产成人精品久久二区二区91| 精品一区二区三区视频在线 | 午夜福利欧美成人| 久久午夜综合久久蜜桃| 亚洲中文av在线| 国产免费男女视频| 日韩高清综合在线| 亚洲 国产 在线| 狂野欧美激情性xxxx| 婷婷六月久久综合丁香| 高潮久久久久久久久久久不卡| a级毛片a级免费在线| 免费看光身美女| 亚洲精品久久国产高清桃花| 久久久久久人人人人人| www国产在线视频色| 国产精品久久久久久精品电影| 日韩大尺度精品在线看网址| 免费看美女性在线毛片视频| 又紧又爽又黄一区二区| 一进一出抽搐动态| 美女午夜性视频免费| 观看免费一级毛片| 中文字幕熟女人妻在线| 欧美日韩精品网址| 麻豆成人午夜福利视频| 亚洲欧美日韩无卡精品| 最新美女视频免费是黄的| 床上黄色一级片| 中文资源天堂在线| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 成年免费大片在线观看| 国产欧美日韩一区二区三| 国产av麻豆久久久久久久| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| 国产成人av教育| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 亚洲狠狠婷婷综合久久图片| 免费av不卡在线播放| 99精品久久久久人妻精品| 亚洲自拍偷在线| 精品久久久久久久久久久久久| 长腿黑丝高跟| 特级一级黄色大片| 国产成人影院久久av| 嫩草影视91久久| 精品日产1卡2卡| 丰满人妻一区二区三区视频av | 黄色成人免费大全| 黄色片一级片一级黄色片| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 久久久精品欧美日韩精品| 一个人看的www免费观看视频| 久9热在线精品视频| 村上凉子中文字幕在线| xxx96com| 在线观看美女被高潮喷水网站 | 黑人欧美特级aaaaaa片| 偷拍熟女少妇极品色| 国产精品亚洲一级av第二区| 亚洲欧美激情综合另类| 国产欧美日韩一区二区三| 中文字幕av在线有码专区| 亚洲七黄色美女视频| 亚洲熟女毛片儿| 长腿黑丝高跟| 搡老岳熟女国产| 很黄的视频免费| 日韩免费av在线播放| 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 三级毛片av免费| 97碰自拍视频| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| 美女 人体艺术 gogo| 男人舔女人的私密视频| 黄色片一级片一级黄色片| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 国产极品精品免费视频能看的| 亚洲五月婷婷丁香| 夜夜看夜夜爽夜夜摸| 久久亚洲真实| 国语自产精品视频在线第100页| 嫩草影院入口| 国产精品1区2区在线观看.| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久久久毛片| 久9热在线精品视频| 久久人人精品亚洲av| 欧美中文综合在线视频| 国产蜜桃级精品一区二区三区| 黑人欧美特级aaaaaa片| 一二三四社区在线视频社区8| 久久久久免费精品人妻一区二区| 男插女下体视频免费在线播放| 2021天堂中文幕一二区在线观| 天堂影院成人在线观看| 黄色视频,在线免费观看| 夜夜看夜夜爽夜夜摸| 又爽又黄无遮挡网站| 十八禁网站免费在线| 不卡av一区二区三区| 99在线视频只有这里精品首页| 国产又色又爽无遮挡免费看| 精品久久久久久久人妻蜜臀av| 亚洲五月天丁香| 日本五十路高清| 日本一本二区三区精品| 欧美成人性av电影在线观看| 日本黄大片高清| 熟女少妇亚洲综合色aaa.| 视频区欧美日本亚洲| 国产精品亚洲一级av第二区| 性欧美人与动物交配| 国产成年人精品一区二区| 欧美精品啪啪一区二区三区| 亚洲成人久久爱视频| 丰满的人妻完整版| 久久精品国产综合久久久| 一本久久中文字幕| 国产成人系列免费观看| 一级毛片精品| 久久久久国内视频| 成人三级黄色视频| 精品国内亚洲2022精品成人| 日本 欧美在线| 日本与韩国留学比较| 精品国产乱子伦一区二区三区| 色播亚洲综合网| 成人国产一区最新在线观看| 中文字幕最新亚洲高清| 国产精品精品国产色婷婷| 精品国产亚洲在线| 熟女少妇亚洲综合色aaa.| 中文字幕熟女人妻在线| 欧美日韩黄片免| 午夜福利成人在线免费观看| 国产精品爽爽va在线观看网站| 久久精品91蜜桃| 狂野欧美激情性xxxx| 国产一区二区在线av高清观看| 国产精品1区2区在线观看.| 美女高潮的动态| 国产精品免费一区二区三区在线| 特级一级黄色大片| 18禁黄网站禁片午夜丰满| 色综合亚洲欧美另类图片| 搞女人的毛片| 国产成人aa在线观看| 国产精品,欧美在线| 色老头精品视频在线观看| 亚洲人成伊人成综合网2020| 亚洲18禁久久av| 国产精品1区2区在线观看.| 女人被狂操c到高潮| 国产亚洲欧美在线一区二区| 亚洲中文字幕日韩| 中文在线观看免费www的网站| 免费大片18禁| 999久久久国产精品视频| xxx96com| 欧美黑人巨大hd|