• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Underdetermined Blind Source Separation of Adjacent Satellite Interference Based on Sparseness

    2017-05-08 13:19:27ChengjieLiLidongZhuZhongqiangLuo
    China Communications 2017年4期

    Chengjie Li, Lidong Zhu, Zhongqiang Luo

    1 National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China,Chengdu, China

    2 School of Automation & Information Engineering, Sichuan University of Science and Engineering, Zigong, China

    I. INTRODUCTION

    Recently years, adjacent satellite interference is more and more serious with the increase quantity of satellites. The causes of the adjacent satellite interference are about as the following [1]:

    ● The adjacent satellite antenna direction is deflected, which leads to the adjacent satellite receiving the target signal which should be sent to the satellite carrier.

    ● The adjacent satellite antenna sidelobe is too high to meet the criterion of net test, so part of the power is taken to the adjacent satellite.

    ● The adjacent satellite antenna is too small. Although through the net test standard but need high transmitting power. So, the signal of the antenna sidelobe is sent to the adjacent satellite.

    ● The adjacent satellite transmitting power is too high.

    Because of the hopping frequency signal has high security and good anti-jamming capability, so the hopping frequency signal is widely used in military field and modern satellite communication system. So a novelFHsignal Blind source separation (BSS) of adjacent satellite interference is discussed in this paper.

    BSS focuses on extracting and recover source signals from mixed signals with little knowledge on compositions or mixing history[2,3], so BSS is well applicable in many fields,such as image recognition, speech enhance-ment, biomedical signal processing, wireless communications etc. [4-6]. The framework of blind source separation is shown in Fig.1. To this day, many blind source separation algorithms are proposed, such as INFOMAX algorithm, JADE algorithm and FastICA algorithm [7-9], but they require more sensors than sources if little prior information given.Furthermore, many BSS algorithms assume that source signals are statistically independent or mixture is full of rank, but it is not the case in real world [10]. So underdetermined blind source separation (UBSS) needs to be proposed. In this article, we propose an underdetermined blind source separation method of adjacent satellite interference, that is, Density Clustering algorithm (DC-algorithm), which is based on Euclidean distance and sampling points density in time-frequency domain. The problem is described as follows: givenNsampling points in time-frequency domain, each object is assigned to one ofKclusters (the number of the mixed signal isK).

    Data clustering algorithm has been widely used in blind source signal separation, whose characteristic is the data within one cluster are very similar while the data between clusters are dissimilar [11-13]. Such asK-means cluster algorithm, which is a familiar cluster algorithm with advantages:1)simplicity,2)efficient [14,15], as well as disadvantages:1)prior knowledge on cluster number,2)strong dependency of performance on original centroid,3)frequent partial optimization [16].

    In this paper, blind source separation problem is formulated as clustering problem,which is motivated by the fact that the mixed signal is sparse and the energy difference is as large as possible to satisfy cluster centers that are surrounded by neighbors with local lower density. Basically, to evaluate the similarity among data objects in time-frequency domain,the Euclidean distance measurement is used.The Euclidean distances among every object is described as below [17]:

    The rest of this paper is organized as follows. In Section II, we introduce the preparatory work of Density Clustering algorithm(DC-algorithm). In Section III, we introduce the DC-algorithm. In Section IV, we discuss the algorithm performance and analyze the algorithm by the considering the noise and robustness analysis. In Section V, we introduce and discuss the experimental results. Finally,the conclusion is drawn in Section VI.

    In this paper, the authors propose frequency hopping signal underdetermined blind source signal separation of Adjacent Satellite Interference.

    II. PREPARATORY WORK

    In this section, we introduce the related preparatory work of DC-algorithm.

    2.1 Sparse BSS

    Sparseness means that the possibility is very low that two or more source signals at the same time-frequency points. In the frequency hopping signal time-frequency domain, sparse representation leads to good separation because most of the energy in the defined basis coefficient according to any time-frequency point belongs to a single source. So, sparseness is essential for the Density Clustering algorithm (DC-algorithm), which is easy to satisfy for frequency hopping signal in time-frequency domain. According to the sparseness assumption, the BSS can be described as follows [18,19],

    In formula (2),Tdenotestransfer matrix, which denotes the degree of correlation between independent sourcesAand their basis sparse coefficients matrixC. So, the goal in this article can be described as follows: we are in search of the mixed matrixAand transfer matrixT. In order to be more effective effect,the basis coefficients matrixCmust be sparse as far as possible.

    Fig. 1 Framework of BSS model

    Several existing measures are introduced which can assess the sparseness of signals,such asis used in [20], normalized ratio of theandare used in [21] for signal assessment of the sparseness.In this article, the sparseness measure is considered in time-frequency domain of frequency hopping signal and the method of sparseness measure isD-measure, which is introduced in[22], Fig.2 illustrates the sparseness degrees of three different matrices gauged by theD-measure. It can be seen that the sparseness of matrix is along with the value ofD-measure.

