• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Subchannel Allocation Based on Clustered Interference Alignment in Ultra-Dense Femtocell Networks

    2017-05-08 13:18:40HaoZhangHongyanLiJungHoonLee
    China Communications 2017年4期

    Hao Zhang , Hongyan Li*, Jung Hoon Lee

    1 Department of Telecommunications Engineering, Xidian University, Xi’an 710071, China

    2 Department of Electronics Engineering, Hankuk University of Foreign Studies, Yongin 17035, South Korea

    * The corresponding author, email: hyli@xidian.edu.cn

    I. INTRODUCTION

    Femtocell base stations (FBSs) will be mainly expected to extend the indoor coverage and improve the spectrum efficiency for the next generation networks [1]. Due to the dramatic increase in the number of users and their traffic demands [2]-[4], more and more FBSs will be densely deployed over a traditional macrocell network [5]. In this case, neighboring femtocells will introduce severe interference to each other. The interference among femtocell user equipments (FUEs) can be perfectly eliminated by allocating orthogonal subchannels. However, the spectral resources are finite in practical systems, so more efficient interference management schemes are needed in ultra-dense femtocell networks.

    Recently, interference alignment (IA) has attracted much attention as a promising interference management scheme especially at high signal-to-noise ratio (SNR) regime [6]. The basic idea of IA is to confine the interference from other transmitters into a reduced subspace, while other dimensions are left to recover the desired signal free from interference[7]. So IA enables multiple users to share the same resources without interference, which improves the spectral efficiency. For K-user interference channel, it was shown that K/2 degrees of freedom (DoF) can be achieved with IA per time, frequency, or space dimension [6]. However, the feasibility condition of IA is determined by the numbers of users, data streams, and antennas equipped in transmitter and receiver [8].

    In this paper, the authors proposed a scheme that performs efficient subchannel allocation based on clustered IA in ultra-dense femtocell networks to increases the spectral efficiency.

    Clustered IA is mainly proposed to address the feasibility issue of IA by partitioning all users into clusters with each containing smaller number of users, so IA becomes feasible in each cluster. Clustered IA was firstly proposed for cellular networks in [9], and then proposed for ad hoc networks in [10]. The authors of[11] proposed three joint clustering and IA scheduling schemes for overloaded femtocell networks. Nevertheless, these schemes are proposed for TDMA systems, which are not suitable when the users in different clusters transmit data simultaneously. In [12],an interference cost metric was proposed for user clustering. With this metric, strong interference is captured as intra-cluster interference, which can be mitigated by IA in each cluster, and the relatively weak interference is remained as inter-cluster interference and treated as noise. In ultra-dense femtocell networks, however, all of the FBSs and FUEs are much closer to each other, so the inter-cluster interference should not be simply treated as noise. In [13], the authors proposed a cross-tier interference management scheme for multiple-input multiple-output (MIMO)cognitive femtocell networks. In the scheme,the macrocell users sense the environment to find the femtocell base stations (FBSs) which they interfere with, and then design their precoding vectors determined by exploiting IA to suppress the interference they cause at FBSs.To meet the feasibility condition of IA, only the macrocell users which cause strongest interference at each FBS will be selected to perform IA. However, there is no subchannel allocation procedure which leads to the fact that the FBSs suffer from severe interference caused by femtocell users they do not serve in ultra-dense femtocell networks.

    Therefore, performing subchannel allocation based on clustered IA is an effective solution to manage the interference in femtocell networks. In [5], the authors exploited IA to mitigate the intra-tier interference,which improves the achievable data rates of femtocell networks. To meet the feasibility condition of IA, the authors also partitioned the femtocell users into several coalitions by coalitional game in partition form. And subcarrier allocation is performed but there are still interferences among different coalitions,which will lead to performance degradation in ultra-dense femtocell networks since the intra-coalition interference is severe. In [14], the authors made a tradeoff between opportunistic resource allocation (ORA) and IA in femtocell networks. To maximize the sum rate, most of the subchannels are allocated to perform ORA in low SNR regime, while at high SNR regime, performing IA will mostly utilize the subchannels. However, the feasibility of IA is not taken into account. The authors of [15] utilized IA with frequency-clustering to improve the spectral efficiency in orthogonal frequency division multiplexing access (OFDMA) based MIMO cognitive radio networks. Nevertheless, the proposed scheme needs to evaluate the achievable sum rate of each possible user combination over each subchannel, which requires global channel state information (CSI).This will result in heavy signaling overhead as well as much higher computational complexity especially in ultra-dense femtocell networks.

