周 婧,張 霞,高浩峰,胡 南
(南京工業(yè)大學生物與制藥工程學院,江蘇南京211800)
?
蛋雞糞工業(yè)化堆肥過程中氨氧化菌群的群落演替
周 婧,張 霞,高浩峰,胡 南
(南京工業(yè)大學生物與制藥工程學院,江蘇南京211800)
以蛋雞糞為研究對象,考察其在工業(yè)堆肥過程中幾種主要氮化物的變化,同時應(yīng)用聚合酶鏈式反應(yīng)-變性梯度凝膠電泳(PCR-DGGE)技術(shù)檢測氨氧化細菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)的群落結(jié)構(gòu),并通過冗余分析(redundancy analysis,RDA)探討環(huán)境變量對AOB群落結(jié)構(gòu)的影響。結(jié)果表明:整個堆肥過程中總氮損失率為30.8%;DGGE圖譜展示了一個豐富的氨氧化微生物群系,共有14種AOB及13種AOA被證實,其中,Nitrosomonas和Candidatusnitrososphaeragargensis分別是AOB及AOA的優(yōu)勢種屬,部分Nitrosomonaseuropaea與Nitrosomonashalophila菌株存在于整個堆肥過程;AOB群落多樣性指數(shù)及豐度在整個堆肥過程中呈現(xiàn)先降后升的變化,而AOA群落正好與之相反;RDA分析結(jié)果表明,溫度和pH對AOB群落結(jié)構(gòu)具有顯著的負影響(P<0.05),尤其是溫度對其有極顯著影響(P<0.01)。本研究真實地反映了蛋雞糞在工業(yè)堆肥過程中的氮化物濃度以及氨氧化微生物群落的變化,實驗數(shù)據(jù)為畜禽糞便堆肥過程的工藝優(yōu)化提供了部分參考。
氨氧化細菌;氨氧化古菌;群落結(jié)構(gòu);PCR-DGGE
氨氧化微生物包括氨氧化細菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)[6-7],它們都攜帶執(zhí)行氨氧化作用的氨單加氧酶(ammonia monooxygenase,AmoA)。AOB普遍存在于各種有機質(zhì)的堆肥過程,如城市廢棄物[8]、牛糞、豬糞和雞糞等[9-10],AOA則是近年來發(fā)現(xiàn)的獨立于AOB的進化類群,主要分布在海水、河口沉積物、土壤、活性污泥和適度高溫的溫泉中[11]。有研究表明在動物糞便堆肥中很難檢測到AOA的存在[9-13],但也有報道指出AOA在某些堆肥過程中持續(xù)存在[14-16]。目前,關(guān)于雞糞好氧堆肥中氨氧化菌群的報道較少,而雞糞工業(yè)化堆肥過程中氨氧化菌群的研究未見報道。
本研究中,筆者考察湖北某有機肥廠蛋雞糞堆肥過程中氨氧化菌群結(jié)構(gòu)的變化情況,采用聚合酶鏈式反應(yīng)-變性梯度凝膠電泳(PCR-DGGE)技術(shù),來檢測amoA基因的種類及豐度,分析不同堆肥時期AOB和AOA群落組成及結(jié)構(gòu)變化,以期為雞糞工業(yè)化堆肥過程中的氨排放減量控制提供參考。
1.1 樣本采集
樣本取自湖北省黃岡市溪水縣某雞糞有機肥廠,該廠采用槽式強制好氧堆肥工藝,槽總長90 m、寬8.5 m、高2 m,設(shè)置3條平行堆槽,槽下有鼓風機強制通風供氧。每天用自動翻料機對堆肥進行兩次翻堆。工作時,機器沿鋼軌從進料口向出料口方向滑行,隨即物料被翻起并水平前移,平均每天移動3 m。槽的進料口是新鮮物料,出料口是成熟肥料,中間用溫度計每隔3 m定點測量發(fā)酵槽的溫度,整個堆肥過程為30 d。
自堆肥槽中,選取7個取樣點,覆蓋堆肥過程的升溫、高溫及降溫期,其對應(yīng)堆肥發(fā)酵時間為1、3、5、10、15、20和30 d,每個取樣點取樣3次作為平行對照。樣本取自堆體表面下0.3 m處,每個樣本采集約600 g,研缽研磨后過1 mm篩,之后分成2份,一份用于理化性質(zhì)的測定,另一份用于DNA提取。
1.2 理化性質(zhì)測定
1.3 PCR擴增和DGGE分析
1.3.1 DNA提取
均勻混合3個平行樣本,采用PowerSoilTMDNA Isolation Kit 試劑盒(Mo-Bio Laboratories)分別提取7個堆肥樣本的總DNA,提取出的DNA溶解在80 μL的TE緩沖液(10 mmol/L Tris-HCl、1 mmol/L EDTA)中。采用1%的瓊脂糖凝膠電泳檢測提取產(chǎn)物,DNA產(chǎn)物藏于-20 ℃?zhèn)溆谩?/p>