    2.2 Frequency hopping signal model

    As a kind of non-stationary signal, FH signal changes along with time as below [23]:

    here

    Fig. 2 Description of various degrees of sparseness. The D-measure values corresponding to the three matrices (from left to right) are 0.1, 0.5, and 0.8, respectively

    Fig. 3 Image of frequency hopping signal in time-frequency domain

    In Fig.3, the image of frequency hopping signal in time-frequency domain is shown.From Fig. 3, we can find finite sine waveforms are unique decided by the following three parameters: the location ofkth hop in time domain; location ofkth hop in frequency domain; length of time- frequency domain [24].

    In this article, we focus on separation of initial frequency hopping signals without any other prior knowledge.

    III. DENSITY CLUSTERING ALGORITHM(DC-ALGORITHM)

    3.1 Construct cost function pair

    The novel algorithm in this paper has two assumptions: (1) the source mixed signals are sparse in time-frequency domain. (2) The mixed signal energy difference is as large as possible. The assumption (1) makes the blind source separation question be clustering question, the assumption (2) makes separation as effective as possible. The three-dimensional figure of the received mixed signals in time-frequency domain is described in Fig. 4,

    In the above Fig. 4, the vertical axis isthe design formula ofis described in formula (4) [25],

    where

    For each sampling pointsi, we compute two quantities [26],

    From the above analyses, we can construct the Cost Function Pair.Based on the Cost Function Pair, we can classify the sampling points.

    3.2 Construct decision coordinate system

    In the following paragraph, the Decision Coordinate System will be constructed, which is the core of the algorithm, which is illustrated by the embedded sample points in Fig. 5 [27].

    In the Decision Coordinate System, the horizontal axis isthe vertical axis isIt is seen that although the data number 2 and 22 are very near, they are not the cluster center due to the small value of. Meanwhile, we can see from Fig.5 that data 2 and 22 belong to different centers, i.e., 5 and 19 respectively.Hence, only the data will be treated as cluster center, which are both large values ofand large values of, such as data number 5 and 19 in Fig. 6. The points 14, 15, and 23 are of relatively highand a low, so, they can’t be treated as cluster centers. The result that sampling data points are ranked in order of decreasing density is described in Fig. 6.

    After finding the cluster centers, every sample point will be assigned to the nearest cluster center according to Euclidean distance.

    Fig. 4 Distribution of frequency hopping signal in time-frequency domain

    Fig. 5 Sampling point distribution. ranked in order of decreasing density

    Fig. 6 Decision coordinate system. sampling data points are ranked in order of decreasing density

    3.3 Estimation of the number of sources

    In the following paragraph, the number of source signals will be estimated. The number of source signals can be automatically confirmed according to the Decision Coordinate System in 3.2, however, the results may sensitive toIn the proposed model, the Cost Function Pairis used as sparseness criterion for individual sampling points of the source signals. So, the sparseness will be forced to require as a necessary parameter. Of course, this will increase the complexity of the algorithm.

    In order to reduce the complexity of the calculation, we propose an alternative automatic approach for estimation of the number by using the Cost Function Pairin Decision Coordinate System.

    In general, we estimate the number of the original signals with the coordinate of every sampling points in Decision Coordinate System. In Fig.5, 5 and 19 are the centers of respective source signal. Then, the number of the original signals in Fig.5 is two.

    IV. ALGORITHM PERFORMANCE ANALYSIS

    4.1 Considering the noise

    To get efficient separation, we construct the cost function, which is described in the following formula [28],

    Table I Robustness of algorithm in this article compared with other algorithms

    where,

    To seek the optimal solution, the noise cannot be neglected and the orthogonal matching pursuit (OMP) algorithm can be used [29].During seeking the optimal solution, in the dictionary update stage, there is an important advantage, that is, the dictionary does not get the existing noise. According to the characteristics of seeking the optimal solution process,the performance of the estimated signal will be high-efficiency according to this dictionary. In the next iteration, the dictionary atoms will be refined. During seeking the optimal solution, a clean signal is achieved by repeating this progressive denoising loop.

    4.2 Robustness of DC-algorithm

    In the following subsequent sections, the robustness of the algorithm in this article is discussed.

    Robustness is used here to mean that the number of Pearson’s correlation coefficient above 0.95 is acceptable under the same test times. The Pearson’s correlation coefficient is defined as:

    So, robustness should not be considered here with sensitivity analysis, which is a study of the influence of hybrid matrix changes on performance.

    Table 1 reveals that algorithm in this article offers a generally highest percentage of trials (reaching acceptable solutions) and the highest robustness averaged over all the test algorithms. The algorithm in this article reaches the acceptable solutions against other algorithms. Note that the Number of Pearson’s correlation coefficient is above 0.95 of Classical Searching and Averaging Method, FastICA Algorithm, JADE Algorithm are 176, 172,184, respectively. For the mean robustness of all the test algorithms, DC-algorithm offers the highest robustness of 196, followed by JADE Algorithm, classical searching and averaging method and FastICA Algorithm.

