• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simple Colorless Long-Reach WDM-PON with Rayleigh Backscattering Noise Mitigation Employing Remodulated Orthogonal Coding

    2017-05-08 13:19:14ZhishengLiQiangDouLeiWangPeijunYangChaobingZhou
    China Communications 2017年4期

    Zhisheng Li , Qiang Dou, Lei Wang, Peijun Yang, Chaobing Zhou

    School of Computer Science, National University of Defense Technology, Changsha,410073, China

    * The corresponding author, email:lizhsh_123@163.com

    I. INTRODUCTION

    The full-duplex transmission on single-feeder fiber based on the reflective semiconductor optical amplifier (RSOA) has become the main solution for wavelength-division-multiplexing passive optical networks (WDMPON), in which the colorless optical network unit (ONU) and mitigation of optical beat interference (OBI) noise caused by Rayleigh backscattering are critical technologies. One method uses an extra centralized continuous wave (CW) light source in optical line terminal (OLT) which is modulated at ONU as the seed of upstream (US) data, but it will increase the cost and introduce more OBI noises. In the other method, the downstream (DS) signal is used as the seed source after removing the modulated signal by gain-saturation RSOA.Then the US data is remodulated at the same wavelength of DS by RSOA. However the gain-saturated RSOA is not very suitable in long reach and high speed PON for its limit in injecting power, extinction ratio(ER) and remodulation bandwidth [1-4].

    The signal’s transmission performance in a full-duplex fiber is limited by OBI noise resulting from Rayleigh backscattering and reflection of discrete components[5][6]. From ref [7-9], the Rayleigh backscattering is spontaneous. The backscattered close-in noise spectrum is concentrated at low frequency from 5MHz to 200MHz and grows linearly with light linewidth, input power and fiber length. As the spectra of backscattered light of CW sources, DS signals and modulated US signals have a wide spectral overlap, so the OBI noise is severe. The most effective method to mitigate the OBI noise is to reduce the spectral overlap between the US signal and the interferer noise[10]. Using coding method to reshape the power spectrum of signal and to separate the US and DS spectra such as Manchester [11] and 8b10b [12] is a good method,because it needs no extra optical devices and is easy to be realized. Recently Qi Guo and An Vu Tran proposed a kind of effective coding method called level coding in which {0} is replaced by {1} or {-1} and {1} is replaced by {0}. As this DC-balanced correlative level codes can shift the US’s lower frequency components to higher frequency and can reduce spectral overlap along with the signal’s low frequency power, it can reduce OBI noise effectively[13-16].

    The authors proposed a new method to mitigate the OBI noise caused by Rayleigh backscattering in full-duplex WDM-PON system.

    Different from the proposed level coding method, we employ a pair of orthogonal Walsh codes sequence composed by {1, 1} and {1,-1}, respectively, in which {1, 1} is used to encode the DS signal while another {1,-1} is intended to carry the US signal. Both of them are generated and modulated at same wavelength at OLT and are transmitted to ONU. In ONU, the raw US is directly modulated on the coded DS signal without erasing the DS. As the coded DS and remodulated US are mutual orthogonal, this will not only result in coding gain but also mitigate the beat noise and white noise more effectively by convolution integral for US signal received at OLT. Thanks to the proposed orthogonal codes, the spectrum of coded US is moved near to the frequency of US seed. It can reduce the spectral overlap between US signal and DS signal, which mitigates the OBI noise. When the DS and US have the same bit rate, our method can reduce the spectral overlap just like level coding, but when bit rate of US is smaller than that of DS,our method has less spectral overlap to reduce the OBI more effectively. Besides, we can get a coding gain by correlation algorithm in the uplink. It means long reach without amplifier or high splitter ratio can be realized.

    The paper is arranged as followings: the second part is the principle describes, the third is the experiment setup and results discussion,at last is the conclusion.

    II. PRINCIPLES

    2.1 Configuration of our proposed WDM-PON employing RSOA

    Figure 1 illustrates the configuration of the proposed US remodulation scheme in a full-duplex WDM-PON. At OLT, a pair of orthogonal code sequences composed by {1,1} and {1,-1}, respectively are generated with same code chip rate (Data Rate × Code Length= Chip Rate) for DS code element and US seed, respectively. For example, the DS sequence can be coded by the simplest first order Walsh code {1, 1}, which has no effects on the raw data rate of DS. While the US seed is used the second Walsh code {1,-1}. Then the coded DS signal and the second order Walsh code{1,-1} used as US seed are mixed and optical modulated. This means the coded DS signal is a four-level signal consisting {-1, 0, 1, 2} four levels randomly.