    In this paper, we investigate the problem of efficient subchannel allocation based on clustered IA (ESCIA) to mitigate the interference in ultra-dense OFDMA based femtocell networks. With the objective of maximizing the achievable sum rate of all FUEs, our problem is formulated as a combinatorial optimization problem. Due to its NP-hardness,we propose a two-phases efficient solution with low-complexity. In the first phase, all the FUEs are grouped into disjoint clusters, each of which contains a limited number of FUEs to meet the feasibility condition of IA. In the second phase, efficient subchannel allocation for the formed clusters performing IA is performed. Furthermore, efficient algorithm with low-complexity is proposed for the corresponding sub-problem in each phase.

    The rest of the paper is organized as follows. The system model is presented in Section II. Section III formulates the problem and solve it in two phases by the proposed algorithms. Simulation results are shown in Section IV, and Section V is concluded the paper.

    II. SYSTEM MODEL

    Our system model is depicted in Fig. 1. All of the FBSs and FUEs are ultra-densely deployed in indoor area, and the downlink case is considered. In such deployment, an FBS will be closer to all the FUEs it does not serve and cause interference to them. Each FBS only serves a single FUE, which was also assumed in [16]. We denote the set of all FUEs and the set of all subchannels byandrespectively, where

    In our model, all of the FBSs, FUEs are equipped withMantennas. Moreover, each FBS sendsdata streams to its intended FUE. According to the feasibility condition of IA in [8],andmust meet the following constraint:

    For simplicity, we assume that each cluster contains the same number of FUEs to perform IA and the number of FUEs in each cluster can also achieve the maximum value. In addition,asmust be an integer number, we have

    Fig. 1 An example of untra-dense femtocell networks with 9 FUEs in indoor area

    and

    where equation (6) indicates that the receive interference suppression matrix must be designed to be orthogonal to the reduced dimensional subspace spanned by all the interference signals at each FUE so that they can be completely eliminated or aligned, and equation (7)makes sure that the desired signals are linearly independent of the subspace spanned by all the interference signals at each FUE so that they will not be zero-forced by each FUE. Also,if equation (6) holds, then equation (7) also holds with the probability of 1 [17]. Thus, we only need to findandthat satisfy equation (6). So the intra-cluster interference can be perfectly eliminated with IA in each cluster.In addition, the inter-cluster interference can be mitigated by subchannel allocation. After postprocessing withthe received signal of FUEkover subchannelnbecomes

    III. PROBLEM FORMULATION AND SUBOPTIMAL ALGORITHMS

    3.1 Problem formulation

    Aspkeeps constant during the whole procedure of subchannel allocation, problem(9) is a combinatorial optimization problem,which is NP-hard. Finding the optimal solution by exhausting all the possible cases will lead to prohibitive computational complexity especially in ultra-dense femtocell networks.Furthermore, exhausting each possible case,i.e., evaluating the achievable data rate of each combination that containsFUEs after performing IA over each subchannel, needs to acquire the accurate global channel state information (CSI), which will result in heavy signaling overhead. As a result, to find an effi-cient solution with low-complexity and reduce the signaling overhead, we propose to solve problem (9) in two phases, i.e., clustering and resource allocation for the formed clusters.The similar method was also used in [16] and[18]. In the first, instead of acquiring the global CSI, we group all the FUEs intoclusters with a relatively rough manner only according to the path losses. By doing this, the signaling overhead is notably reduced. In the second phase, we allocate subchannels to the clusters formed in the first phase. In addition, we propose efficient algorithm with low-complexity to solve the corresponding sub-problem in each phase.

    3.2 Proposed solution

    3.2.1 Phase 1: clustering

    This phase aims at capturing the strong interference as intra-cluster interference so that they can be completely eliminated by clustered IA. To achieve this goal, the approximated rate losswhich was proposed in [12], is used to measure the interference caused by FBSjat

    where the first term on the right side of (11)indicates that if FUEkandare in the same cluster (i.e., FBSkandjalso belong to this cluster), so the interference caused by FBSjat FUEkwill be eliminated by clustered IA while only leaving the noise. And the second term on the right side of (11) indicates that if FUEkandjare in different clusters,FBSjwill cause interference to FUEk. Therefore, we use the difference of the two terms to simply measure the approximated rate loss.Intuitively speaking, the largerthe stronger the interference caused by FBSjto FUEkwill be. The metric is only determined by path losses, which can be easily obtained by each FUE through measuring the averaged signal strength of pilot symbols transmitted by other FBSs [12]. Then, without acquiring the accurate global CSI, the signaling overhead will be notably reduced. So the intra-cluster interference in an arbitrary clustercan be approximately measured as:

    whereSdenotes the number of all cases of selectingFUEs from, i.e,Then, with the objective of capturing relatively strong interference in each cluster, the sub-problem of clustering for FUEs is formulated as

