• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-wellChain Fluids with Variable Interaction Range*

    2011-03-22 10:09:10LIJinlong李進(jìn)龍HEChangchun何昌春MAJun馬俊PENGChangjun彭昌軍LIUHonglai劉洪來andHUYing胡英
    關(guān)鍵詞:胡英劉洪馬俊

    LI Jinlong (李進(jìn)龍), HE Changchun (何昌春), MA Jun (馬俊), PENG Changjun (彭昌軍)**,LIU Honglai (劉洪來) and HU Ying (胡英)

    State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China

    1 INTRODUCTION

    It has been long recognized that the equations of state (EOS) can be extensively used for descriptions of thermodynamic properties such as phase equilibrium,surface tension, viscosity, and caloric properties [1, 2].So far, many EOSs have been developed for calculations of various physicochemical properties. One of the most successful EOSs is the statistical associating fluid theory (SAFT), first proposed by Chapman et al.[3, 4] about two decades ago. After that, many derived versions of SAFT-based EOSs have been presented and several detailed reviews have been made [1, 2, 5, 6].In SAFT, the special point is to capture both the chain length (molecular size and shape) and the molecular association for a reference fluid in place of the simple hard sphere reference fluid while the effects due to other interactions such as dispersion, induction, and polar are brought into a perturbation term. Coupling with density functional theory, density gradient theory,or scaled particle theory, the SAFT related EOSs have been satisfactorily extended to study the surface tension and viscosity of common pure fluids and mixtures [1]. Recently, Wang et al. [7] presented a comprehensive model, which is a combination of a correlation for computing the surface tension of solvent mixture and a formula for the influence of electrolyte concentration and can be used for complex electrolyte systems ranging from dilute solutions to fused salts.Some experimental data for surface tension and viscosity of ionic liquid (IL) related systems have been reported [8-14], but SAFT based EOS is seldom used to model the properties. Thus, in the present work, we will compute the surface tension and viscosity of IL related systems and common fluids by combining a new EOS, which was recently developed in our laboratory [15], the scaled particle theory [16], and a viscosity model [17]. In the EOS, two modifications for dispersion and chain formation terms have been made:(1) a new square well dispersion term with variable interaction range (1.1≤λ≤3) is derived, and (2) the chain formation term is divided into the hard sphere chain formation contribution and the effects of square well dispersion on chain formation of hard spheres.The residual Helmholtz free energy of a mixture is written as [15]

    where the superscripts hs-mono, sw-mono, hs-chain,and sw-chain represent the contributions from hard sphere monomers, square well dispersion, the formation of hard chain, and the effects of square well potential on the formation of hard chain, respectively. In the model, each molecule is characterized by four molecular parameters, namely, segment number (r),segment diameter (σ), dispersion interaction energy (ε)and reduced well width (λ). The SWCF-VR EOS can well reproduce the vapor-liquid coexistence curves and the compressibility factor of prototype fluids as well as real fluids [5, 16, 18-21]. The salient feature is that the molecular parameters in this model are selfconsistent and can be obtained by fitting the experimental saturated pressure and/or liquid volume data.

    2 BRIEF DESCRIPTION OF MODELS FOR SURFACE TENSION AND VISCOSITY

    2.1 Surface tension

    Based on the scaled particle theory (SPT) [22], a vapor-liquid interfacial tension model for liquid mixture has been presented and the formula is [16]where γ is the surface tension, σ is the segment diameter, x is the mole fraction of liquid component, K is the number of component in a mixture, the subscripts i and m repesent the pure component i and a mixture, respectively. In Eq. (2),=m,siψ and σmare calculated as follows a where lijis the adjustable size parameter. The reduced density of a mixture in Eqs. (3) and (4), ηm, can be obtained with any EOS by the relationship where R is the gas constant, r is segment number of pure component i, p and T denote system pressure and temperature, z is the compressibility factor of a mixture and can be calculated with SWCF-VR EOS [15].In calculating the compressibility factor, the crossing segment diameter (σij) and well depth (εij) are estimated through the standard Lorentz-Berthelot rules [23] as

    respectively. For the unlike interaction square-well potential range parameter λij, a simple arithmetic combining rule is used

    In Eq. (7), κijis an adjustable energy parameter. Note that the crossing segment diameter in calculation of compressibility factor of a mixture is always given by Eq. (6) and no binary interaction parameter is used.

    2.2 Viscosity

    Based on Eyring’s viscosity theory at elevated pressure, Xuan et al. [17] presented a viscosity model for pure fluids

    where μ is the viscosity, k1and k2denote the adjustable model parameters, and z is the compressibility factor which can be calculated with SWCF-VR EOS.In the model, the effect of temperature on viscosity is characterized by k1, k2and z, and the effect from pressure is only depicted by z. The details of this model are described in Xuan et al.’s work [17].

    3 RESULTS AND DISCUSSION

    To calculate the surface tension and viscosity, it is necessary to know the model parameters of pure fluids. These molecular parameters for various pure fluids has been obtained through fitting the experimental saturated vapor pressure and/or liquid volumetric values in our previous work [18, 19] and listed in Table 1 for the fluids investigated in this work.Once the model parameters are given, it is convenient to calculate the surface tension and viscosity on the basis of the given models. To improve the calculated precision of surface tension and determine the adjustable parameters (k1and k2) in viscosity model, an objective function is used

    where Npis the number of experimental data point, θ represents the surface tension or viscosity, superscripts exp and cal denote the experimental and calculated results respectively.