    Fig. 1 The principles of US remodulation scheme in the full-duplex WDM-PON

    After de-multiplexing (DEMUX) in remote node, signals in different wavelengths are assigned to corresponding ONUs and are divided into two branches in each ONU. One branch is detected by a PD and then filtered by a LPF to recover the DS signal. The other branch is used as the seed sources for US remodulation.Because the coded DS and the other orthogonal code are mutually orthogonal, the coded DS does not require to be erased. So a common RSOA without gain-saturation function can be used here to amplify the light and modulate the US signal.

    The remodulated US signal is coupled into fiber after an optical circulator for uplink transmission. At OLT, an optical circulator is used to separate the US signal. For the receiving of US signals, we just need to carry out the convolution with the local code storing in OLT. By using correlation algorithm, the coding gain can be achieved, which can be adjusted by changing the date rate of US.

    Fig. 2 An example coding and coding gain for DS (5Gb/s) US(1.25Gb/s)

    Fig. 3 The spectrum analysis for level code in ref [14], uncoded NRA, our proposed orthogonal coded DS and our proposed remodulated US

    As shown in figure 2, it is an example of the coding sketch. Here, we adopt orthogonal Walsh code with the code element of {1,-1} for US coding in our system. The Walsh codes with other code element such as {1, 1,-1,-1} and{1,-1,-1, 1} can also be used for US seed and remodulation, but they will spread the spectrum of US more severely which will expand the US bandwidth. So we employ the simplest orthogonal code, the first order {1, 1} and second order{1,-1} Walsh code to code the raw DS and US,respectively. Therefore in figure 2 the pair of orthogonal code’s chip rate is 10Gchips/s. It is a twice spreading-spectrum orthogonal code.In this case, the US seed is absolutely separate form raw DS in frequency, which has no effect on DS detecting and can reduce the spectral overlap of coded DS and US. Furthermore,code {1,-1} is just like level code which can upshift the US spectrum to higher spectrum to reduce the spectral overlap between the coded DS and US. It can suppress the OBI noise. The code length of US in our system is 8 chips, so we can get 9dB coding gain in theory. With multilevel modulation and SNR degradation,the practical coding gain should be less than the theoretical value of 9dB.

    2.2 Analysis of spectral overlap

    The level code[14] has much less baseband components compared with the uncoded NRZ signal shown in figure 3(a). The measured spectrum of our proposed orthogonal-coded NRZ DS signal is displayed in figure 3(b) and the spectra of remodulated US signal at different data rates are shown in figure 3(c). Here we explore the spectra of DS 5Gb/s, 1.25Gb/s US and 2.5Gb/s US, respectively.

    Viewing of figure 3 (b) and (c), the spectral overlap between DS and US expands with US bit rate. For example, for a 5Gb/s DS and 1.25Gb/s remodulated US, only about 10%spectra are overlapped. For a 5Gb/s DS and 2.5Gb/s remodulaed US, about 40% spectra are overlapped. For a symmetrical bit rate, it is the same as the level code [14]. The proposed method can reduce the overlap further than that of level code[14].By this way, the beat noise can be degraded more effectively.

    The improvement of system performance by means of our proposed method is mainly in four aspects. Firstly, with the help of a pair of orthogonal codes, we can move the spectrum of US to higher frequency. It can reduce the OBI more effectively than by using the level code in reference [14]. Secondly, we can get a coding gain by correlation algorithm in the uplink. It means long reach without amplifier[18] or high splitter ratio can be realized. The third, no extra CW light is needed for US seed light which can reduce cost and OBI caused by CW light.Finally, we do not need gain-saturation RSOA to erase the DS. In the λ-reused system, the extinction ratio(ER) is a critical parameter since it significantly affects the performance of both up- and down-link. In our proposed system,since erasing DS signal is not desired in the ONU and with help of orthogonality between DS and US code, our method has better performance at the lower extinction ratio modulator.