    3.2.2 Phase 2: subchannel allocation for clusters

    After executing Algorithm 1, the set of FUEsis grouped intoclusters, i.e.,c. Then phase 2 needs to allocate all theNsubchannels to the resultingclusters, i.e.,should be determined.Note that the strong interference is captured as inter-cluster interference in the first phase and will be eliminated by clustered IA. However, in ultra-dense femtocell networks, the inter-cluster interference may be still strong,or some FBSs in clustercause strong inter-cluster interference to FUEs inbut other FBSs incause relatively weak inter-cluster interference to FUEs in. But anyway,clustersandshould be allocated with orthogonal subchannels as long as at least one FBS incause strong inter-cluster interference to at least one FUEs inAs a result,the sub-problem in phase 2 becomes

    Algorithm 1 Clustering for FUEs

    Algorithm 2 Subchannel Allocation for Clusters

    Constraint C21 guarantees that each of theclusters can be allocated with at least one subchannel. C22 ensures that each subchannel can be utilized by only one resulting cluster.C23 indicates that the total number of subchannels allocated toclusters must beN.The above problem is also NP-hard. Therefore,obtaining the optimal solution by exhaustive method will also incur prohibitive computational complexity. As an efficient solution, we first allocate one subchannel to each cluster,and then each of the remainingsubchannels will be allocated to the cluster which achieves the maximum data rate over it. The above two procedures need the accurate CSI in each cluster over each subchannel, which can be estimated by the steps in [5]. More details are shown inAlgorithm 2.

    IV. SIMULATION RESULTS

    The performance of ESCIA is evaluated in this section. We consider the ultra-dense deployment of femtocells in indoor environment. Both the FBSs and FUEs are uniformly distributed in a square and single-floor apartment with an edge of 10 m. The apartment is separated into different rooms by inner walls.The system parameters, which are unchanged during the simulations, are listed in Table 1.Both path loss and shadowing are considered in the simulation. Here the path loss from each FBS to its intended FUE and other FUEs can be found in the indoor femtocell channel models (urban deployment) of [22]. All the FBSs and FUEs are assumed to have 4 antennas. In addition, each FBS sends 2 data streams to its intended FUE. Therefore, according to the feasibility condition of IA in [3], we haveQmax=3.We also assume that the transmit power of each FBS over each subchannel is also the same, i.e.,

    In our simulations, the performance of following schemes are evaluated.

    1)Optimal solution: exhausting all the possible cases of clustering and subchannel allocation to obtain the optimal solution to problem (9).

    2)ESCIA: proposed scheme.

    3)Subchannel allocation by BnB: usingAlgorithm 1for clusteringand BnB algorithm to solve the sub-problem of subchannel allocation in phase 2.

    4)Method in [12]:using the method in[12] to solve the sub-problem of clustering for FUEs in phase 1andAlgorithm 2for subchannel allocation in phase 2.

    5)Random clustering: randomly selecting FUEs to form clusters and usingAlgorithm 2for subchannel allocation.

    6) Scheme with no clustering: allocating one orthogonal subchannel to each of theNFUEs selected from.

    Fig. 2 shows the achievable sum rate of all FUEs with respect to the transmit power of each FBS over each subchannelp. We haveK=12 andN=6. So all the 12 FUEs are grouped into 4 clusters. For all the six schemes, the achievable sum rates of all FUEs increase as the transmit power of FBSs increases. Scheme with no clustering shows the worst performance since only 6 FUEs, which are selected from, are eligible to be allocated with one orthogonal subchannel over which they can achieve the maximum data rate. By exploiting IA to increase the spectral efficiency as well as eliminate the intra-cluster interference, theFUEs in each cluster can share subchannels without any intra-cluster interference. So all the 12 FBSs can send 2 data streams to their intended FUEs. This is why the performance gaps between scheme with no clustering and five clustered IA schemes become larger aspincreases. Paying no attention to the effect of path losses on forming clusters, scheme of random clustering does not show good performance compared with ESCIA and other two clustered IA schemes. It can be also observed that ESCIA achieves almost the same performance as that of subchannel allocation by BnB whose computational complexity is the same as that of exhaustive search in the worst case [16]. Furthermore, the performance of ESCIA is closer to that of the optimal solution aspincreases, which verifies the effectiveness of the proposed solution.

    Table I Parameters

    Fig. 2 Achievable sum rate vs. transmit power of each FBS

    Fig. 3 shows the achievable sum rate of all FUEs with respect to the number of FUEsK.We have We havep=30 mW andN=10. AsKincreases, it will result in unaffordable computational complexity if we use exhaustive search to obtain the optimal solution to problem (9). Therefore, as an approximation of the optimal solution, we use Algorithm 1 for suboptimal clustering and exhaustive search for the optimal subchannel allocation (SC+OSA). We can observe that the scheme with no clustering has the worst performance which is hardly improved asKincreases. This is because only 10 FUEs are selected to be allocated with one subchannel each regardless of the increase inK. Nevertheless, the performances of the other 4 clustered IA schemes linearly increase withK, which demonstrates that IA can notably improve the spectral efficiency, and it is also much more beneficial to performing clustered IA in ultra-dense femtocell networks.