    3.1 Surface tension

    The detailed calculation process for the surface tension is as follows. The compressibility factor of pure fluid and mixture at given temperatures and pressures is first calculated using SWCF-VR EOS [15].The reduced density of a mixture is given by Eq. (5).The parameters ψmand σmare then computed withEqs. (3) and (4) respectively. Finally, the surface tension of a mixture under given condition is obtained from Eq. (2). To improve the calculation precision,bothlijandκijor either of them are considered as adjustable parameters and obtained by fitting the experimental surface tension.

    Table 1 Molecular parameters for the pure substances investigated

    Table 2 The predicted and correlated results of surface tension for binary mixtures

    Table 2 (Continued)

    3.1.1Correlations

    The correlated results and adjustable parameters in 24 cases for 18 binary mixtures are listed in Table 2,with the sources of experimental values. The overall average relative deviation, except for IL mixtures, is 2.56% for prediction withκij=lij=0, 0.42% for correlation withκij, 0.41% for correlation withlij, and 0.36% for correlation with bothκijandlij. The calculation precision of surface tension can be greatly improved when using adjustable parameter eitherκijorlij,and the improvement is almost the same with the correlated values ofκijandlij. Thus, one adjustable parameter (eitherκijorlij) is recommended to use for practical applications. A typical graphical comparison between theoretical calculations and experiments for cyclopentane(1) + benzene(2) [32] and hexane(1) +acetone(2) [33] mixtures is illustrated in Fig. 1. The calculated results with adjustable parameterlijwell agree with experimental values.

    To test the feasibility of this model for mixtures containing ILs, two typical examples [8] are given in this work, as illustrated in Fig. 2. The results are satisfactory with one adjustable parameterκij. However,the deviations increase at low IL concentrations for[C4mim][NTf2] + 1-butanol mixture. The reason may be that the associations of alcohols and the long rang static interactions of ILs are not considered in this model.

    Figure 1 Comparison of theoretical (lines) and experimental [32, 33] (symbols) surface tension of mixtures (solid line:correlation with lij; dash line: predicted with κij=lij=0)□ cyclopentane(1) + benzene(2); ○ n-hexane(1) + acetone(2)

    Based on SPT, Liet al. [42] also proposed a model for surface tension of liquid mixtures. In the model, a real mixture is supposed as a pseudo-pure fluid and the expression is written as

    Figure 2 Comparison of theoretical (lines) and experimental [8] (symbols) surface tension of IL mixtures (solid lines: correlations; dash lines: predictions)

    Table 3 Predicted surface tension of bianry mixtures at different temperatures

    whereγmdenotes the surface tension of the mixture,σma pseudo-dimeter andηmthe reduced density. In this model, a new molecular parameterσis first determined by fitting the experimental surface tension and liquid density of pure fluid. The pseudo-diameterσmis then obtained by combining a cross rule (such as Meyer’s cross rule [43]). Finally, the surface tension for a mixture is calculated by Eq. (11). The calculation accuracy of our model and Liet al.’s equation for eight mixture systems (cyclohexane +n-hexane,cyclohexane + chlorobenzene, tetrachloromethane +benzene,n-hexane + acetone, benzene + acetone,cyclopentane + toluene, cyclopentane + tetrachloromethane and toluene + ethyl acetate) that are random selected is obtained and the overall average deviations are 0.40% and 0.42%, respectively. In calculations,only one adjustable parameterlijin Eq. (4) is used to improve the correlation precision in both models.However, in Liet al.’s model [42] a real fluid is supposed to be composed of sphere molecules and a new molecular parameterσis required and obtained from the experimental surface tension and liquid density for calculating surface tension of the mixture. A real fluid molecule in this model is a chain molecule composed ofrsegments with a diameter ofσ, and the molecular parameters used in our model are self-consistent and can be applied for calculations of vapor-liquid equilibrium, caloric properties, surface tension,etc.

    3.1.2Predictions

    Parametersκijandlijlisted in Table 2 for a given mixture are almost identical at different temperatures,indicating that the surface tension of a binary mixture at other temperatures can be predicted afterκijorlijis obtained from experimental values at a specific temperature, for example, at room temperature. The surface tensions for several typical binary mixtures are predicted with the binary interaction parameterκijorlijdetermined from the experimental surface tension at 293.15 K, as shown in Table 3 and Fig. 3 (a). The predicted results are in good agreement with experiments[40]. In addition, the surface tension of multicomponent mixtures can be predictedviathe binary adjustable parameter, as shown in Fig. 3 (b). Good consistency between the theoretical predictions withκijand the experimental surface tension for two ternary mixtures [33, 34] is obtained.

    Figure 3 Comparison of the predicted and experimental [33, 34, 40] surface tension for mixtures

    Table 4 Calculated results of viscosity at high pressure for common fluids and ionic liquids

    Table 4 (Continued)

    Table 4 (Continued)

    3.2 Viscosity

    In the viscosity model, two adjustable parametersk1andk2are determined based on the experimental viscosity data. The calculation process is as follows.The molecular parameters are obtained by fitting the experimental saturated vapor pressure and liquid volumetric properties. The compressibility factor at a given temperature and pressure are computed using SWCF-VR EOS. The viscosity under a given condition is determined by substituting the obtained compressibility factor to Eq. (9).