    III. EXPERIMENTS AND ANALYSIS

    3.1 Transmission performance

    Figure 4 shows the experimental setup of our proposed remodulated US WDM-PON system. At OLT, a 1550nm wavelength DFB laser and a Mach-Zehnder modulator (MZM) are used for optical modulation. The DS signal is generated by an Arbitrary waveform generator(AWG) working at 10GS/s sampling rate with 8bit resolution. A pseudorandom bit sequence of length 217-1 is generated and coded by the first order Walsh code for DS. After being mixed with the US seed code and normalizing,the digital signal is converted to analog signal by a DAC and then fed into a MZM. The Extinction Ratio (ER) of the output signal of MZM is about 14dB. Because of limited instruments, the raw bit rate of DS signal is 5Gb/s and an EDFA and a MZM are used instead of the RSOA in this experiment. However, we will test our power margin compared with the normal on-off keying (OOK) signal for DS and US with the same experiment equipments.The “normal” OOK signal means the light is modulated by uncoded NRZ electrical signal.Through an optical circulator, the modulated DS signal is fed into the fiber for 0km, 20km and 50km transmission, respectively, with 3dBm launch power. A variable optical attenuator (VOA) is used to emulate the optical power splitter and to adjust the power budget.At the ONU, the received signal is filtered by the tunable optical band-pass filter (OBPF),and is split into two branches. The DS is directly detected by 10GHz PD with a 4GHz bandwidth electrical low pass filter (LPF). The US raw is NRZ of 1.25Gb/s and remodulated on the amplified DS signal without erasing DS. The remodulated US signal is fed into the link through the optical circulator and the TOF. For the reception of US signal, the OLT detects the US signal using a 10GHz PD and then samples at 50GS/s. Then it will be operated by correlation process. The VOA in OLT is adjusted to change the received US light power from -27dBm to -19dBm.

    Figure 5 shows the measurement of BER versus receiver sensitivity of remodulated coded US and uncoded NRZ in a back to back(B2B) system. In figure 5, at the BER of 10-3,remodulated coded signal has about 4dB lower power penalty than NRZ signal. With development of light power, the multi-level signal will have better performance, the power margin increases to 5.40dB at BER of 10-7. For the code length of US is 8 chips, we should get 9dB coding gain in theory. However, as our remodulated seed signal is a four-level signal, with multilevel modulation and SNR degradation, the coding gain is smaller than the expected value. In the B2B system, the OBI noise is mainly from reflection of discrete components. The coding gain triggers 4~6dB power margin in our proposed system. The eye diagrams in the inset of figure 5 are the remodulated US coded (upper) and NRZ signal(lower) at the power of -24dBm.

    Fig. 4 The experimental setup of remodulated DS WDM-PON system

    The BER measurement results of remodulated US at 20km and 50km transmission are shown in figure 6 (a) and (b) respectively.As shown in figure 6 (a) and (b), the power margin by using remodulated US increases to 4.71dB at 20km at BER of 10-3, 5.20dB at 50km at BER of 10-3. At BER of 10-7,the power margin is improved to 7.34dB at 20km and 9.60dB at 50km, respectively. Our proposed method can suppress the Rayleigh noise, so the power margin at 20km or 50km is larger than that in B2B system.

    Fig. 5 The BER versus receiver sensitivity power in B2B system

    Fig. 6 The BER versus US receiver sensitivity at 20km (a) and 50 km (b)

    With the length of fiber, the power margin of remodulated US becomes larger. This is because the OBI noise caused by Rayleigh backscattering increases with fiber length,resulting in the performance of uncoded NRZ signal degrading rapidly. However, the ability of our proposed orthogonal coded signal is more superior to mitigate Rayleigh noise, due to much less spectral overlap between US and DS signal or CW light.

    Figure 7 is the power margin versus BER in our remodulated US system. With the length of fiber, the power margin increases accordingly, demonstrating the effectiveness of OBI suppression in our proposed method.

    3.2 Uplink crosstalk tolerance

    To evaluate the resilience to crosstalk caused by Rayleigh backscattering and reflection of discrete components in the uplink, we use the experimental setup shown in figure 8. The lower branch simulates the reflected DS signal as the crosstalk to US signal. [14][15] The experiment condition is same as above-mentioned system.The received power is fixed to -36dBm for US and the BERs are measured as a function of the CSR (Clutter-to-Signal Ratios).

    As shown in Fig.9, we can get BER of 10-7 for uncoded NRZ signal, but the CSR lower than -25dB is hard to be realized for experimental instruments limitation. So the curves of remodulated US signal is gotten by using the straight line extrapolation. As shown in figure 9(a), the remodulated orthogonal coded US signal has a 5.78dB larger crosstalk tolerance than NRZ signal at BER of 10-3and a 22.71dB larger tolerance at BER of 10-7in B2B system. The improvement of crosstalk tolerance increases with BER reducing, demonstrating that our method has better performance when CSR is lower. From figure 9, we can discover that the improvement of crosstalk tolerance increases with the fiber length expanding, compared with NRZ signal. It demonstrates that our system has much better transmission performance than uncoded NRZ signal in uplink for suppression of the OBI noise and coding gain.

    IV. CONCLUSION

    We proposed a new method to mitigate the OBI noise caused by Rayleigh backscattering in full-duplex WDM-PON system. By combining a pair of orthogonal codes and with correlation receiver for uplink receiving, it can effectively enhance the system resilience to the OBI noise. Without using extra centralized CW light for US seed lightwave at OLT and without erasing the DS at ONU, the proposed scheme is a simple method which can be used in the legacy WDM-PON. Our method does not require more optical devices for DS receiver at ONU along with low ER for US. By using correlation receiving method to achieve code gain and suppress white noise in US receiving, the method is suitable for long-reach and high splitter ratio PON system. The experiments show a total 4~9dB power margin at 1.25Gb/s US, 5Gb/s DS system at 20km-70km long-reach fiber transmission.