    Fig. 4 Achievable sum rate vs. the number of subchannels

    Fig. 4 illustrates the achievable sum rate of all FUEs with respect to the number of subchannels availableN. We haveK=12 andp=30mW(14.77dBm). In the scheme with no clustering, asNincrease, more and more FUEs are eligible to be allocated with orthogonal subchannels. But the five clustered IA schemes still exhibits much better performance, which implies that the scheme with no clustering has a much lower spectral efficiency. It is worth mentioning that the performance gap between ESCIA and optimal solution gets a little larger asNincrease, but ESCIA has a much lower computational complexity.

    V. CONCLUSIONS

    In this paper, we proposed a scheme that performs efficient subchannel allocation based on clustered IA in ultra-dense femtocell networks, which mitigates both intra-cluster and inter-cluster interferences, and notably increases the spectral efficiency. The problem is formulated as a combinatorial optimization problem, which is known as NP-hard. To obtain an efficient solution, we propose to solve the problem in two phases. In the first phase,the FUEs are grouped into disjoint clusters,each of which contains limited number of FUEs to meet the feasibility condition of IA.In the second phase, subchannel allocation for the formed clusters where IA is exploited is performed. Furthermore, an algorithm with low-complexity is proposed for each of the sub-problems in the two phases. Simulation results demonstrate that ESCIA not only exhibits better performance than other related schemes but also achieves almost the same performance as the BnB algorithm. Moreover,the performance of ESCIA is close to the optimal solution, which verifies the effectiveness of our proposed solution.

    ACKNOWLEDGEMENTS

    This work was partially supported by China Scholarship Council (201406960042);the National Science Foundation(91338115,61231008); National S&T Major Project (2015ZX03002006); Program for Changjiang Scholars and Innovative Research Team in University (IRT0852), and the 111 Project (B08038).

    [1] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: a survey,”IEEE Communications Magazine, vol. 46, no. 9, pp. 59-67,Sep. 2008.

    [2] X. D. Pang, W. Hong, T. Y. Yang, and L. S. Li,“Design and implementation of an active multibeam antenna system with 64 RF channels and 256 antenna elements for massive MIMO application in 5G wireless communications,”China Communications, vol. 11, no. 11, pp. 16-23, Nov. 2014.

    [3] S. Z. Chen, S. H. Sun, Y. M. Wang, G. J. Xiao, and R. Tamrakar, “A comprehensive survey of TDD-based mobile communication systems from TD-SCDMA 3G to TD-LTE 4G and 5G directions,”China Communications, vol. 12, no. 2, pp. 40-60, Feb. 2015.

    [4] L. Huang, Y. Q. Zhou, Y. Y. Wang, X. Han, J. L. Shi,and X. X. Chen, “Advanced coverage optimization techniques for small cell clusters,” China Communications, vol. 12, no. 8, pp. 111-122,Aug. 2015.

    [5] F. Pantisano, M. Bennis, W. Saad, M. Debbah,and M. Latva-aho, “Interference alignment for cooperative femtocell networks: a game-theoretic approach,”IEEE Transactions on Mobile Computing, vol. 12, no. 11, pp. 2233-2246, Nov.2013.

    [6] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the k-user interference channel,”IEEE Transactions on Information Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008.

    [7] S. A. Jafar, “Interference alignment: a new look at signal dimensions in A communication network,” Foundations and Trends in Communications and Information Theory, vol. 7, no. 1, pp.1-136, Jun. 2011.

    [8] C. Yetis, T. Gou, S. A. Jafar, and A. Kayran, “On Feasibility of Interference Alignment in MIMO Interference Networks.IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4771-4782,Sep. 2010.

    [9] R. Tresch and M. Guillaud, “Clustered interference alignment in large cellular networks,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1024-1028, Sep. 2009.

    [10] R. Tresch and M. Guillaud, “Performance of interference alignment in clustered wireless ad hoc networks,” IEEE International Symposium on Information Theory, pp. 1703-1707, Jun. 2010.

    [11] S. B. Halima and A. Saadani, “Joint clustering and interference alignment for overloaded femtocell networks,”IEEE Wireless Communications and Networking Conference, pp.1229-1233, Apr.2012.

    [12] S. J. Chen and R. S. Cheng, “Clustering for interference Alignment in multiuser interference network,”IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2613-2624, Jul. 2014.

    [13] B. Guler, A. Yener, “Selective interference alignment for MIMO cognitive femtocell networks”.IEEE Journal on Selected Areas in Communications, vol. 32, no. 3, pp. 439-450, Mar. 2014.