    This model is employed to calculate the viscosities of 14 pure components in different temperature and pressure ranges and the results are listed in Table 4,with the adjustable parametersk1andk2, the average relative deviations and data sources. The highest pressure for some systems is up to 300 MPa and the overall average absolute deviation is only 1.44%, and the average relative deviations are 2.21% for common fluids and 0.70% for ILs. A graphical comparison between theoretical and experimental [44, 45] viscosities at 303 K for several common alkanes are shown in Fig. 4. The pressure ranges from 0.1 to 250 MPa. The theoretical results are in good agreement with experiments. Another typical comparison between correlations and experiments [11] of viscosity at the temperature range from 298.15 to 348.15 K and pressure up to 200 MPa for ionic liquid [C8mim][BF4] is illustrated in Fig. 5 and good consistency is also observed.

    Figure 4 Theoretical (lines) and experimental [44, 45](symbols) results of viscosity at 303.15K for n-alkanes□ n-pentane; ○ n-hexane; △ n-octane; ▽ n-decane

    Figure 5 Theoretical (lines) and experimental [11](symbols) results of viscosity at different temperaturesfor[C8mim][BF4]T/K: □ 298.15; ○ 308.15; △ 323.15; ▽ 333.15; ◇ 348.15

    Figure 6 Relationship between lg(k1)/lg(k2) and 1/T (symbols: modeled results; lines: drawn to guide the eye)

    Table 4 also shows that the logarithm values ofk1and/ork2for common fluids and ILs can be expressed as a linear function of the reciprocal of temperature(1/T),viz.The linear relationships between the logarithm ofk1and 1/Tforn-alkanes are shown in Fig. 6 (a). The logarithms of bothk1andk2have a good linear relationship with 1/Tfor ILs as shown in Fig. 6 (b). Actually, it is not surprising that the logarithm values ofk1is a linear function of 1/Tas the relationship between viscosity of liquid at low pressure and 1/Tcan be written as ln(μ)=A+B/Taccording to Eyring’s viscosity model.For model parameterk2in the viscosity model, it should also have a linear relationship with 1/Tsincek2is proportional to exp( / )EkT≠- , whereE≠is the molecular activation energy. From Table 4, no linear relation is observed for common fluids while a linear relationship exists for some ionic liquids as shown in Fig. 6 (b). The reason may be that the effect ofTonk2is smaller than onk1and the regressed parameter is only an optimum value at different temperatures [17].Furthermore, the obtained values ofk1at a given temperature for all systems are almost equal to the real viscosity data at the corresponding temperature and a pressure of 0.1 MPa, as shown by Xuanet al. [17]. It may be explained as that the compressibility factor of liquid at low pressure is so small that the value of exp(k2z) in Eq. (9) is approximately equal to 1. In addition, it should be stressed that the logarithms of parametersk1andk2at certain temperature for homologousn-alkanes are proportional to their molecular mass. This indicates that the model can be used to predict the viscosity of some homologous compounds under certain condition when no experimental viscosity is available.

    4 CONCLUSIONS

    Coupled with the scaled particle theory and Xuanet al.’s viscosity model, the equation of state for square well chain fluid with variable interaction range was extended to represent the surface tension of multicomponent liquid mixtures at atmospheric pressure and viscosity of pure substance at elevated pressure.The feasibility of the two models was checked and confirmed for real systems containing common fluids and ionic liquids, and excellent agreement between the theoretical and experimental results was observed.The distinct feature of this model is that the molecular parameters can be used to calculate thepVT, vapor-liquid equilibrium, caloric properties, surface tension, viscosity,etc., indicating that the models can be used for industrial practice.

    1 Tan, S.P., Adidharma, H., Radosz, M., “Recent advances and applications of statistical associating fluid theory”,Ind.Eng.Chem.Res.,47, 8063-8082 (2008).

    2 Wei, Y.S., Sadus, R.J., “Equation of state for the calculation of fluid-phase equilibria”,AIChE J., 46, 169-196 (2000).

    3 Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M., “SAFT:Equation of state solution model for associating fluids”,Fluid Phase Equilib., 52, 31-38 (1989).

    4 Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M., “New reference equation of state for associating liquids”,Ind.Eng.Chem.Res., 29, 1709-1721 (1990).

    5 Li, J.L., He, C.C., Peng, C.J., Liu, H.L., Hu, Y., “Equation of state for chain like fluid based on statistical theory for chemical association”,Sci.Chin.Chem., 40, 1198-1209 (2010).

    6 Muller, E.A., Gubbins, K.E., “Molecular-based equations of state for associating fluids: A review of SAFT and related approaches”,Ind.Eng.Chem.Res., 40, 2193-2211 (2001).

    7 Wang, P., Anderko, A., Young, D.R., “Modeling surface tension of concentrated and mixed-solvent electrolyte systems”,Ind.Eng.Chem.Res., 50, 4086-4098 (2011).