    ACKNOWLEDGEMENTS

    This work is supported by Memory access mode Adaptive Perception Intelligent Storage Architecture and Key Technologies (under granted: 61402501), and School of Computer Science, National University of Defense Technology. At the same time, I am also very grateful to the teachers and students who helped me in this research.

    Fig. 7 The power margin caused by our proposed method versus BER

    Fig. 8 Rayleigh backscattering and reflection crosstalk tolerance our proposed system

    Fig. 9 The BER versus CSR at B2B(a), 20km(b), 50km(c), 70km(d)

    [1] Bo Zhang, Chinlon Lin, Li Huo, Zhaoxin Wang,and Chun-Kit Chan; “A Simple High-Speed WDM PON Utilizing a Centralized Super continuum Broadband Light Source for Colorless ONUs” , OTuC6. OFC 2006.

    [2] Bock C., Prat J., Langer K.-D; “RSOA-based Optical Network Units for WDM-PON”, OTuCl. OFC 2006

    [3] Paola Parolari, Lucia Marazzi,Marco Brunero; et al; “10-Gb/s Operation of a colorless self-seeded transmitter over more than 70km of SSMF;IEEE Journal of lightwave technology”; Vol.26,NO.5: 599-602. (2014)

    [4] S.A.Gebrewold, L.Marazzietal; “Colorless self-seeded fiber cavity laser transmitter for WDM-PON”; CLEO (2014)

    [5] Hanwu Hu and Hannan Anis; “Degradation of bi-directional single fiber transmission in WDMPON due to beat noise”; Journal of lightwave technology Vol.26, No.8: 870-881 (2008)

    [6] U.H.Hong, K.Y.Cho, Y.Takushima et at; “Effects of Rayleigh backscattering in long-reach RSOABased WDM PON”; Conference on (OFC/NFOEC) (2010)

    [7] Olukayode Okusaga, James P.Cahill, Andrew Docherty; et al; “Spontaneous inelastic Rayleigh scattering in optical fibers”; Optics Letters; Vol.38, No.4: 549-552.(2013)

    [8] Peter Gysel and Roland Karl Staubli; “Spectral properties of Rayleigh backscattered light from sing-mode firbers caused a modulated probe signal”; Journal of lightwave technology; Vol.8,No.12: 1792-1798 (1990)

    [9] Hanlin Feng, Jia Ge, Shilin Xiao et al; “Suppression of Rayleigh backscattering noise using cascaded-SOA microwave photonics filter for 10Gb/s loop-back WDM PON”; Optics Express;Vol.22, Nol.10: 11770-11775 (2014)

    [10] C.W.Chow, G.Talli,P.D.Townsend; “Rayleigh noise reduction in 10Gb/S DWDM-PONs by wavelength detuning and phase-modulation-induced spectral broadening”; IEEEE Photonics Technology Letters, Vol.19, No.6. 423-425 (2007)

    [11] S.Y.Kim, S.B.Jun, Y.Takushima, E.S.Son and Y.C.Chung; ”Enhanced performance of RSOA-based WDM PON by using Manchester coding”,J.Opt.Netw.6(6),624-630 (2007)

    [12] M.Presi, A.Chiuchiarelli, R.Proieui, p.Choudhury,G.Contestabile and E.Ciaramella; “Single feeder bidirectional WDM PON with enhanced resilience to Rayleigh-backscattering”, Pro.Optical fiber communication (OFC)conference, paer OThG2 (2010)

    [13] Andrea Chiuchiarelli, Marco Presi, Roberto Proietti; et al; “Enhancing Resilience to Rayleigh crosstalk by means of line coding and electrical filtering; IEEE Photonics technology letters”, Vol.22, No.2. 85-87 (2010)

    [14] Qi Guo; An Vu Tran; “Performance Enhancement in RSOA-Based WDM passive optical networks using level coding”; IEEE Journal of lightwave technology, Vol. 31, No.1: 67-73 (2013)

    [15] Q.Guo and A.V.Tran, “Mitigation of Rayleigh noise and dispersion in REAM-based WDM –PON using spectrum-shaping codes,” Opt. Express 20(26), B452-B461 (2012)

    [16] Gupta M.K., Dali P.P. and Singh G.; “A novel approach to enhance the performance of ring based WDM PON”; International conference on signal propagation and computer technology”;(ICSPCT): 329-331 (2014)