    According to the theorem of ‘no free lunch’[30], one algorithm cannot offer better performance than all the others on every aspect or on every kind of problem. This is also observed in our experimental results. DC-algorithm outperforms classical searching and averaging method, FastICA Algorithm, JADE Algorithm on separation robustness. However, on average time, FastICA Algorithm offers better performance than DC-algorithm.

    V. SIMULATION RESULTS

    In this paragraph, some simulations are operated to verify the proposed method in this article. In the following simulations, without loss of generality, we separate the mixed signals in time-frequency domain of frequency hopping signal.

    Each parameter is defined as follows:

    ● The transmission bit rate is

    ● The modulation frequency is

    After having gotten the sampling points,we design the Decision Coordinate System according to the Cost Function Pairin Fig.7. From Fig. 7, we can confirm that the sampling points have three cluster centers. That is to say, the number of the source signals is three.

    Every sampling point is assigned to the nearest neighbor cluster according to its density when the cluster centers are found. The results of classification are displayed in Fig.8.As we expected, the sampling points are di-Hz;

    ● The bit numbers arem=8;

    ● The original signal numbers areMK=3;

    ● The receiving antenna numbers arevided into three groups.

    Fig. 7 Decision coordinate system of the sampling points based on

    Fig. 8 The class of the sampling points

    Fig. 9 The sent source signals’ waveforms. three sent source signals are considered

    In Fig. 9, the original signal’s waveforms are displayed respectively. In the following experiment, our goal is to separate each signal from the received mixed signals. According to the actual situation, considering to the realistic signal transmission, we adopt two receiving antennas, the signal after Gaussian channel,the received mixed signal waveforms are shown in Fig. 10 (Received Composite Signal).

    Fig. 11 Separated waveform with the proposed density clustering algorithm (dc-algorithm)

    5.1 The first comparative experiment of eff ect

    We use the method in this article for signal blind source separation, the original signals are recovered efficiently. The separated signal waveforms are displayed in Fig., where three signals are shown. It is quite clear that the separated waveform using DC-algorithm is very similar to original signal waveform.

    We compare the two signals between Fig. 9 and Fig. 11 with objective evaluation function respectively. We use Pearson’s correlation coefficient as the objective evaluation function,which is defined in (8).

    To illustrate the algorithm performance superiority, we further compare the separation performance with the K-means clustering algorithm [31]. The results of the comparison are shown in Fig. 12. From Fig. 12, we can see the source mixed signals can be separated with DC-algorithm, and have better separation performance thanK-means clustering algorithm.

    The algorithm framework of the first comparative experiment of effect is shown in Table 2.

    Table II Main detail of the algorithm in this article

    5.2 The second comparative experiment of eff ect

    From 5.1, we can judge the Density Clustering algorithm (DC-algorithm) has good separation effect. In the following section, to further illustrate DC-algorithm has an outstanding separation performance, we will choose another evaluation function, that is, Error Performance Analysis (PI), as evaluation standard, which is defined as:

    We compare the separation performance with classical Based on the Ratio Matrix Clustering Algorithm, the comparison result is shown in Fig. 13. From Fig. 13, we can draw a conclusion, the separation performance of DC-algorithm is better than Ratio Matrix Clustering Algorithm [32].

    VI. CONCLUSION

    In this paper, we propose frequency hopping signal underdetermined blind source signal separation of Adjacent Satellite Interference.Firstly, we get the original data by computing the Short Time Fourier Transform (STFT) of each observation. Secondly, we construct Cost Function Pairand Decision Coordinate System. In Decision Coordinate System, we can conclude the number of the source signals and every sample point will be assigned to the nearest cluster center according to Euclidean distance. At last, we use some simulation experiments verify our proposed algorithm. The experiment results demonstrate the effectiveness of the proposed method.

    ACKNOWLEDGEMENT

    This work is fully supported by a grant from the national High Technology Research and development Program of China (863 Program)(No.2012AA01A502), and National Natural Science Foundation of China (No.61179006),and Science and Technology Support Program of Sichuan Province(No.2014GZX0004).

    Fig. 12 Blind source separation result, this article method has a better performance than classical FastICA algorithm

    Fig. 13 Blind source separation result, this article method has a better performance than classical based on the ratio matrix clustering algorithm

    [1] Sun Long Wang, Wei Chen, Ning Hua Zhu, Jian Guo Liu, Wen Ting Wang,Jin Jin Gu, A Novel Optical Frequency-Hopping Scheme for Secure WDM Optical Communications,IEEE Photonics Journal. Frequency-Hop Scheme for WDM Communications, Vol.7, No.3, June 2015.

    [2] Atiyeh Alinaghi, Philip JB Jackson, Qingju Liu,and Wenwu Wang, Joint Mixing Vector and Binaural Model Based Stereo Source Separation,IEEE/ACM Trans. on Audio, Speech, and Language Processing, Vol.22, No.9, Sep.2014,pp.1434-1448.