    8 Wandschneider, A., Lehmann, J.K., Heintz, A., “Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol”,J.Chem.Eng.Data, 53, 596-599 (2008).

    9 Ahosseini, A., Scurto, A.M., “Viscosity of imidazolium based ionic liquids at elevated pressures: Cation and anion effects”,Int.J.Thermophys., 29, 1222-1243 (2008).

    10 Harris, K.R., Kanakubo, M., Woolf, L.A., “Temperature and pressure dependence of the viscosity of the ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate”,J.Chem.Eng.Data, 51, 1161-1167 (2006).

    11 Harris, K.R., Kanakubo, M., Woolf, L.A., “Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate: Viscosity and density relationships in ionic liquids”,J.Chem.Eng.Data, 52, 2425-2430(2007).

    12 Harris, K.R., Woolf, L.A., Kanakubo, M., “Temperature and pressure dpendence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate”,J.Chem.Eng.Data, 50, 1777-1782 (2005).

    13 Tomida, D., Kumagai, A., Kenmochi, S., Qiao, K., Yokoyama, C.,“Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure”,J.Chem.Eng.Data, 52, 577-579 (2007).

    14 Tomida, D., Kumagai, A., Qiao, K., Yokoyama, C., “Viscosity of[Bmim][PF6] and [Bmim][BF4] at high pressure”,Int.J.Thermophys., 27, 39-47 (2006).

    15 Li, J.L., He, H.H., Peng, C.J., Liu, H.L., Hu, Y., “A new development of equation of state for square-well chain-like molecules with variable width 1.1≤λ≤3”,FluidPhaseEquilib., 276, 57-68 (2009).16 Li, J.L., Ma, J., Peng, C.J., Liu, H.L., Hu, Y., Jiang, J.W., “Equation of state coupled with scaled particle theory for surface tension of liquid mixtures”,Ind.Eng.Chem.Res., 46, 7267-7274 (2007).

    17 Xuan, A., Wu, Y., Peng, C.J., Ma, P.S., “Correlation of the viscosity of pure liquids at high pressures based on an equation of state”,Fluid Phase Equilib., 240, 15-21 (2006).

    18 Li, J.L., He, H.H., Peng, C.J., Liu, H.L., Hu, Y., “Equation of state for square-well chain molecules with variable range. I: Application for pure substances”, Fluid Phase Equilib., 286, 8-16 (2009).

    19 Li, J.L., He, Q., He, C.C., Peng, C.J., Liu, H.L., “Represention of phase behavior of ionic liquids using the equation of state for square well chain fluids with variable range”, Chin. J. Chem. Eng., 17,983-989 (2009).

    20 Li, J.L., Peng, C.J., Liu, H.L., “Mdeling vapor-liquid equilibrium of refrigerants using an equation of state for square well chain fluid with variable range”, CIESC J., 60, 545-552 (2009).

    21 Li, J.L., Tong, M., Peng, C.J., Liu, H.L., Hu, Y., “Equation of state for square-well chain molecules with variable range. II: Extension to mixture”, Fluid Phase Equilib., 287, 56-67 (2009).

    22 Reiss, H., Frisch, H.L., Helfand, E., Lebowitz, J.L., “Aspects of the statistical thermodynamics of real fluids”, J. Chem. Phys., 32,119-124 (1960).

    23 Rowlinson, J.S., Swinton, F.L., Liquids and Liquid Mixtures. 3rd ed.;Butterworth, London (1982).

    24 Smith, B.D., Srivastava, R., Thermodynamic Data for Pure Compounds, Elsevier, Amsterdam (1986).

    25 Daubert, T.E., Danner, R.P., Physical and Thermodynamic Properties of Pure Chemicals, John wiley & Sons, New York (1989).

    26 Vargaftik, N.B., Tables on the Thermophysical Properties of Liquids and Gases, John Wiley & Sons, New York (1975).

    27 Lu, H.Z., Handbook of Petrochemical Data, Chemical Industry Press,Beijing (1982).

    28 Machida, H., Sato, Y., Smith, J.R.L., “Pressure-volume-temperature measurement of ionic liquids ([Bmim][PF6], [Bmim][BF4],[Bmim][OcSO4]”, Fluid Phase Equilib., 264, 147-155 (2008).

    29 Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca,I.M.A., Ferreira, A.G.M., COutinho, J.A.P., “High pressure densities and derived themodynamic properties of imidazolium-based ionic liquids”, J. Chem. Eng. Data, 52, 80-88 (2007).

    30 Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J.F., “Thermophysical properties of imidazolium based ionic liquids”, J. Chem. Eng. Data, 49, 954-964 (2004).

    31 Azevedo, R.G., Esperanca, J.M.S.S., Szydlowski, J., Visak, Z.P.,Pires, P.E., Guedes, H.J.R., Rebelo, L.P.N., “Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [Bmim][NTf2] and [Hmim][NTf2]”, J. Chem. Thermodyn., 37,888-899 (2005).

    32 Lam, V.T., Benson, G.C., “Surface tensions of binary liquid systems I. Mixture of nonelectrolytes”, Can. J. Chem., 48, 3773-3781(1970).

    33 Rusanov, A.I., Levichev, S.A., “Thermodynamic investigation of surface layers of liquid solutions”, Kolloidn. Zh., 30, 112-118 (1968).