    [17] Zhengxuan Li, Lilin Yi and Weisheng Hu; “Symmetric 40Gb/s TWDM-PON with 51-dB loss budget by using a single SOA as preamplifier,booster and format converter in ONU”; Optics Express; Vol.22,No.20, (2014)

    [18] Gyaneshwar C., Gupta. “Over 100km Bidirectional, Multi-channels COF-PON without Optical Amplifier”, 2006 OSA/OFC (2006)

    亚洲精品粉嫩美女一区| 成人手机av| av有码第一页| 国产成人精品在线电影| 国产精品九九99| 亚洲,欧美精品.| 亚洲专区中文字幕在线| 老熟妇仑乱视频hdxx| 欧美亚洲日本最大视频资源| 99国产精品一区二区三区| 欧美乱色亚洲激情| av电影中文网址| 中文字幕精品免费在线观看视频| 咕卡用的链子| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 一本大道久久a久久精品| 亚洲自偷自拍图片 自拍| 校园春色视频在线观看| 国产不卡一卡二| 亚洲伊人色综图| 亚洲av成人不卡在线观看播放网| 91字幕亚洲| 99久久人妻综合| 天天影视国产精品| 日本欧美视频一区| 精品国产一区二区三区四区第35| 12—13女人毛片做爰片一| 亚洲 国产 在线| 婷婷精品国产亚洲av在线| 伊人久久大香线蕉亚洲五| av中文乱码字幕在线| 村上凉子中文字幕在线| 久久人人精品亚洲av| 国产又色又爽无遮挡免费看| av在线播放免费不卡| 天天影视国产精品| 另类亚洲欧美激情| 在线天堂中文资源库| 日本黄色日本黄色录像| 欧美+亚洲+日韩+国产| 久久人人精品亚洲av| 巨乳人妻的诱惑在线观看| 国产免费av片在线观看野外av| 欧美激情 高清一区二区三区| 国产亚洲欧美在线一区二区| 免费高清在线观看日韩| 嫩草影院精品99| 俄罗斯特黄特色一大片| 高清黄色对白视频在线免费看| 香蕉丝袜av| 中文字幕人妻丝袜制服| 69av精品久久久久久| 日韩人妻精品一区2区三区| 国产色视频综合| 久久久精品国产亚洲av高清涩受| 麻豆国产av国片精品| 亚洲免费av在线视频| 成人三级做爰电影| 久久人妻av系列| 欧美日韩国产mv在线观看视频| 无限看片的www在线观看| 老司机在亚洲福利影院| 亚洲人成网站在线播放欧美日韩| 色哟哟哟哟哟哟| 亚洲伊人色综图| 欧美在线黄色| 亚洲成人国产一区在线观看| 黄色视频不卡| 午夜亚洲福利在线播放| 日韩人妻精品一区2区三区| 黄片大片在线免费观看| 操出白浆在线播放| www国产在线视频色| 男女高潮啪啪啪动态图| 亚洲欧美日韩高清在线视频| 一级毛片精品| 99国产精品一区二区三区| 成人永久免费在线观看视频| 老司机亚洲免费影院| 国产精品1区2区在线观看.| 热re99久久精品国产66热6| 午夜视频精品福利| 在线视频色国产色| 我的亚洲天堂| 成人18禁在线播放| 欧美最黄视频在线播放免费 | 在线观看免费高清a一片| 欧美国产精品va在线观看不卡| 黑人巨大精品欧美一区二区mp4| 午夜精品国产一区二区电影| 无遮挡黄片免费观看| 亚洲,欧美精品.| 久久精品人人爽人人爽视色| 大型av网站在线播放| 麻豆国产av国片精品| 精品午夜福利视频在线观看一区| svipshipincom国产片| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| 天堂俺去俺来也www色官网| 久久久久亚洲av毛片大全| 久久狼人影院| 午夜福利免费观看在线| 免费看十八禁软件| 日本撒尿小便嘘嘘汇集6| 久久午夜综合久久蜜桃| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 国产男靠女视频免费网站| 欧美日本亚洲视频在线播放| 国产精品香港三级国产av潘金莲| 日韩欧美三级三区| 99国产综合亚洲精品| 久久精品亚洲av国产电影网| 桃色一区二区三区在线观看| 女警被强在线播放| 亚洲第一青青草原| 天堂动漫精品| 天天影视国产精品| 一级a爱视频在线免费观看| 亚洲午夜精品一区,二区,三区| 亚洲中文字幕日韩| 99国产极品粉嫩在线观看| 欧美黄色片欧美黄色片| 精品国产乱码久久久久久男人| 视频在线观看一区二区三区| 在线av久久热| 高潮久久久久久久久久久不卡| 午夜激情av网站| 日本五十路高清| 黄色视频不卡| 国产一区二区三区在线臀色熟女 | 97超级碰碰碰精品色视频在线观看| 国产精品偷伦视频观看了| 操美女的视频在线观看| 久久人人爽av亚洲精品天堂| 99久久综合精品五月天人人| 黄色丝袜av网址大全| 美女扒开内裤让男人捅视频| 人妻丰满熟妇av一区二区三区| 怎么达到女性高潮| 亚洲专区国产一区二区| 