1.3.2 PCR擴增
AOB的擴增采用amoA基因的特異引物Arch-amo1F/Arch-amo2R[17],AOA的擴增采用特異引物Arch-amoAF/Arch-amoAR[18],其中正向引物5’端連接有GC夾(5’-C ̄G ̄C ̄C ̄C ̄G ̄C ̄C ̄G ̄C ̄G ̄C ̄G ̄C ̄G ̄G ̄C ̄G ̄G ̄G ̄C ̄G ̄G ̄G ̄G ̄C ̄G ̄G ̄G ̄G ̄G ̄C ̄A ̄C ̄G ̄G ̄G ̄G ̄G ̄G-3’),引物由上海金斯瑞生物科技有限公司合成。AOB擴增的退火溫度為65 ℃,72 ℃延伸1.5 min;AOA 擴增的退火溫度為58 ℃,72 ℃延伸30 s,PCR產(chǎn)物用1.5%的瓊脂糖電泳進行檢測。
1.3.3 DGGE分析
采用DcodeTM基因突變檢測系統(tǒng)(Bio-Rad公司)對PCR擴增產(chǎn)物進行電泳分離。DGGE條件:在1×Tris-乙酸-乙二胺四乙酸(TAE)緩沖液中進行,對于AOB,采用變性梯度為30%~70%(100%化學變性劑為7 mol/L尿素和體積分數(shù)40%的去離子甲酰胺),8%的聚丙烯酰胺凝膠,在60 ℃、100 V下電泳8 h;而對于AOA,采用變性梯度為35%~55%、8%的聚丙烯酰胺凝膠,在60 ℃、110 V下電泳17 h。電泳結(jié)束后,用銀染法對凝膠染色30~40 min,在Gel-Doc XR凝膠成像系統(tǒng)(Bio-Rad公司)中觀察并拍照。
1.3.4 克隆與測序
選擇DGGE膠上的優(yōu)勢條帶,在紫外燈下用滅菌手術(shù)刀進行切割,裝入1.5 mL離心管中,采用Poly-Gel DNA Extraction Kit試劑盒(OMEGA公司)回收目的條帶。取1 μL回收產(chǎn)物作為模板,使用不帶GC夾的引物進行再擴增并純化,純化產(chǎn)物與pMD-19T載體連接后,在大腸桿菌DH5α中進行轉(zhuǎn)化,挑取陽性克隆子送交上海金斯瑞生物科技公司測序。使用BLAST程序?qū)y定序列進行同源性分析,并用MEGA 5.0軟件進行系統(tǒng)發(fā)育樹分析。
1.4 數(shù)據(jù)處理
DGGE圖像采用Quantity One(version 4.6.2,Bio-Rad公司)軟件處理,對條帶的灰度值、相對位置、條帶數(shù)量、相對豐度進行分析。AOB和AOA的群落多樣性用Shannon-Weiner指數(shù)(H)[19]表示,表達式為
H=-∑(Ni/N)ln(Ni/N)
(1)
式中:Ni是第i個條帶的擴增量,N是所在泳道條帶的擴增總量。擴增量用條帶波峰面積表示。
物種數(shù)據(jù)矩陣以每個條帶所處泳道中亮度峰值的百分含量來建立,為降低稀有種群影響,同一泳道內(nèi)所選條帶的相對豐度不低于1%。采用冗余分析方法(RDA)對物種數(shù)據(jù)與環(huán)境變量進行相關(guān)性分析,利用“Monte Carlo permutation test”檢驗RDA排序軸特征值的顯著性,找出顯著影響群落結(jié)構(gòu)變化的環(huán)境因子(P< 0.05),將生成的數(shù)據(jù)文件應(yīng)用于Canodraw 4.5作圖。
2.1 理化參數(shù)的變化
圖1 堆肥過程中理化參數(shù)的變化Fig.1 Changes of the physical and chemical parameters during the composting process
2.2 氨氧化微生物的群落結(jié)構(gòu)
利用DGGE來分析氨氧化微生物的群落結(jié)構(gòu),結(jié)果見圖2和圖3。由圖2可知:通過DGGE圖譜共識別出14條AOB優(yōu)勢條帶,升溫期種群數(shù)量較多,高溫期則明顯降低,降溫期又開始增多。AOA從高溫期才開始出現(xiàn),前3個樣本中均未檢測到amoA基因,進入降溫期以后,AOA的種類與豐度又開始降低。在分別代表10 d至30 d的4條泳道中共識別出13個優(yōu)勢條帶。