    [3] Chengpu Yu, Lihua Xie, and Yeng Chai Soh,Blind Channel and Source Estimation in Networked Systems,IEEE Trans. on Signal Processing, Vol.62, No.17, Sep.1, 2014, pp.4611-4626.

    [4] Ondrej Tichy and Vaclav Smidl, Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors,IEEE Trans.on Medical Imaging, Vol.34, No.1, Jan.2015,pp.258-266.

    [5] Zhang Ye, Cao Kang, Wu Kangrui, Yu Tenglong,Zhou Nanrun, Audio-Visual Underdetermined Blind Source Separation Algorithm Based on Gaussian Potential Function,China Communications, Communications System Design, June 2014, pp.71-80.

    [6] Leonardo T. Duarte, Joao M.T.Romano, Christian Jutten, Karin Y. Chumbimuni-Torres, and Lauro T. Kubota, Application of Blind Source Separation Methods to Ion-Selective Electrode Arrays in Flow-Injection Analysis,IEEE Sensors Journal,Vol.14, No.7, July 2014,pp.2228-2229.

    [7] Aapo Hyvarinen, Gaussian Moments for Noisy Independent Component Analysis,IEEE Signal Processing Letters, Vol.6, No.6, Jun.1999, pp.145-147.

    [8] GU Fanglin, ZHANG Hang, ZHU Desheng, Maximum Likelihood Blind Separation of Convolutively Mixed Discrete Sources,China Communications, June 2013, Digital Communications,pp.61-67..

    [9] Petr Tichavsky, Zbynek Koldovsky, and Erkki Oja,Performance Analysis of the FastICA Algorithm and CramerCRao Bounds for Linear Independent Component Analysis,IEEE Trans. on Signal Processing, Vol.54, No.4, April 2006, pp.1189-1230.

    [10] Belouchrani A, Abed-Meraim K, Cardoso JF,etal., A blind source separation technique using second order statistics,IEEE Transactions on Signal Processing, Vol.45, No.2, 1997, pp.434-444.

    [11] W.Barbakh, Y.Wu, C.Fyfe, Review of clustering algorithms, in: Non-Standard Parameter Adaptation for Exploratory Data Analysis,Springer,Berlin/Heidelberg, 2009, pp.27-28.

    [12] A.K.Jain, Data clustering: 50 years beyond K-means,Pattern Recognition Letters31 (2010)651-666.

    [13] Wenjie Bi, Meili Cai, Mengqi Liu, and Guo Li, A Big Data Clustering Algorithm for Mitigating the Risk of Customer Churn,IEEE Transactions on Industrial Informatics, Vol.12, No.3, JUNE 2016, pp.1270-1281.

    [14] Christos Boutsidis, Anastasios Zouzias, Michael W.Mahoney, and Petros Drineas, Randomized Dimensionality Reduction for k-Means Clustering, IEEETransactions On Information Theory,Vol.61, No.2, Feb.2015, pp.1045-1062.

    [15] Yi Xu Licheng Yu, Hongteng Xu, Hao Zhang,and Truong Nguyen, Vector Sparse Representation of Color Image Using Quaternion Matrix Analysis,IEEE Trans. on Image Processing, Vol.24,No.4, April 2015, pp.1315-1329.

    [16] Yong Ning, Xiangjun Zhu, Shanan Zhu, and Yingchun Zhang, Surface EMG Decomposition Based on K-means Clustering and Convolution Kernel Compensation,IEEE Journal of Biomedical And Health Informatics, Vol.19, No.2, March 2015,pp.471-477.

    [17] Theo E.Schouten and Egon L.van den Broek,Fast Exact Euclidean Distance (FEED): A New Class of Adaptable Distance Transforms,IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.36, No.11, Nov.2014, pp.2159-2172.

    [18] Mohamed Anis Loghmari, Mohamed Saber Naceur, and Mohamed Rached Boussema, A New Sparse Source Separation-Based Classication Approach,IEEE Trans. onGeoscience and Remote Sensing, Vol.52, No.11, Nov.2014, pp.6924-6936.

    [19] Ines Meganem, Yannick Deville, Shahram Hosseini, Philippe Deliot, and Xavier Briottet, Linear-Quadratic Blind Source Separation Using NMF to Unmix Urban Hyperspectral Images,IEEE Trans. on Signal Processing, Vol.62, No.7,April 1, 2014, pp.1822-1833.

    [20] Zbynek Koldovsky, Jiri Malek, and Sharon Gannot, Spatial Source Subtraction Based on Incomplete Measurements of Relative Transfer Function,IEEE/ACM Trans. on Audio, Speech,and Language Processing, Vol.23, No.8, August 2015, pp.1335-1347.

    [21] P.O.Hoyer, Non-negative matrix factorization with sparseness constraints,J.Mach.Learn.Res.,vol.5, No.1, Jan.2004, pp.1457-469.