    34 Ridgway, K., Bulter, P.A., “Some physical properties of the ternary system benzene + cyclohexane + n-hexane”, J. Chem. Eng. Data, 12,509-515 (1967).

    35 Clever, H.L., Chase, M.W., “Thermodynamics of liquid surfaces:Surface tension of n-hexane-cyclohexane mixture at 25, 30 and 35 °C”, J. Chem. Eng. Data, 8, 291-292 (1963).

    36 Suri, S.K., Ramakrishna, V., “Surface tension of some binary liquid mixture”, J. Phys. Chem., 72, 3073-3079 (1968).

    37 Siskova, M., Secova, V., “Surface tension of binary solution of non-electrolytes V”, Collect. Czech. Chem. Commun., 35, 2702-2711(1970).

    38 Koefoed, J., Villadsen, J.V., “Surface tension of liquid mixtures: A micro-method applied to the system: chloroform-carbon-tetrachloride,benzene-diphenylmethane and heptane-hexadecane”, Acta Chem.Scand., 12, 1124-1134 (1958).

    39 Waket, E.S., “Surface tension of binary mixtures of several organic liquids at 25 °C”, J. Chem. Eng. Data, 15, 308-311 (1970).

    40 Schmidt, R.L., Randall, J.C., Clever, H.L., “Surface tension and density of binary hydrocarbon mixtures”, J. Phys. Chem., 70,3912-3918 (1966).

    41 Litkenhous, E.E., van Arsdale, J.D., Hutchison, I. W., “The system butyl alcohol-ehtyl acetate-toluene”, J. Phys. Chem., 44, 377-382(1940).

    42 Li, Z.B., Hu, Y.Q., Li, Y.G., Lu, J.F., “Molecular model of vaporliquid and liquid-liquid interface tension for mixture”, Chem. Eng.,28, 57-61 (2000).

    43 Meyer, E.C., “A one-fluid mixing rule for hard spheres mixtures”,Fluid Phase Equilib., 41, 19-29 (1988).

    44 Kiran, K., Sen, Y.L., “High-pressure viscosity and density of n-alkanes”, Int. J. Thermophys., 13, 411-445 (1992).

    45 Oliveira, C.M.B.P., Wakeham, W.A., “The viscosity of five liquid hydrocarbons at pressure up to 250 MPa”, Int. J. Thermophys., 13,773-790 (1992).