日韩精品免费视频一区二区三区| 丝袜美腿诱惑在线| 18禁黄网站禁片午夜丰满| svipshipincom国产片| netflix在线观看网站| 久久香蕉精品热| 国产又爽黄色视频| 天堂√8在线中文| 久久久久九九精品影院| 亚洲欧美激情综合另类| 亚洲在线自拍视频| 欧美国产精品va在线观看不卡| 国产精品综合久久久久久久免费 | 亚洲精品成人av观看孕妇| 色在线成人网| 成人免费观看视频高清| 国产精品久久视频播放| 国产成人av教育| 50天的宝宝边吃奶边哭怎么回事| 国产精品98久久久久久宅男小说| 好男人电影高清在线观看| 国产欧美日韩一区二区三| 午夜福利在线免费观看网站| 超色免费av| 97超级碰碰碰精品色视频在线观看| 国产99久久九九免费精品| 国产精品99久久99久久久不卡| 亚洲自拍偷在线| 国产欧美日韩精品亚洲av| 日韩av在线大香蕉| 久久这里只有精品19| 国产日韩一区二区三区精品不卡| 一本大道久久a久久精品| 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 亚洲狠狠婷婷综合久久图片| 高清毛片免费观看视频网站 | 午夜福利影视在线免费观看| 亚洲中文字幕日韩| 天天影视国产精品| 香蕉丝袜av| tocl精华| 久久久国产一区二区| 亚洲色图综合在线观看| 夜夜看夜夜爽夜夜摸 | 男女之事视频高清在线观看| 日韩有码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美日韩另类电影网站| 精品高清国产在线一区| 国产精品电影一区二区三区| 老司机深夜福利视频在线观看| 久久人人97超碰香蕉20202| 人人妻人人爽人人添夜夜欢视频| 国产有黄有色有爽视频| 99香蕉大伊视频| www国产在线视频色| 超碰成人久久| 日韩精品青青久久久久久| videosex国产| 在线观看午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 麻豆一二三区av精品| 在线观看www视频免费| 午夜福利一区二区在线看| 亚洲av第一区精品v没综合| www国产在线视频色| 国产成+人综合+亚洲专区| 悠悠久久av| 精品一品国产午夜福利视频| 国产亚洲精品久久久久5区| 精品无人区乱码1区二区| 久久青草综合色| 成人特级黄色片久久久久久久| 久久狼人影院| 51午夜福利影视在线观看| 制服诱惑二区| 午夜免费鲁丝| 亚洲人成网站在线播放欧美日韩| 国产蜜桃级精品一区二区三区| 久久精品91无色码中文字幕| 久久久久久亚洲精品国产蜜桃av| 亚洲 欧美一区二区三区| 国产高清视频在线播放一区| 18禁国产床啪视频网站| 丝袜美腿诱惑在线| 国产99白浆流出| 亚洲精品美女久久av网站| 一区在线观看完整版| 多毛熟女@视频| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 老鸭窝网址在线观看| 黄色怎么调成土黄色| 999久久久国产精品视频| 精品乱码久久久久久99久播| 中文字幕人妻丝袜制服| 国产高清videossex| 欧美亚洲日本最大视频资源| 岛国视频午夜一区免费看| 电影成人av| 国产蜜桃级精品一区二区三区| 亚洲欧美一区二区三区黑人| 日本撒尿小便嘘嘘汇集6| 黄色a级毛片大全视频| 国产精品免费视频内射| 男女下面进入的视频免费午夜 | 成人手机av| 两个人看的免费小视频| 老熟妇乱子伦视频在线观看| 日本五十路高清| 99精国产麻豆久久婷婷| 性欧美人与动物交配| 国产免费男女视频| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 免费在线观看完整版高清| 男人的好看免费观看在线视频 | 不卡av一区二区三区| 天天影视国产精品| 日本a在线网址| √禁漫天堂资源中文www| 亚洲精品成人av观看孕妇| 亚洲片人在线观看| 中文欧美无线码| 91精品国产国语对白视频| 97碰自拍视频| 日韩欧美免费精品| 久久久国产成人精品二区 | 国产一区二区三区在线臀色熟女 | 丝袜在线中文字幕| 国产黄a三级三级三级人| 成人黄色视频免费在线看| 脱女人内裤的视频| 午夜视频精品福利| 99精国产麻豆久久婷婷| 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产成人精品二区 | cao死你这个sao货| 国产片内射在线| 亚洲人成网站在线播放欧美日韩| 国产精品一区二区三区四区久久 | 亚洲中文字幕日韩| 99国产精品免费福利视频| 亚洲人成电影免费在线| 看黄色毛片网站| 国产亚洲精品久久久久久毛片| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 国产精品电影一区二区三区| 亚洲 国产 在线| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉精品热| 美女高潮到喷水免费观看| 亚洲成a人片在线一区二区| 欧美日韩av久久| 亚洲av成人av| 