    [22] Zuyuan Yang, Yong Xiang, Shengli Xie, Shuxue Ding, and Yue Rong, Nonnegative Blind Source Separation by Sparse Component Analysis Based on Determinant Measure,IEEE Transactions on Neural Networks And Learning Systems,Vol. 23, No. 10, October 2012, pp.1601-1610.

    [23] Chengjie Li, Lidong Zhu, Zhen Zhang, Non-orthogonal Frequency Hopping Signal Underdetermined Blind Source Separation in Time-Frequency Domain,Infocommunications Journal,vol. 8, No. 3, pp. 1-7, September 2016.

    [24] Vaninirappuputhenpurayil Gopalan Reju, Soo Ngee Koh, and Ing Yann Soon, Underdetermined Convolutive Blind Source Separation via Time-Frequency Masking, IEEETrans. on on Audio, Speech, and Language Processing, Vol.18,No.1, Jan.2010, pp.101-116.

    [25] Ondrej Tichy and Vaclav Smidl, Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors,IEEE Trans.on Medical Imaging, Vol.34, No.1, Jan.2015,pp.258-266.

    [26] Alex Rodriguez and Alessandro Laio, Clustering by fast search and find of density peaks,Science 344, 1492 (2014), pp.1492-1496.

    [27] Guoxu Zhou, Zuyuan Yang, Shengli Xie, and Jun-Mei Yang, Mixing Ma-trix Estimation from Sparse Mixtures with Unknown Number of Sources,IEEE Trans. on Neural Networks, Vol.22,No.2, Feb.2011, pp.211-221.

    [28] Vahid Abolghasemi, Saideh Ferdowsi, and Saeid Sanei, Blind Separation of Image Sources via Adaptive Dictionary Learning,IEEE Trans.on Image Processing, Vol.21, No.6, June 2012,pp.2921-2930.

    [29] Joel A.Tropp, and Anna C.Gilbert, Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit,IEEE Trans. on Information Theory, Vol.53, No.12, Dec.2007, pp.4655-4666.

    [30] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization,IEEE Trans.Evol. Comput, vol. 1, no. 1, pp. 67–82, Apr. 1997.

    [31] Yi Qingming, Blind Source Separation by Weighted K-means Clustering,Journal of Systems Engineering and Electronics, Vol.19, No.5,2008, pp.882-887.

    [32] Weihong Fu,Yongqiang Hei, and Xiaohui Li,UBSS and Blind Parameters Estimation Algorithms for Synchronous Orthogonal FH Signals,Journal of Systems Engineering and Electronics,Vol.25, No.6, Dec.2014, pp.911-920.