    猜你喜歡
    胡英劉洪馬俊
    Coercivity mechanism of La–Nd–Fe–B lms with Y spacer layer
    Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
    Maria Montessori
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    自抬身價(jià)
    分手多情
    測(cè) 量
    長江叢刊(2018年16期)2018-11-14 19:04:05
    In-situ Observation of the Growth of Fibrous and Dendritic Crystals in Quasi-2-dimensional Poly(ethylene oxide) Ultrathin Films*
    Multiscale Modeling of Collagen Fibril in Bone at Various Crosslink Densities:An Insight into Its Deformation Mechanisms
    斯人已逝 浩氣長存—— 『最美消防員戰(zhàn)士』劉洪坤、劉洪魁
    日韩一卡2卡3卡4卡2021年| 99国产精品一区二区三区| 1024香蕉在线观看| 午夜福利视频精品| 日日摸夜夜添夜夜添小说| 天天躁日日躁夜夜躁夜夜| 黑人欧美特级aaaaaa片| 怎么达到女性高潮| 日本wwww免费看| 欧美激情高清一区二区三区| 天堂8中文在线网| www.熟女人妻精品国产| 久久久精品国产亚洲av高清涩受| 成人黄色视频免费在线看| 99riav亚洲国产免费| 美女主播在线视频| 捣出白浆h1v1| 免费在线观看完整版高清| av免费在线观看网站| 亚洲午夜精品一区,二区,三区| 超碰成人久久| 久久人人爽av亚洲精品天堂| 欧美一级毛片孕妇| 18禁黄网站禁片午夜丰满| 视频在线观看一区二区三区| 满18在线观看网站| 人人妻人人爽人人添夜夜欢视频| 一区福利在线观看| 妹子高潮喷水视频| 久久久久久人人人人人| 国产精品99久久99久久久不卡| 啦啦啦视频在线资源免费观看| 欧美黄色淫秽网站| 国产av又大| 欧美乱妇无乱码| 在线观看免费日韩欧美大片| 女人久久www免费人成看片| 日本欧美视频一区| 水蜜桃什么品种好| 精品少妇内射三级| 女人爽到高潮嗷嗷叫在线视频| 成人18禁在线播放| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻在线不人妻| 国产精品久久久久久精品电影小说| netflix在线观看网站| 咕卡用的链子| 制服人妻中文乱码| 国产高清videossex| 欧美成狂野欧美在线观看| 欧美在线一区亚洲| 男女免费视频国产| 日韩大码丰满熟妇| 国产麻豆69| 久久久国产一区二区| 欧美亚洲 丝袜 人妻 在线| 国产福利在线免费观看视频| 成人免费观看视频高清| 91成年电影在线观看| 人人妻人人澡人人爽人人夜夜| 久久毛片免费看一区二区三区| 国产欧美日韩一区二区三| 在线观看一区二区三区激情| 亚洲全国av大片| 亚洲成人免费av在线播放| 国产高清视频在线播放一区| 免费少妇av软件| 欧美激情 高清一区二区三区| 国产欧美亚洲国产| 中文字幕人妻丝袜制服| 亚洲人成电影观看| 国产精品久久久av美女十八| 人人妻,人人澡人人爽秒播| 久久中文看片网| 免费观看人在逋| 波多野结衣一区麻豆| 法律面前人人平等表现在哪些方面| 精品国内亚洲2022精品成人 | 久久久久国产一级毛片高清牌| 99香蕉大伊视频| 午夜老司机福利片| av片东京热男人的天堂| 2018国产大陆天天弄谢| 久久 成人 亚洲| 欧美激情久久久久久爽电影 | 精品一区二区三卡| 亚洲av美国av| 国产成人精品久久二区二区91| 欧美成狂野欧美在线观看| 性少妇av在线| 18禁裸乳无遮挡动漫免费视频| 欧美精品av麻豆av| 国产av国产精品国产| 啦啦啦在线免费观看视频4| 日本av手机在线免费观看| 久久99热这里只频精品6学生| 丰满少妇做爰视频| 夜夜骑夜夜射夜夜干| 757午夜福利合集在线观看| 水蜜桃什么品种好| www.自偷自拍.com| 新久久久久国产一级毛片| 午夜福利欧美成人| 国产欧美亚洲国产| 满18在线观看网站| 免费人妻精品一区二区三区视频| av超薄肉色丝袜交足视频| 波多野结衣一区麻豆| 亚洲伊人久久精品综合| 成人三级做爰电影| 国产日韩一区二区三区精品不卡| 怎么达到女性高潮| 久久精品亚洲精品国产色婷小说| 女同久久另类99精品国产91| 大型黄色视频在线免费观看| 国产精品香港三级国产av潘金莲| 日本精品一区二区三区蜜桃| 亚洲av日韩精品久久久久久密| 69av精品久久久久久 | 一区二区三区激情视频| 国产高清视频在线播放一区| 美女午夜性视频免费| 他把我摸到了高潮在线观看 | 看免费av毛片| 久久国产亚洲av麻豆专区| 不卡av一区二区三区| 黑人巨大精品欧美一区二区mp4| 精品亚洲乱码少妇综合久久| 一进一出好大好爽视频| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区 | 精品人妻在线不人妻| 女性生殖器流出的白浆| 亚洲精华国产精华精| 久久久国产一区二区| 国产亚洲精品一区二区www | 18禁观看日本| 一进一出好大好爽视频| 天天添夜夜摸| 美女主播在线视频| 青青草视频在线视频观看| 亚洲色图av天堂| 中文字幕制服av| 亚洲 国产 在线| 欧美变态另类bdsm刘玥| 成人免费观看视频高清| 汤姆久久久久久久影院中文字幕| 精品国产一区二区久久| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 亚洲成人免费电影在线观看| 涩涩av久久男人的天堂| 1024香蕉在线观看| 天天添夜夜摸| 中亚洲国语对白在线视频| 久久久久久亚洲精品国产蜜桃av| 国产成人av激情在线播放| 老司机亚洲免费影院| 久久久精品区二区三区| 啦啦啦免费观看视频1| 91精品三级在线观看| 免费看十八禁软件| 成人三级做爰电影| 纯流量卡能插随身wifi吗| 天堂中文最新版在线下载| 欧美精品av麻豆av| 欧美av亚洲av综合av国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 宅男免费午夜| 国产精品亚洲av一区麻豆| 国产精品99久久99久久久不卡| 捣出白浆h1v1| 免费av中文字幕在线| 不卡一级毛片| 一本一本久久a久久精品综合妖精| 99国产精品一区二区蜜桃av | 免费不卡黄色视频| 日韩一区二区三区影片| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品 欧美亚洲| av不卡在线播放| 成年版毛片免费区| 两人在一起打扑克的视频| 久久午夜综合久久蜜桃| 无限看片的www在线观看| 亚洲 国产 