圖2 堆肥樣本中amoA基因的DGGE圖譜Fig.2 The DGGE profiles generated with amoA gene fragments from the composting samples
圖3 AOB與AOA中 amoA基因的系統(tǒng)發(fā)育樹Fig.3 Phylogenetic trees of amoA genes amplified in AOB and AOA
由圖3可知:Nitrosomonas是AOB的優(yōu)勢菌屬;除了條帶h及i鑒定為Nitrosospira之外,其余12個條帶均屬于Nitrosomonas,在動物糞便堆肥處理的相關(guān)報道中,Nitrosomonas也被證實是優(yōu)勢種群甚至是唯一種群[9,22-23];條帶c、d、k和l在整個堆肥過程中都存在,c和d屬于Nitrosomonaseuropaea,而k和l屬于Nitrosomonashalophila。
AOA的大部分優(yōu)勢條帶與Candidatusn ̄i ̄t ̄r ̄o ̄s ̄o ̄s ̄p ̄h ̄a ̄e ̄r ̄agargensis保持了較近的親緣關(guān)系,后者最初發(fā)現(xiàn)于溫泉,它在動物糞便的堆肥過程尤其是腐熟中后期中被多次發(fā)現(xiàn)[10,14,16],這類AOA生存于低濃度銨鹽的自然環(huán)境,高濃度銨鹽可抑制其生長及活性[10],這或許是堆肥前期沒有發(fā)現(xiàn)AOA的主要原因。
在實驗室模擬的雞糞堆肥實驗中,無論是AOB還是AOA,其種群豐度都較少,有些樣本甚至都難以檢出AOA[14],但在本研究中,檢出的AOB及AOA種群非常豐富,推測的原因是實驗室模擬研究是在小的相對封閉的體系進行,一定程度上減少了氨氧化微生物的自然接種途徑,而工業(yè)堆肥尺度大、過程開放,增大了氨氧化微生物的自然接種能力,因而更利于種群結(jié)構(gòu)的豐富。
2.3 環(huán)境變量對AOB群落結(jié)構(gòu)的影響
采用Bio-Rad Quantity One 4.6.2軟件對DGGE圖譜進行分析,獲取整個堆肥過程中AOB和AOA群落的Shannon-Weiner指數(shù)(H)和條帶豐度(S),如表1所示。由表1可知:AOB種群多樣性表現(xiàn)為30 d樣本≈1 d樣本 >3 d樣本≈20 d樣本 >15 d樣本 >10 d樣本≈5 d樣本;這說明AOB在非高溫條件下具有較高的種群多樣性,而高溫條件下種群則相對簡單;AOA種群多樣性指數(shù)自第10天出現(xiàn)并達到高值,之后便呈下降趨勢。
表1 氨氧化菌群amoA基因的DGGE條帶豐度(S)和多樣性指數(shù)(H)
圖4為AOB群落結(jié)構(gòu)變化與環(huán)境變量關(guān)系的RDA二維排序圖。由圖4可知:堆肥過程中溫度和pH的連線較長,且兩者的箭頭方向都位于第三象限,因此溫度和pH與AOB菌群變化呈典型的負相關(guān)關(guān)系。在第5天至第15天的堆肥樣本距離較近,而第1天和第3天、第20天和第30天的距離較遠,說明AOB群落結(jié)構(gòu)在堆肥前期和后期演替劇烈。采用手動選擇的方式,分析得到具有顯著影響的環(huán)境因子變量,結(jié)果顯示溫度和pH對AOB群落結(jié)構(gòu)的演替有顯著影響,P值分別為0.002和0.03(P<0.05),其中溫度對其有極顯著影響(P<0.01)。
基于DGGE圖譜中amoA基因的種類及相對豐度分析可知,在蛋雞糞的工業(yè)堆肥腐熟過程中,氨氧化反應(yīng)由AOB及AOA協(xié)同執(zhí)行。AOB參與了氨氧化反應(yīng)的全過程,并保持了一定的相對數(shù)量,但AOB的群落結(jié)構(gòu)在高溫期相對簡單,這是由于多數(shù)的AOB對高溫敏感所致[11,23];AOA與AOB恰恰相反,其從高溫期開始大量出現(xiàn),其種群豐度和相對數(shù)量均隨著腐熟溫度的降低而逐漸下降。僅從氨氧化的角度來看,適當?shù)亟档投洋w溫度及pH有利于AOB種群的豐富及氨氧化能力的提高。
圖4 環(huán)境變量與AOB群落結(jié)構(gòu)關(guān)系的RDA二維排序Fig.4 Relationships between the community composition of AOB and environmental variables in RDA biplot