国产精品秋霞免费鲁丝片| 757午夜福利合集在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲精华国产精华精| 黄色怎么调成土黄色| 日本五十路高清| 老司机午夜十八禁免费视频| 午夜日韩欧美国产| 欧美av亚洲av综合av国产av| 在线看a的网站| 级片在线观看| 日韩欧美国产一区二区入口| 国产午夜精品久久久久久| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女 | 亚洲中文av在线| www国产在线视频色| 国产视频一区二区在线看| 啦啦啦 在线观看视频| 性少妇av在线| 亚洲国产精品合色在线| 欧美激情 高清一区二区三区| 女警被强在线播放| 老司机深夜福利视频在线观看| 国产主播在线观看一区二区| 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 99re在线观看精品视频| 桃红色精品国产亚洲av| 搡老熟女国产l中国老女人| 日韩欧美一区视频在线观看| 国产精品偷伦视频观看了| 亚洲中文日韩欧美视频| 免费少妇av软件| 久久久久国内视频| 欧美乱码精品一区二区三区| 在线观看一区二区三区| 99在线视频只有这里精品首页| 一本综合久久免费| 天堂动漫精品| 国产区一区二久久| 亚洲 欧美 日韩 在线 免费| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 国产视频一区二区在线看| 国产亚洲欧美在线一区二区| 两人在一起打扑克的视频| 黄色成人免费大全| 久久久国产精品麻豆| 欧美黑人精品巨大| 国产成人精品无人区| √禁漫天堂资源中文www| 午夜视频精品福利| 男女之事视频高清在线观看| 日本撒尿小便嘘嘘汇集6| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 精品一区二区三卡| 国产欧美日韩一区二区精品| 精品久久久精品久久久| 国产精品国产av在线观看| 日本一区二区免费在线视频| 日韩国内少妇激情av| 宅男免费午夜| 亚洲免费av在线视频| 亚洲欧美激情在线| 99国产综合亚洲精品| 精品第一国产精品| 国产精品久久久av美女十八| 亚洲一区二区三区欧美精品| 欧美大码av| 午夜影院日韩av| 久久久久国内视频| 欧美乱码精品一区二区三区| 国产高清激情床上av| 亚洲欧美激情综合另类| 亚洲成人免费电影在线观看| 国产成人精品在线电影| 成人影院久久| 99久久人妻综合| 香蕉国产在线看| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 精品福利永久在线观看| 日日夜夜操网爽| 国产免费av片在线观看野外av| 久久性视频一级片| 国产亚洲精品综合一区在线观看 | 亚洲视频免费观看视频| 日韩一卡2卡3卡4卡2021年| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| 国产精品亚洲av一区麻豆| 国产1区2区3区精品| 侵犯人妻中文字幕一二三四区| 999精品在线视频| 男人舔女人的私密视频| 久久人人精品亚洲av| 天天影视国产精品| www.999成人在线观看| 亚洲精品粉嫩美女一区| 色精品久久人妻99蜜桃| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人精品中文字幕电影 | 黑人欧美特级aaaaaa片| 巨乳人妻的诱惑在线观看| 91国产中文字幕| 国产乱人伦免费视频| 日韩欧美免费精品| 成人精品一区二区免费| 日韩欧美三级三区| www.精华液| 亚洲少妇的诱惑av| 91国产中文字幕| 侵犯人妻中文字幕一二三四区| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片 | 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 久久精品国产清高在天天线| 可以免费在线观看a视频的电影网站| 12—13女人毛片做爰片一| 在线观看午夜福利视频| 香蕉久久夜色| 国产一区二区在线av高清观看| 国产片内射在线| 国产xxxxx性猛交| 亚洲欧美激情综合另类| 三上悠亚av全集在线观看| 久久久久国内视频| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 精品国内亚洲2022精品成人| 男人舔女人下体高潮全视频| 很黄的视频免费| www.