在线| h视频一区二区三区| 久久av网站| 久久99一区二区三区| 两人在一起打扑克的视频| 国产99久久九九免费精品| 成人特级黄色片久久久久久久 | 亚洲男人天堂网一区| 一夜夜www| 国产麻豆69| 国产免费视频播放在线视频| 中文亚洲av片在线观看爽 | 亚洲成av片中文字幕在线观看| 热99re8久久精品国产| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 久久精品成人免费网站| 少妇猛男粗大的猛烈进出视频| 又黄又粗又硬又大视频| 伊人久久大香线蕉亚洲五| 极品少妇高潮喷水抽搐| 国产欧美日韩一区二区精品| 老司机亚洲免费影院| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 下体分泌物呈黄色| 精品久久久久久久毛片微露脸| 99热网站在线观看| 老熟妇仑乱视频hdxx| 99在线人妻在线中文字幕 | 另类精品久久| 精品久久久精品久久久| 曰老女人黄片| 91成人精品电影| 一本综合久久免费| 亚洲欧美日韩另类电影网站| 99久久人妻综合| 久久久国产精品麻豆| 美女主播在线视频| 色综合婷婷激情| 不卡一级毛片| 人人妻人人澡人人爽人人夜夜| 国产成人影院久久av| 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 亚洲国产欧美日韩在线播放| 国产日韩欧美在线精品| 性高湖久久久久久久久免费观看| 免费高清在线观看日韩| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 中文字幕高清在线视频| 婷婷成人精品国产| h视频一区二区三区| 久久精品亚洲av国产电影网| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 精品国产亚洲在线| 999久久久国产精品视频| av有码第一页| 久久精品亚洲熟妇少妇任你| 国产成人欧美| 一区二区日韩欧美中文字幕| 亚洲七黄色美女视频| 亚洲人成伊人成综合网2020| 色视频在线一区二区三区| 下体分泌物呈黄色| 丁香欧美五月| 性色av乱码一区二区三区2| 99香蕉大伊视频| av国产精品久久久久影院| 麻豆乱淫一区二区| 日本黄色日本黄色录像| 超色免费av| 777米奇影视久久| 超碰成人久久| 老汉色∧v一级毛片| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 欧美中文综合在线视频| 激情在线观看视频在线高清 | www.精华液| 欧美精品啪啪一区二区三区| 精品亚洲成a人片在线观看| 一区二区日韩欧美中文字幕| 男女之事视频高清在线观看| 欧美日韩视频精品一区| 国产精品一区二区在线不卡| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 久久精品亚洲av国产电影网| 亚洲国产av影院在线观看| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| tube8黄色片| 少妇裸体淫交视频免费看高清 | 日韩三级视频一区二区三区| 中文欧美无线码| 真人做人爱边吃奶动态| 欧美日韩黄片免| 欧美黑人精品巨大| 高清毛片免费观看视频网站 | 亚洲 欧美一区二区三区| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 高清黄色对白视频在线免费看| 色婷婷av一区二区三区视频| 精品欧美一区二区三区在线| 亚洲九九香蕉| 日本一区二区免费在线视频| 咕卡用的链子| 精品一区二区三区视频在线观看免费 | a级毛片黄视频| 99久久人妻综合| 91av网站免费观看| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 成年人免费黄色播放视频| 久久这里只有精品19| 97人妻天天添夜夜摸| 久久久久精品人妻al黑| 18禁黄网站禁片午夜丰满| 国精品久久久久久国模美| 好男人电影高清在线观看| 岛国毛片在线播放| 亚洲成国产人片在线观看| 下体分泌物呈黄色| 亚洲精品久久成人aⅴ小说| 电影成人av| √禁漫天堂资源中文www| 麻豆乱淫一区二区| 欧美午夜高清在线| 欧美日韩视频精品一区| 9色porny在线观看| av线在线观看网站| 露出奶头的视频| 精品国产一区二区久久| 精品高清国产在线一区| 久久人人97超碰香蕉20202| 亚洲精品中文字幕一二三四区 | 久久久国产一区二区| 日韩一区二区三区影片| 亚洲精品美女久久久久99蜜臀| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 久久久久久久国产电影| 国产亚洲精品久久久久5区| 一本—道久久a久久精品蜜桃钙片| 一级黄色大片毛片| 免费在线观看完整版高清| 国产黄频视频在线观看| 美国免费a级毛片| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 精品卡一卡二卡四卡免费| 1024香蕉在线观看| av一本久久久久| 18禁观看日本| 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 大型av网站在线播放| 夜夜骑夜夜射夜夜干| 18禁国产床啪视频网站| 黄片播放在线免费| 丁香六月天网| 久久久久国产一级毛片高清牌| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 精品午夜福利视频在线观看一区 | 日韩 欧美 亚洲 中文字幕| 国产成人欧美在线观看 | 麻豆乱淫一区二区| 黄色视频,在线免费观看| 人人澡人人妻人| 国产一区有黄有色的免费视频| 欧美乱妇无乱码| 成年人午夜在线观看视频| 最近最新中文字幕大全免费视频| av一本久久久久| 亚洲国产毛片av蜜桃av| 韩国精品一区二区三区| 又大又爽又粗| 欧美性长视频在线观看| 亚洲欧美一区二区三区黑人| 午夜91福利影院| 99国产综合亚洲精品| 啦啦啦在线免费观看视频4| 岛国毛片在线播放| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 亚洲综合色网址| av在线播放免费不卡| 久久久久久久久久久久大奶| 亚洲专区国产一区二区| 国产免费现黄频在线看| 夜夜骑夜夜射夜夜干| 高清视频免费观看一区二区| 男女高潮啪啪啪动态图| 欧美变态另类bdsm刘玥| 2018国产大陆天天弄谢| 国产不卡av网站在线观看| e午夜精品久久久久久久| 午夜视频精品福利| 国产国语露脸激情在线看| 超碰97精品在线观看| 久久久国产成人免费| 麻豆乱淫一区二区| 久久香蕉激情| 天天躁日日躁夜夜躁夜夜| 成人免费观看视频高清| 9色porny在线观看| 1024香蕉在线观看| 亚洲欧美日韩高清在线视频 | 黄色丝袜av网址大全| 日韩成人在线观看一区二区三区| 久久人妻熟女aⅴ| 欧美大码av| 少妇精品久久久久久久| 亚洲avbb在线观看| 