在蛋雞糞工業(yè)化堆肥過程中,氨氧化作用由AOB與AOA共同執(zhí)行,AOB及AOA種群豐富,Nitrosomonas是AOB的優(yōu)勢種屬,CandidatusNitrososphaeragargensis是AOA的優(yōu)勢種屬;此外,部分Nitrosomonaseuropaea與Nitrosomonashalophila菌株存在于整個堆肥過程,溫度和pH對AOB群落結(jié)構(gòu)具有顯著的負影響。
[1] WEI Y S,FAN Y B,WANG M J,et al.Composting and compost application in China[J].Resour Conserv Recycle,2000,30(4):277-300.
[2] MARTINS O,DEWES T.Loss of nitrogenous compounds during composting of animal wastes[J].Bioresour Technol,1992,42(2):103-111.
[3] WIGLEY T M,RAPER S C.Interpretation of high projections for global-mean warming[J]. Science,2001,293:451-454.
[4] JARVIS A,SUNDBERG C,MILENKOVSKI S,et al.Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3and N2O in a compost reactor treating organic household waste[J]. J Appl Microbiol,2009,106(5):1502-1511.
[5] BECK-FRIIS B,SMARS S,JONSSON H,et al.Gaseous emissions of carbon dioxide,ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes[J].J Agr Eng Res,2001,78(4):423-430.
[6] TREUSCH AH,LEININGER S,KLETZIN A,et al.Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J].Environ Microbiol,2005,7(12):1985-1995.
[7] ZENG G,ZHANG J,CHEN Y,et al.Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting[J].Bioresour Technol,2011,102(19):9026-9032.
[8] MAEDA K,TOYODA S,SHIMOJIMA R,et al.Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in beta-proteobacterial ammonia-oxidizing bacteria[J].Appl Environ Microbiol,2010,76(5):1555-1562.
[9] YAMAMOTO N,OTAWA K,NAKAI Y.Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting[J]. Microb Ecol,2010,60(4):807-815.
[10] DE LA TORRE J R,WALKER C B,INGALLS A E,et al.Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol[J].Environ Microbiol,2008,10(3):810-818.
[11] HATZENPICHLER R,LEBEDEVA EV,SPIECK E,et al.A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring[J].Proc Natl Acad Sci,2008,105(6):2134-2139.