    欧美日韩视频高清一区二区三区二| 婷婷色综合www| 交换朋友夫妻互换小说| 欧美激情国产日韩精品一区| 国产爽快片一区二区三区| 成人欧美大片| 看免费成人av毛片| 免费大片黄手机在线观看| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| 大话2 男鬼变身卡| av网站免费在线观看视频| 男女啪啪激烈高潮av片| 最近最新中文字幕免费大全7| 国内揄拍国产精品人妻在线| 国产成人91sexporn| 久久久久久伊人网av| 男女国产视频网站| 91精品伊人久久大香线蕉| 狂野欧美白嫩少妇大欣赏| 久热久热在线精品观看| videos熟女内射| 国产成人a区在线观看| 男人添女人高潮全过程视频| 久久鲁丝午夜福利片| 欧美精品一区二区大全| 我的女老师完整版在线观看| 日韩成人av中文字幕在线观看| 大香蕉97超碰在线| 热re99久久精品国产66热6| 直男gayav资源| 熟女av电影| 纵有疾风起免费观看全集完整版| 九九久久精品国产亚洲av麻豆| 丰满乱子伦码专区| 久久久久久伊人网av| 国产精品三级大全| 色视频在线一区二区三区| 国模一区二区三区四区视频| 国模一区二区三区四区视频| 久久精品国产亚洲网站| 建设人人有责人人尽责人人享有的 | 国内精品宾馆在线| 久热久热在线精品观看| 免费av观看视频| 国产精品一区二区三区四区免费观看| 亚洲国产高清在线一区二区三| 亚洲欧美精品专区久久| 在线观看一区二区三区| 大片电影免费在线观看免费| 2018国产大陆天天弄谢| 久久综合国产亚洲精品| 亚洲精品第二区| 免费少妇av软件| 成年版毛片免费区| 国产一区二区三区av在线| 日韩av免费高清视频| 嫩草影院入口| 一级黄片播放器| 三级国产精品片| 成年av动漫网址| 在线免费十八禁| 男人狂女人下面高潮的视频| 精品人妻一区二区三区麻豆| 99久久精品一区二区三区| 国产一区二区三区综合在线观看 | 亚洲不卡免费看| 男女无遮挡免费网站观看| 国产精品一区二区三区四区免费观看| 全区人妻精品视频| 国产精品.久久久| 国内精品美女久久久久久| 波野结衣二区三区在线| 国产精品国产三级专区第一集| 亚洲欧洲国产日韩| 丝袜美腿在线中文| 国产黄片视频在线免费观看| 欧美日韩国产mv在线观看视频 | a级毛色黄片| 久久精品国产a三级三级三级| 成人午夜精彩视频在线观看| 久久久久久久久久成人| av在线蜜桃| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| 日本一二三区视频观看| 美女视频免费永久观看网站| 亚洲人成网站在线观看播放| 欧美人与善性xxx| 国产毛片a区久久久久| 午夜福利网站1000一区二区三区| 日韩制服骚丝袜av| 免费播放大片免费观看视频在线观看| 午夜免费鲁丝| 久久久久九九精品影院| 国产在视频线精品| 亚洲精品日本国产第一区| 麻豆乱淫一区二区| 久久精品国产亚洲av天美| 亚洲欧美成人精品一区二区| 最近中文字幕2019免费版| 国产精品国产三级专区第一集| 亚洲av免费在线观看| 嫩草影院新地址| 国产淫片久久久久久久久| 国产91av在线免费观看| 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 国产 一区精品| 色哟哟·www| 精品久久久久久久末码| 性色av一级| 一个人看视频在线观看www免费| 看非洲黑人一级黄片| 国产免费一区二区三区四区乱码| 免费人成在线观看视频色| 中文字幕av成人在线电影| 舔av片在线| 欧美3d第一页| 成人免费观看视频高清| 亚洲av福利一区| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 亚洲伊人久久精品综合| 国产成人aa在线观看| 亚洲精品一二三| 久久国产乱子免费精品| 亚洲综合精品二区| 国产精品国产av在线观看| 精品人妻视频免费看| 久久韩国三级中文字幕| 欧美97在线视频| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| videos熟女内射| 久久热精品热| 一二三四中文在线观看免费高清| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 久久久久久久精品精品| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 嫩草影院新地址| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品 | 黄色一级大片看看| 日韩大片免费观看网站| 久久人人爽人人片av| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 亚洲成人久久爱视频| 麻豆成人av视频| 成人国产麻豆网| 免费观看的影片在线观看| 看黄色毛片网站| 精华霜和精华液先用哪个| 性色avwww在线观看| 99久久精品一区二区三区| 日本色播在线视频| 亚洲综合精品二区| 麻豆成人av视频| 久久久久久久久大av| 熟女人妻精品中文字幕| h日本视频在线播放| 又粗又硬又长又爽又黄的视频| 秋霞在线观看毛片| av天堂中文字幕网| 国产成人福利小说| 九九爱精品视频在线观看| 欧美三级亚洲精品| 亚洲av电影在线观看一区二区三区 | 三级国产精品欧美在线观看| 啦啦啦中文免费视频观看日本| 老师上课跳d突然被开到最大视频| 日韩人妻高清精品专区| 国产免费一区二区三区四区乱码| 亚洲欧美成人精品一区二区| av免费在线看不卡| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 亚洲av日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 熟女电影av网| 亚洲精品成人久久久久久| 欧美另类一区| 国产精品99久久99久久久不卡 | 免费黄频网站在线观看国产| 在线a可以看的网站| 99久久精品热视频| 好男人视频免费观看在线| 亚洲美女搞黄在线观看| 女人久久www免费人成看片| 久久国产乱子免费精品| 午夜亚洲福利在线播放| 婷婷色av中文字幕| 欧美+日韩+精品| 久久精品人妻少妇| 国产av国产精品国产| 丝袜喷水一区| 美女主播在线视频| 亚洲成人久久爱视频| 伦理电影大哥的女人| 欧美精品国产亚洲| 欧美成人午夜免费资源| 亚洲精品乱码久久久久久按摩| 亚洲精品国产成人久久av| 