    [14] N. Lertwiram, P. Popovski, and K. Sakaguchi,“A study of trade-off between opportunistic resource allocation and interference alignment in femtocell scenarios,” IEEE Wireless Communications Letters, vol. 1, no. 4, pp. 356-359, Aug.2012.

    [15] M. El-Absi, M. Shaat, F. Bader, and T. Kaiser, “Interference alignment with frequency-clustering for efficient resource allocation in cognitive radio networks,”IEEE Global Telecommunications Conference, pp. 979-985, Dec. 2014.

    [16] A. Abdelnasser, E. Hossain, and D. I. Kim, “Clustering and resource allocation for dense femtocells in a two-tier cellular OFDMA network,”IEEE Transactions on Wireless Communications,vol.13, no. 3, pp. 1628-1641, Mar. 2014.

    [17] K. Gomadam, V. Cadambe, and S. A. Jafar, “A distributed numerical approach to interference alignment and applications to wireless interference networks,”IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3309-3322, Jun.2011.

    [18] K. Hosseini, H. Dahrouj, and R. Adve, “Distributed clustering and interference management in two-tier networks,”IEEE Global Telecommunications Conference, pp. 4267-4272, Dec. 2012.

    [19] J. C. Fan, G. Y. Li, Q. Y. Yin, B. G. Peng, and X. L.Zhu, “Joint User Pairing and Resource Allocation for LTE Uplink Transmissions,”IEEETransactions on Wireless Communications, vol. 11, no. 8, pp.2838-2847, Aug. 2012.

    [20] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,”Discrete Applied Mathematics, vol. 126, no. 2-3, pp. 313-322,Mar. 2003.

    [21] K. W. Choi, E. Hossain, and D. I. Kim, “Downlink subchannel and power allocation in multi-cell OFDMA cognitive radio networks,”IEEE Transactions on Wireless Communications, vol. 10, no.7, pp. 2259-2271, Jul. 2011.

    [22] 3rd Generation Partnership Project (3GPP),“Further advancements for E-UTRA physical layer aspects (Release 9),” TR 36.814, 3GPP, Mar.2010.