[12] REIGSTAD LJ,RICHTER A,DAIMS H,et al.Nitrification in terrestrial hot springs of Iceland and Kamchatka[J].FEMS Microbiol Ecol,2008,64(2):167-174.
[13] YAMADA T,MIYAUCHI K,UEDA H,et al.Composting cattle dung wastes by using a hyperthermophilic pre-treatment process:characterization by physicochemical and molecular biological analysis[J].J Biosci Bioeng,2007,104(5):408-415.
[14] YAMAMOTO N,OISHI R,SUYAMA Y,et al.Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea were widely distributed in animal manure composts from field-scale facilities[J].Microbes Environ,2012,27(4):519-524.
[15] XIE K,JIA X,XU P,et al.Improved composting of poultry feces via supplementation with ammonia oxidizing archaea[J].Bioresour Technol,2012,120:70-77.
[16] YAMAMOTO N,ASANO R,YOSHII H,et al.Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis[J].Appl Microbiol Biotechnol,2011,90(4):1501-1510.
[17] ROTTHAUWE J H,WITZEL K P,LIESACK W.The ammonia monooxygenase structural geneamoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Appl Environ Microbiol,1997,63(12):4704-4712.
[18] FRANCIS C A,BEMAN J M,KUYPERS M M.New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation[J].ISME J,2007,1(1):19-27.
[19] WEI D,QIAN Y,ZHANG J Z,et al.Bacterial community structure and diversity in a black soil as affected by long-term fertilization[J].Pedosphere,2008,18(5):582-592.
[20] BARRINGTON S,CHOINIRE D,TRIGUI M,et al.Effect of carbon source on compost nitrogen and carbon losses[J].Bioresour Technol,2002,83(3):189-194.
[21] 黃向東,韓志英,石德智,等.畜禽糞便堆肥過程中氮素的損失與控制[J].應(yīng)用生態(tài)學報,2010,21(1):247-254.
[22] INNEREBNER G,KNAPP B,VASARA T,et al.Traceability of ammonia-oxidizing bacteria in compost-treated soils[J].Soil Biol Biochem,2006,38(5):1092-1100.
[23] OISHI R,TADA C,ASANO R,et al.Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations[J].Microbial Ecology,2012,63(4):787-793.
(責任編輯 荀志金)
Succession of ammonia oxidizers community composition duringindustrial composting of laying hen manure
ZHOU Jing,ZHANG Xia,GAO Haofeng,HU Nan
(College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211800,China)
In this work, concentrations of major N-compounds were determined during the composting of laying hen manure. The community of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA) were also studied by polymerase chain reaction-denaturing gradient gelelectrophoresis(PCR-DGGE).The association of AOB communities with environmental and nutrient variables were studied by redundancy analysis(RDA).The total nitrogen loss was 30.8% in the whole composting process.According to the DGGE profiles,a richness of ammonia oxidizing microbial population was confirmed,and 14 AOB and 13 AOA species were detected at all composting samples.NitrosomonasandCandidatusnitrososphaeragargensiswere the dominant species of AOB and AOA,respectively.Several strains ofNitrosomonaseuropaeaandNitrosomonashalophilaexisted in the whole composting process.AOB diversity index and abundance showed the first drop and then rise,whereas AOA was just the opposite.Temperature and pH were considered as key environmental variables to lead the variation of AOB communities (P<0.05),especially the temperature (P<0.01).This study reflected the variation of N-compounds concentration and ammonia oxidizing microbial community in industrial composting of laying hen manure.The experimental data would be useful for the process optimization of manure composting.
ammonia-oxidizing bacteria; ammonia-oxidizing archaea; community composition; PCR-DGGE
10.3969/j.issn.1672-3678.2017.01.012
2016-04-15
國家自然科學基金(31270162);江蘇高校品牌專業(yè)建設(shè)工程(TAPP)
周 婧(1991—),女,安徽蕪湖人,研究方向:環(huán)境微生物;胡 南(聯(lián)系人),副教授,E-mail:hunan@njtech.edu.cn
Q89
A
1672-3678(2017)01-0073-06