中文字幕制服av| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 99久久精品一区二区三区| 视频区图区小说| 成年人午夜在线观看视频| 日韩国内少妇激情av| 国产一区亚洲一区在线观看| 18禁动态无遮挡网站| 我的老师免费观看完整版| 我要看日韩黄色一级片| 天堂网av新在线| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区在线观看99| 国产一区二区亚洲精品在线观看| 亚洲国产精品国产精品| 一区二区三区精品91| 一级毛片我不卡| 中文资源天堂在线| 色吧在线观看| 又爽又黄无遮挡网站| 制服丝袜香蕉在线| 国产精品久久久久久av不卡| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 神马国产精品三级电影在线观看| 插阴视频在线观看视频| 亚洲欧美日韩东京热| 2018国产大陆天天弄谢| 精品亚洲乱码少妇综合久久| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站 | 日韩av在线免费看完整版不卡| 久久午夜福利片| 人人妻人人看人人澡| 七月丁香在线播放| 啦啦啦啦在线视频资源| 国产永久视频网站| 2021少妇久久久久久久久久久| 日韩国内少妇激情av| 有码 亚洲区| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 少妇高潮的动态图| 深爱激情五月婷婷| 小蜜桃在线观看免费完整版高清| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 18禁在线播放成人免费| 国产在线男女| 麻豆国产97在线/欧美| 日本三级黄在线观看| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 九草在线视频观看| 亚洲av一区综合| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 久久99热6这里只有精品| 国产成人精品久久久久久| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 一边亲一边摸免费视频| 成人美女网站在线观看视频| 久久久成人免费电影| 91精品国产九色| 22中文网久久字幕| 中文乱码字字幕精品一区二区三区| 99久久九九国产精品国产免费| 嫩草影院精品99| 联通29元200g的流量卡| 大码成人一级视频| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 国产精品99久久99久久久不卡 | 成人鲁丝片一二三区免费| 成人毛片60女人毛片免费| 91精品伊人久久大香线蕉| av在线亚洲专区| 男女边吃奶边做爰视频| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 99热这里只有精品一区| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 永久免费av网站大全| 好男人视频免费观看在线| 亚洲国产日韩一区二区| 午夜亚洲福利在线播放| 内射极品少妇av片p| 亚洲精品国产成人久久av| 国产色婷婷99| 国产成人精品婷婷| 国产探花在线观看一区二区| 国产男人的电影天堂91| 真实男女啪啪啪动态图| 亚洲精品乱久久久久久| 国产色爽女视频免费观看| 免费播放大片免费观看视频在线观看| 成人鲁丝片一二三区免费| 午夜日本视频在线| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 欧美xxxx黑人xx丫x性爽| 色综合色国产| 免费观看性生交大片5| 国产伦理片在线播放av一区| 亚洲最大成人av| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级国产av玫瑰| 久久精品国产a三级三级三级| 国产一区二区在线观看日韩| 欧美 日韩 精品 国产| 国产精品无大码| 三级国产精品片| 亚洲激情五月婷婷啪啪| 99热全是精品| freevideosex欧美| 天堂俺去俺来也www色官网| 亚洲精品自拍成人| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 亚洲国产高清在线一区二区三| videossex国产| h日本视频在线播放| 欧美激情在线99| 亚洲最大成人中文| 卡戴珊不雅视频在线播放| 伊人久久精品亚洲午夜| 69人妻影院| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 中文资源天堂在线| 黄色怎么调成土黄色| 尾随美女入室| 亚洲精品久久午夜乱码| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 亚洲最大成人中文| 毛片一级片免费看久久久久| 免费av不卡在线播放| 欧美日韩视频高清一区二区三区二| 久久亚洲国产成人精品v| 我要看日韩黄色一级片| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 国产成人午夜福利电影在线观看| 偷拍熟女少妇极品色| 欧美日本视频| 综合色丁香网| 少妇高潮的动态图| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃 | freevideosex欧美| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看| 热re99久久精品国产66热6| av播播在线观看一区| 韩国高清视频一区二区三区| 亚洲精品成人久久久久久| 18禁动态无遮挡网站| 久久精品国产亚洲av天美| 少妇人妻 视频| 成年av动漫网址| 国产精品av视频在线免费观看| 99久久人妻综合| 国产精品秋霞免费鲁丝片| 直男gayav资源| 久久久久久伊人网av| 老师上课跳d突然被开到最大视频| 久久久久久久久大av| 久久久a久久爽久久v久久| 国产成年人精品一区二区| 亚洲人成网站高清观看| 一级a做视频免费观看| 80岁老熟妇乱子伦牲交| 国产精品精品国产色婷婷| 中文资源天堂在线| 亚洲欧美日韩卡通动漫| 国产老妇女一区| 午夜福利视频1000在线观看| 两个人的视频大全免费| 麻豆乱淫一区二区| 黄片wwwwww| 国产爽快片一区二区三区| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 