    天堂网av新在线| 99久久久亚洲精品蜜臀av| 看非洲黑人一级黄片| 床上黄色一级片| 国模一区二区三区四区视频| 久久久久久久久久久丰满| 国产精品乱码一区二三区的特点| 日本与韩国留学比较| 亚洲国产欧美人成| 午夜激情福利司机影院| 午夜视频国产福利| 此物有八面人人有两片| 噜噜噜噜噜久久久久久91| 麻豆国产av国片精品| 国产综合懂色| 寂寞人妻少妇视频99o| 高清日韩中文字幕在线| 美女cb高潮喷水在线观看| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 在线观看66精品国产| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频 | 国产一区二区在线观看日韩| 日韩三级伦理在线观看| 我的女老师完整版在线观看| 色尼玛亚洲综合影院| 99热这里只有是精品在线观看| 国产日本99.免费观看| 亚洲人与动物交配视频| 99热全是精品| 特大巨黑吊av在线直播| 午夜精品国产一区二区电影 | 男女做爰动态图高潮gif福利片| 日韩欧美三级三区| 观看美女的网站| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清专用| 熟女人妻精品中文字幕| 午夜爱爱视频在线播放| 校园春色视频在线观看| 中文字幕免费在线视频6| 观看免费一级毛片| 天堂av国产一区二区熟女人妻| 啦啦啦韩国在线观看视频| 少妇熟女aⅴ在线视频| 在线观看66精品国产| 真人做人爱边吃奶动态| 成人美女网站在线观看视频| 国产亚洲精品综合一区在线观看| 久久鲁丝午夜福利片| 亚洲欧美日韩东京热| 国产视频一区二区在线看| 亚洲专区国产一区二区| 两个人的视频大全免费| 国产av在哪里看| 亚洲成人精品中文字幕电影| 在线观看一区二区三区| 悠悠久久av| 精品人妻偷拍中文字幕| 日韩欧美精品v在线| 久久精品国产自在天天线| 国产高清视频在线观看网站| 国产国拍精品亚洲av在线观看| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 亚洲自偷自拍三级| 色噜噜av男人的天堂激情| 国产精品久久久久久精品电影| 男女做爰动态图高潮gif福利片| 美女xxoo啪啪120秒动态图| 亚洲最大成人手机在线| 国产成人a区在线观看| 日韩国内少妇激情av| 午夜影院日韩av| 麻豆国产97在线/欧美| 国模一区二区三区四区视频| 人妻久久中文字幕网| 99精品在免费线老司机午夜| 午夜福利高清视频| 波多野结衣高清作品| 性色avwww在线观看| 特大巨黑吊av在线直播| 成年版毛片免费区| 亚洲精品在线观看二区| 免费av毛片视频| 在线观看美女被高潮喷水网站| 综合色丁香网| 精品日产1卡2卡| 精品一区二区三区视频在线| eeuss影院久久| 十八禁国产超污无遮挡网站| 免费人成视频x8x8入口观看| 成人亚洲欧美一区二区av| 精品久久久久久成人av| 亚洲四区av| av免费在线看不卡| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av涩爱 | 欧美bdsm另类| 欧美又色又爽又黄视频| 免费av观看视频| 一级黄色大片毛片| 亚洲国产欧洲综合997久久,| 国产片特级美女逼逼视频| 久久久精品大字幕| 97碰自拍视频| 久久久成人免费电影| 嫩草影院入口| 亚洲欧美日韩高清在线视频| 亚洲激情五月婷婷啪啪| 亚洲av一区综合| 国产单亲对白刺激| av天堂中文字幕网| 国产亚洲91精品色在线| 搡老岳熟女国产| 九九热线精品视视频播放| 能在线免费观看的黄片| 欧美日韩国产亚洲二区| 欧美bdsm另类| 春色校园在线视频观看| 精品国内亚洲2022精品成人| 亚洲精品日韩在线中文字幕 | 老司机影院成人| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 日韩欧美免费精品| 国产91av在线免费观看| 亚洲人成网站在线播放欧美日韩| 国产亚洲91精品色在线| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 搡老岳熟女国产| 国产高清有码在线观看视频| 老师上课跳d突然被开到最大视频| 国产精品亚洲一级av第二区| 精品久久久久久久久av| 久久精品国产99精品国产亚洲性色| 一个人看视频在线观看www免费| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 极品教师在线视频| 女同久久另类99精品国产91| 国产黄a三级三级三级人| 热99re8久久精品国产| 免费av观看视频| 国产一区二区三区av在线 | 91精品国产九色| 黄色配什么色好看| 国产高清视频在线观看网站| 欧美丝袜亚洲另类| 黄色一级大片看看| 亚洲精品色激情综合| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 一边摸一边抽搐一进一小说| 小蜜桃在线观看免费完整版高清| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 国产大屁股一区二区在线视频| 身体一侧抽搐| 69人妻影院| 亚洲国产精品国产精品| 亚洲激情五月婷婷啪啪| 欧美成人a在线观看| 中文在线观看免费www的网站| 精品熟女少妇av免费看| 欧美性猛交╳xxx乱大交人| 国产精品伦人一区二区| 欧美三级亚洲精品| 美女xxoo啪啪120秒动态图| 校园春色视频在线观看| 99久久久亚洲精品蜜臀av| 九九热线精品视视频播放| 91精品国产九色| 变态另类成人亚洲欧美熟女| 97在线视频观看| 女人被狂操c到高潮| 白带黄色成豆腐渣| 国产一区二区亚洲精品在线观看| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 中文字幕人妻熟人妻熟丝袜美| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 九九爱精品视频在线观看| 国产成人精品久久久久久| 97在线视频观看| 成人二区视频| 人妻夜夜爽99麻豆av| or卡值多少钱| 乱码一卡2卡4卡精品| 悠悠久久av| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 我的老师免费观看完整版| 激情 狠狠 欧美| 老司机福利观看| 国产精品久久久久久久电影| 