自偷自拍.com| 欧美日韩视频精品一区| 777久久人妻少妇嫩草av网站| 国产亚洲欧美在线一区二区| 国产av一区在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 18禁黄网站禁片午夜丰满| 成人特级黄色片久久久久久久| 夜夜爽天天搞| 丰满迷人的少妇在线观看| 搡老熟女国产l中国老女人| www.999成人在线观看| 精品久久蜜臀av无| 久久人人97超碰香蕉20202| 久久精品成人免费网站| 亚洲专区字幕在线| 亚洲视频免费观看视频| 亚洲国产中文字幕在线视频| 亚洲少妇的诱惑av| bbb黄色大片| 亚洲人成电影免费在线| 99国产精品99久久久久| 丰满的人妻完整版| 91麻豆av在线| 丰满饥渴人妻一区二区三| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 欧美日韩国产mv在线观看视频| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 自线自在国产av| 久久香蕉激情| 久久精品91蜜桃| 久久久久九九精品影院| 成年版毛片免费区| 免费女性裸体啪啪无遮挡网站| 中文字幕高清在线视频| 国产黄a三级三级三级人| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产看品久久| 欧美黄色淫秽网站| 国产成人欧美| 成年人黄色毛片网站| 香蕉久久夜色| 大陆偷拍与自拍| 久久精品国产综合久久久| 五月开心婷婷网| 99精品在免费线老司机午夜| 亚洲第一青青草原| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 国产精品久久久久久人妻精品电影| 两性午夜刺激爽爽歪歪视频在线观看 | 精品无人区乱码1区二区| netflix在线观看网站| 1024香蕉在线观看| 成人影院久久| 免费av毛片视频| 高清在线国产一区| 在线永久观看黄色视频| 国产av一区在线观看免费| 国产蜜桃级精品一区二区三区| 熟女少妇亚洲综合色aaa.| 国产在线观看jvid| 在线av久久热| 99国产极品粉嫩在线观看| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 国产精品成人在线| 999精品在线视频| 国产熟女午夜一区二区三区| 成人特级黄色片久久久久久久| 久久久久国内视频| 久久香蕉精品热| 午夜免费激情av| 国产99白浆流出| 男人的好看免费观看在线视频 | 丁香欧美五月| www.精华液| 黄色女人牲交| 久久影院123| 男女床上黄色一级片免费看| 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区| 男女高潮啪啪啪动态图| 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| www国产在线视频色| 国产一区在线观看成人免费| 91麻豆av在线| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频| 在线观看一区二区三区| 多毛熟女@视频| 一进一出好大好爽视频| 久久午夜综合久久蜜桃| 国产成年人精品一区二区 | 99精品欧美一区二区三区四区| 国产在线精品亚洲第一网站| 欧美午夜高清在线| 制服人妻中文乱码| 18禁国产床啪视频网站| 9色porny在线观看| 久久久水蜜桃国产精品网| 黄色毛片三级朝国网站| 久久久久久久午夜电影 | 成人免费观看视频高清| 一区二区三区国产精品乱码| 国产精品自产拍在线观看55亚洲| 精品国产国语对白av| 国内毛片毛片毛片毛片毛片| 国产熟女xx| 91av网站免费观看| 一边摸一边抽搐一进一出视频| 电影成人av| 久久精品91蜜桃| bbb黄色大片| 亚洲成人免费av在线播放| 成人三级做爰电影| 他把我摸到了高潮在线观看| 黄色丝袜av网址大全| 欧美黑人欧美精品刺激| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产精品人妻aⅴ院| 1024视频免费在线观看| 亚洲精品国产区一区二| 欧美乱妇无乱码| 久久人人97超碰香蕉20202| 日本撒尿小便嘘嘘汇集6| 久久国产精品男人的天堂亚洲| 男女高潮啪啪啪动态图| 天堂动漫精品| 99久久99久久久精品蜜桃| 性色av乱码一区二区三区2| 久久国产精品影院| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 怎么达到女性高潮| 80岁老熟妇乱子伦牲交| 91大片在线观看| 国产一区二区激情短视频| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜制服| 亚洲午夜精品一区,二区,三区| www.www免费av| 欧美日韩亚洲高清精品| 老司机午夜十八禁免费视频| 国产精品久久久av美女十八| 亚洲avbb在线观看| 欧美黄色片欧美黄色片| 国产1区2区3区精品| 国产亚洲精品久久久久5区| 国产精品一区二区精品视频观看| 91国产中文字幕| 日韩精品青青久久久久久| 中文字幕色久视频| 18禁国产床啪视频网站| 国产激情欧美一区二区| 亚洲狠狠婷婷综合久久图片| 免费在线观看视频国产中文字幕亚洲| 日韩av在线大香蕉| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 一级a爱片免费观看的视频|