国产伦理片在线播放av一区| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美软件| 国产成人精品无人区| 曰老女人黄片| 在线观看免费日韩欧美大片| 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| 在线 av 中文字幕| 又大又爽又粗| 国产亚洲av高清不卡| 日本av免费视频播放| 午夜激情av网站| 一边摸一边抽搐一进一小说 | 女人爽到高潮嗷嗷叫在线视频| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一小说 | 久久午夜综合久久蜜桃| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 老司机午夜福利在线观看视频 | 手机成人av网站| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 婷婷成人精品国产| 精品免费久久久久久久清纯 | 啦啦啦在线免费观看视频4| 巨乳人妻的诱惑在线观看| 69av精品久久久久久 | 50天的宝宝边吃奶边哭怎么回事| 飞空精品影院首页| av在线播放免费不卡| 久久九九热精品免费| 久久热在线av| 嫩草影视91久久| 国产精品二区激情视频| 18禁黄网站禁片午夜丰满| 50天的宝宝边吃奶边哭怎么回事| 热re99久久精品国产66热6| 一二三四社区在线视频社区8| 丝袜人妻中文字幕| av不卡在线播放| 精品一品国产午夜福利视频| 精品一区二区三区四区五区乱码| 又紧又爽又黄一区二区| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 精品欧美一区二区三区在线| 亚洲av日韩精品久久久久久密| 久久人妻福利社区极品人妻图片| 久久青草综合色| 免费少妇av软件| 免费看十八禁软件| 啦啦啦视频在线资源免费观看| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 麻豆成人av在线观看| 亚洲九九香蕉| 热re99久久国产66热| 丝瓜视频免费看黄片| 在线观看免费日韩欧美大片| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费 | 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 一级a爱视频在线免费观看| 国产亚洲欧美在线一区二区| 看免费av毛片| 国产免费av片在线观看野外av| av片东京热男人的天堂| 国产深夜福利视频在线观看| 久久久国产一区二区| 亚洲精品久久成人aⅴ小说| 淫妇啪啪啪对白视频| 亚洲第一av免费看| 国产aⅴ精品一区二区三区波| 国产真人三级小视频在线观看| 久久影院123| 国产xxxxx性猛交| 黑人欧美特级aaaaaa片| av有码第一页| 午夜91福利影院| 国产精品 国内视频| 国产精品1区2区在线观看. | 久久久精品免费免费高清| bbb黄色大片| 精品福利观看| 亚洲久久久国产精品| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 亚洲五月婷婷丁香| 美女福利国产在线| 欧美激情极品国产一区二区三区| 一级毛片电影观看| 国产区一区二久久| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 国产成人av激情在线播放| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 亚洲美女黄片视频| 男人操女人黄网站| 国产精品99久久99久久久不卡| 欧美激情高清一区二区三区| 精品高清国产在线一区| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕| 午夜成年电影在线免费观看| 亚洲av成人不卡在线观看播放网| 青草久久国产| 精品国产亚洲在线| 啪啪无遮挡十八禁网站| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 在线观看66精品国产| 天天添夜夜摸| 午夜福利影视在线免费观看| 亚洲精品国产精品久久久不卡| 国产1区2区3区精品| 99精品欧美一区二区三区四区| 国产高清国产精品国产三级| 天天影视国产精品| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| 在线观看免费午夜福利视频| 精品国产亚洲在线| 制服诱惑二区| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 少妇猛男粗大的猛烈进出视频| 99re6热这里在线精品视频| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久| 欧美黑人精品巨大| 成人18禁在线播放| a级片在线免费高清观看视频| 91大片在线观看| 人妻一区二区av| 亚洲 欧美一区二区三区| 五月开心婷婷网| 亚洲中文日韩欧美视频| 久久久水蜜桃国产精品网| 日日夜夜操网爽| 人人妻人人爽人人添夜夜欢视频| 国产高清国产精品国产三级| 丁香欧美五月| 亚洲国产中文字幕在线视频| 免费黄频网站在线观看国产| 91麻豆av在线| 国产男靠女视频免费网站| 成年女人毛片免费观看观看9 | 日本av免费视频播放| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 国产精品免费视频内射| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看. | 老汉色∧v一级毛片| 免费观看a级毛片全部| 欧美日韩黄片免| 视频区图区小说| 女人被躁到高潮嗷嗷叫费观| 99热网站在线观看| 91字幕亚洲| 国产成人欧美在线观看 | 亚洲全国av大片| 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| 无人区码免费观看不卡 | 一区二区三区精品91| 手机成人av网站| 嫁个100分男人电影在线观看| 97人妻天天添夜夜摸| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 又大又爽又粗| 国产视频一区二区在线看| 成年人黄色毛片网站| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 午夜福利在线观看吧| 不卡av一区二区三区| 国产在线免费精品| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 久久精品亚洲熟妇少妇任你| 老司机影院毛片| 曰老女人黄片| 交换朋友夫妻互换小说| 久久久久网色| 日韩欧美免费精品| 国产精品1区2区在线观看. | 精品少妇久久久久久888优播| 国产xxxxx性猛交| 婷婷丁香在线五月| 日韩欧美一区二区三区在线观看 | 国产精品二区激情视频|