久久精品国产自在天天线| 高清毛片免费看| 亚洲av.av天堂| 亚洲av成人精品一区久久| 啦啦啦在线观看免费高清www| 国产探花在线观看一区二区| 舔av片在线| 国产成人freesex在线| 国产高清有码在线观看视频| 一个人看的www免费观看视频| 丰满少妇做爰视频| 亚洲精品aⅴ在线观看| 少妇人妻精品综合一区二区| 街头女战士在线观看网站| 久热久热在线精品观看| 99热网站在线观看| 成人综合一区亚洲| 久久影院123| 十八禁网站网址无遮挡 | 综合色丁香网| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 亚洲精品aⅴ在线观看| 午夜激情福利司机影院| 免费观看a级毛片全部| 直男gayav资源| 国产成年人精品一区二区| 国产伦精品一区二区三区四那| 久久影院123| 成人高潮视频无遮挡免费网站| 18禁在线无遮挡免费观看视频| 免费观看在线日韩| 97精品久久久久久久久久精品| 亚洲真实伦在线观看| 晚上一个人看的免费电影| www.色视频.com| 成人美女网站在线观看视频| 久久ye,这里只有精品| 久久精品国产亚洲av涩爱| 天天躁日日操中文字幕| 日本黄大片高清| 51国产日韩欧美| 国产精品福利在线免费观看| 亚洲图色成人| 亚洲内射少妇av| 91狼人影院| 一个人观看的视频www高清免费观看| 在线a可以看的网站| 麻豆成人午夜福利视频| 国产精品无大码| 久久精品国产a三级三级三级| 国产一区亚洲一区在线观看| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美一区二区三区黑人 | 毛片一级片免费看久久久久| 国产精品一区二区性色av| 亚洲精品成人av观看孕妇| 日本午夜av视频| 亚洲国产精品国产精品| 国产亚洲午夜精品一区二区久久 | 午夜老司机福利剧场| 国产成人精品久久久久久| 少妇熟女欧美另类| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂| 日韩av免费高清视频| 国产伦在线观看视频一区| 嫩草影院入口| 久久久久久九九精品二区国产| 亚洲精品中文字幕在线视频 | 插逼视频在线观看| 欧美xxxx性猛交bbbb| 日本午夜av视频| 老女人水多毛片| 一级毛片电影观看| 精品酒店卫生间| 色婷婷久久久亚洲欧美| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 国产亚洲91精品色在线| 精品少妇黑人巨大在线播放| 一本久久精品| 日产精品乱码卡一卡2卡三| 成人亚洲精品av一区二区| 国产欧美另类精品又又久久亚洲欧美| 日韩成人伦理影院| 97热精品久久久久久| 欧美精品一区二区大全| 如何舔出高潮| 爱豆传媒免费全集在线观看| 亚洲国产精品999| 亚洲精品影视一区二区三区av| 人妻夜夜爽99麻豆av| 久久99热6这里只有精品| 精品一区二区免费观看| 80岁老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 边亲边吃奶的免费视频| 亚洲av不卡在线观看| 亚洲精品色激情综合| 尾随美女入室| 亚洲va在线va天堂va国产| 中文字幕av成人在线电影| 亚洲精品国产av蜜桃| 久久久国产一区二区| 99久久精品一区二区三区| 日韩强制内射视频| 国产精品国产av在线观看| 欧美性猛交╳xxx乱大交人| 不卡视频在线观看欧美| av国产精品久久久久影院| 黄色日韩在线| 一本久久精品| 亚洲精品aⅴ在线观看| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 免费电影在线观看免费观看| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 少妇的逼水好多| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| 一本久久精品| 国产女主播在线喷水免费视频网站| 久久精品夜色国产| 国产精品无大码| 国产久久久一区二区三区| 我的女老师完整版在线观看| 欧美一级a爱片免费观看看| 男女国产视频网站| 不卡视频在线观看欧美| 欧美xxxx黑人xx丫x性爽| 午夜福利在线观看免费完整高清在| 亚洲精品日本国产第一区| 国产乱人视频| 久久精品久久久久久久性| av免费观看日本| 亚洲av不卡在线观看| 在线观看一区二区三区| 亚洲精品一区蜜桃| 美女国产视频在线观看| 国产成人精品一,二区| 国产一区亚洲一区在线观看| 免费少妇av软件| 高清av免费在线| 国产午夜精品一二区理论片| 国产精品精品国产色婷婷| 成年版毛片免费区| 久久精品夜色国产| 亚洲av.av天堂| 高清视频免费观看一区二区| 禁无遮挡网站| 亚洲熟女精品中文字幕| 一级毛片aaaaaa免费看小| 国产成人a∨麻豆精品| 纵有疾风起免费观看全集完整版| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 高清午夜精品一区二区三区| 26uuu在线亚洲综合色| 91精品国产九色| 哪个播放器可以免费观看大片| 嘟嘟电影网在线观看| 成人国产麻豆网| 欧美一级a爱片免费观看看| 成人特级av手机在线观看| 日韩一区二区视频免费看| 夫妻午夜视频| 免费看不卡的av| 午夜亚洲福利在线播放| 伦理电影大哥的女人| 国产亚洲精品久久久com| 在线观看av片永久免费下载| 日本黄色片子视频| 视频区图区小说| 亚洲天堂国产精品一区在线| 国产亚洲91精品色在线| 91精品一卡2卡3卡4卡| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲综合精品二区| 午夜福利网站1000一区二区三区| 简卡轻食公司| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| 少妇丰满av| 亚洲天堂国产精品一区在线| 国产成人精品婷婷| 91精品一卡2卡3卡4卡| 91在线精品国自产拍蜜月| 黄色日韩在线| 久久久色成人| 午夜福利在线在线| 香蕉精品网在线| 日韩制服骚丝袜av| 男女无遮挡免费网站观看| 国产精品女同一区二区软件| 夫妻性生交免费视频一级片| 一本一本综合久久| 只有这里有精品99| 日本三级黄在线观看| 国产国拍精品亚洲av在线观看| 欧美+日韩+精品| 婷婷色综合www| 亚洲精品久久久久久婷婷小说| 亚洲不卡免费看| 有码 亚洲区|