男女之事视频高清在线观看| 精品国内亚洲2022精品成人| 热99在线观看视频| 最近2019中文字幕mv第一页| 波野结衣二区三区在线| 久久久久久大精品| 中文在线观看免费www的网站| 久久精品人妻少妇| 午夜福利在线观看吧| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| 国产麻豆成人av免费视频| 国产成人freesex在线 | 搞女人的毛片| 精品久久久久久久久av| 精品久久久久久久久久久久久| 欧美一区二区精品小视频在线| 日韩欧美免费精品| 欧美最黄视频在线播放免费| 国产高清激情床上av| 人妻少妇偷人精品九色| av福利片在线观看| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 国产爱豆传媒在线观看| 一级毛片我不卡| 久久亚洲国产成人精品v| 高清日韩中文字幕在线| 成年女人毛片免费观看观看9| 免费观看在线日韩| 久久韩国三级中文字幕| 大又大粗又爽又黄少妇毛片口| 一级黄色大片毛片| 不卡一级毛片| 少妇被粗大猛烈的视频| 搡老妇女老女人老熟妇| 简卡轻食公司| 亚洲av成人精品一区久久| av福利片在线观看| 亚洲真实伦在线观看| 亚洲内射少妇av| 日韩成人av中文字幕在线观看 | 国产精品综合久久久久久久免费| 美女黄网站色视频| 成年女人永久免费观看视频| 嫩草影院新地址| 老司机午夜福利在线观看视频| 成人美女网站在线观看视频| 在线观看免费视频日本深夜| 精品人妻视频免费看| 乱人视频在线观看| 亚洲人与动物交配视频| 午夜视频国产福利| 美女黄网站色视频| 亚洲图色成人| 看非洲黑人一级黄片| 丰满人妻一区二区三区视频av| 99热全是精品| 成人av一区二区三区在线看| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 国产精品爽爽va在线观看网站| 久久久a久久爽久久v久久| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合| 国产亚洲91精品色在线| 国产在线精品亚洲第一网站| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 永久网站在线| 高清毛片免费观看视频网站| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 日韩在线高清观看一区二区三区| 床上黄色一级片| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡免费网站照片| 国内精品一区二区在线观看| 嫩草影院精品99| 国产精品一区二区免费欧美| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 蜜臀久久99精品久久宅男| 亚洲最大成人手机在线| 国产精品久久久久久久电影| 日韩高清综合在线| 在线观看66精品国产| 狠狠狠狠99中文字幕| 大又大粗又爽又黄少妇毛片口| 色综合亚洲欧美另类图片| 中出人妻视频一区二区| 国产精品福利在线免费观看| 国产欧美日韩一区二区精品| 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 最近中文字幕高清免费大全6| 国产精品人妻久久久久久| 国产成人91sexporn| 女人被狂操c到高潮| 嫩草影视91久久| 久久久久国内视频| 国产高清不卡午夜福利| 国产精品久久视频播放| 亚洲色图av天堂| 日本免费a在线| 大又大粗又爽又黄少妇毛片口| av免费在线看不卡| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 国产91av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄无遮挡网站| 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线| 亚洲成人久久性| 亚洲va在线va天堂va国产| 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 99热精品在线国产| 深夜精品福利| 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 日韩制服骚丝袜av| 久久久久久九九精品二区国产| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 插逼视频在线观看| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 亚洲专区国产一区二区| 国产不卡一卡二| 夜夜爽天天搞| av在线老鸭窝| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 极品教师在线视频| 欧美日韩一区二区视频在线观看视频在线 | 日本黄大片高清| 国产精品三级大全| 国产中年淑女户外野战色| 日日摸夜夜添夜夜添小说| 亚洲成人精品中文字幕电影| 一级毛片我不卡| 麻豆一二三区av精品| av天堂在线播放| 岛国在线免费视频观看| 一级毛片aaaaaa免费看小| 午夜福利在线在线| 亚洲五月天丁香| 午夜视频国产福利| 日韩 亚洲 欧美在线| 麻豆av噜噜一区二区三区| 91狼人影院| 亚洲专区国产一区二区| 我的女老师完整版在线观看| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 小说图片视频综合网站| 国产精品爽爽va在线观看网站| 午夜精品国产一区二区电影 | 91久久精品国产一区二区成人| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频| eeuss影院久久| 可以在线观看的亚洲视频| 国产免费男女视频| 深夜精品福利| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 亚洲国产色片| 91午夜精品亚洲一区二区三区| 午夜激情欧美在线| 国产三级在线视频| 久久久久国内视频| 亚洲三级黄色毛片| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 少妇丰满av| 欧美激情在线99| 免费人成在线观看视频色| av天堂在线播放| 国产老妇女一区| 亚洲熟妇熟女久久| 国产亚洲欧美98| 精品福利观看| 在线免费观看的www视频| 如何舔出高潮| 国产高潮美女av| 毛片一级片免费看久久久久| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看 | 大又大粗又爽又黄少妇毛片口| 精华霜和精华液先用哪个| 亚洲最大成人手机在线| 国产成人freesex在线 | 乱码一卡2卡4卡精品| 免费看a级黄色片| 春色校园在线视频观看| 在线播放无遮挡| 亚洲av成人av| 麻豆乱淫一区二区| 插逼视频在线观看| 少妇裸体淫交视频免费看高清| 真人做人爱边吃奶动态| 日韩制服骚丝袜av| 色av中文字幕| 国产精品无大码| 熟女人妻精品中文字幕| 全区人妻精品视频| 一区二区三区四区激情视频 | 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 偷拍熟女少妇极品色| 免费观看的影片在线观看| 亚洲成a人片在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 色哟哟·www| 亚洲欧美中文字幕日韩二区| 国产精品一区www在线观看| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 黄片wwwwww| 欧美色欧美亚洲另类二区| 免费在线观看影片大全网站| 久久午夜福利片| 又黄又爽又免费观看的视频| 欧美性猛交黑人性爽| 国产色婷婷99| www.色视频.com| 晚上一个人看的免费电影| 2021天堂中文幕一二区在线观| 亚洲国产色片| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 人妻制服诱惑在线中文字幕| 我要看日韩黄色一级片| 成人精品一区二区免费| 变态另类丝袜制服| 99热这里只有是精品50| 久久久久久伊人网av| 亚洲图色成人| 午夜a级毛片| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 国产精品一区二区性色av| 老司机影院成人| 特大巨黑吊av在线直播| 精品少妇黑人巨大在线播放 | 日韩一区二区视频免费看| 国产真实伦视频高清在线观看| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在 | 国内揄拍国产精品人妻在线| 人妻久久中文字幕网| 五月伊人婷婷丁香| 日本黄色片子视频| 自拍偷自拍亚洲精品老妇| 午夜激情福利司机影院| 日日啪夜夜撸| 韩国av在线不卡| 国产极品精品免费视频能看的| 久久久久九九精品影院| 精品不卡国产一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲成人av在线免费| 六月丁香七月| 亚洲经典国产精华液单| 性插视频无遮挡在线免费观看| 黄色一级大片看看| 国产高清有码在线观看视频| 国产精品乱码一区二三区的特点| 欧美性猛交黑人性爽| 赤兔流量卡办理| 亚洲国产欧美人成| 国产色婷婷99| 亚洲内射少妇av| 看片在线看免费视频| or卡值多少钱| 中国美白少妇内射xxxbb| 欧美一区二区亚洲| 亚洲成人av在线免费| 国产成人aa在线观看| 亚洲精品成人久久久久久| 又黄又爽又刺激的免费视频.| 狂野欧美激情性xxxx在线观看| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| 美女免费视频网站| 成人综合一区亚洲| 嫩草影院新地址| 国产午夜福利久久久久久| 欧美色欧美亚洲另类二区| 久久久成人免费电影| a级一级毛片免费在线观看| 99国产精品一区二区蜜桃av| 成人av一区二区三区在线看| 成熟少妇高潮喷水视频| 床上黄色一级片| 国内精品一区二区在线观看| 最近在线观看免费完整版| 91av网一区二区| 亚洲在线自拍视频| 嫩草影院新地址| 国内精品美女久久久久久| 男人狂女人下面高潮的视频| 天堂动漫精品| 国产精品99久久久久久久久| 日本欧美国产在线视频| 美女免费视频网站| 大又大粗又爽又黄少妇毛片口| 日本a在线网址| 国内精品美女久久久久久| 中出人妻视频一区二区| АⅤ资源中文在线天堂| 日韩精品中文字幕看吧| 亚洲成人久久爱视频| 久久亚洲精品不卡| 亚洲人成网站在线观看播放| 久久天躁狠狠躁夜夜2o2o| 亚洲av中文av极速乱| 内地一区二区视频在线| 久久久久久大精品| 日本成人三级电影网站| 国产精品一二三区在线看| 久久久久久久久大av| 亚洲无线观看免费| 午夜免费激情av| 亚洲成人精品中文字幕电影| 精品久久久噜噜| 天美传媒精品一区二区| 国产女主播在线喷水免费视频网站 | 国产一级毛片七仙女欲春2| 亚洲精品456在线播放app| 久久人人爽人人爽人人片va| 国产伦精品一区二区三区四那| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 露出奶头的视频| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 一区二区三区免费毛片| 寂寞人妻少妇视频99o| 可以在线观看的亚洲视频| 亚洲真实伦在线观看| 午夜福利成人在线免费观看| 色综合亚洲欧美另类图片| 精品一区二区三区av网在线观看| 国产精品日韩av在线免费观看| 美女被艹到高潮喷水动态| 久久精品影院6| 天堂av国产一区二区熟女人妻| 欧美一区二区国产精品久久精品| 国产亚洲精品av在线| 岛国在线免费视频观看| 日本成人三级电影网站| 好男人在线观看高清免费视频| 波多野结衣高清无吗| 国产精品伦人一区二区| 免费av毛片视频| 免费观看精品视频网站| 激情 狠狠 欧美| 国产精品国产高清国产av| 最后的刺客免费高清国语| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 国产不卡一卡二| 久久久久久久亚洲中文字幕| a级毛片免费高清观看在线播放| 欧美人与善性xxx| 国产成人a∨麻豆精品| 午夜福利在线观看免费完整高清在 | av在线天堂中文字幕| 日韩,欧美,国产一区二区三区 | 日本色播在线视频| 国产 一区 欧美 日韩| 成年女人永久免费观看视频| 看十八女毛片水多多多| a级毛色黄片| 黑人高潮一二区| 国产黄片美女视频| 欧美丝袜亚洲另类| 国产欧美日韩精品亚洲av| .国产精品久久| 性欧美人与动物交配| 亚洲国产欧美人成| 成人特级黄色片久久久久久久| 色av中文字幕| 最近视频中文字幕2019在线8| av在线蜜桃|