陳獻(xiàn)東 陳茂華 巴華君 林群 戴君俠
[摘要] 目的 分離鑒定CD133+腫瘤干細(xì)胞,初步分析MRP-1、MDR1、GST-π在CD133+膠質(zhì)瘤干細(xì)胞多藥耐藥性中的作用。 方法 采用膠質(zhì)瘤U251細(xì)胞系,磁珠分離、培養(yǎng)CD133+膠質(zhì)瘤干細(xì)胞,RT-PCR技術(shù)分析MRP-1、MDR1、GST-π在CD133+膠質(zhì)瘤干細(xì)胞中的表達(dá)。 結(jié)果 培養(yǎng)的膠質(zhì)母細(xì)胞瘤干細(xì)胞表達(dá)干細(xì)胞標(biāo)記物Nestin,分化后細(xì)胞表達(dá)GFAP、β-tubulin;MRP-1、MDR1、GST-π在CD133+膠質(zhì)瘤干細(xì)胞中呈高表達(dá),與CD133-膠質(zhì)瘤干細(xì)胞比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。 結(jié)論 培養(yǎng)、鑒定膠質(zhì)母細(xì)胞瘤腫瘤干細(xì)胞,MRP-1、MDR1、GST-π在CD133+膠質(zhì)瘤干細(xì)胞中呈高表達(dá),為下一步研究奠定基礎(chǔ)。
[關(guān)鍵詞] 膠質(zhì)母細(xì)胞瘤;腫瘤干細(xì)胞;CD133;耐藥
[中圖分類(lèi)號(hào)] R739.4 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-9701(2017)05-0012-03
腦膠質(zhì)瘤是常見(jiàn)的原發(fā)中樞神經(jīng)系統(tǒng)腫瘤,約占中樞神經(jīng)系統(tǒng)惡性腫瘤的78%,占成人中樞神經(jīng)系統(tǒng)腫瘤的50%,是惡性程度最高也是最具侵襲性的腫瘤之一[1,2]。目前腦膠質(zhì)瘤治療主要以最大限度切除實(shí)體腫瘤,術(shù)后輔以替莫唑胺化療。化療是目前治療膠質(zhì)瘤及改善預(yù)后的重要手段,但目前的治療效果仍達(dá)不到滿意,其中主要原因是腫瘤細(xì)胞的耐藥性[3]。CD133是腫瘤干細(xì)胞和神經(jīng)干細(xì)胞的特異性標(biāo)志物,相關(guān)研究顯示CD133+細(xì)胞具有較強(qiáng)的致瘤能力,CD133+細(xì)胞的多藥耐藥性明顯增強(qiáng)[4]。而MRP-1、MDR1在異質(zhì)性膠質(zhì)瘤的腦腫瘤干細(xì)胞中的高表達(dá)是臨床內(nèi)在性耐藥和個(gè)體耐藥的主要原因之一[5]。而GST-π作為腫瘤轉(zhuǎn)化的標(biāo)志物之一,能夠催化谷胱甘肽與親電性的抗癌藥物結(jié)合,通過(guò)活性將抗癌藥物排出細(xì)胞,增強(qiáng)腫瘤的耐藥性[6]。本研究初步分析MRP-1、MDR1及GST-π在CD133+腫瘤干細(xì)胞中的表達(dá),為進(jìn)一步研究確切的耐藥機(jī)制及逆轉(zhuǎn)耐藥提供前期基礎(chǔ)。
1 材料與方法
1.1材料與試劑
U251細(xì)胞系(廣州賽業(yè)生物科技公司,貨號(hào):HCGUI-30001),DMEM/F12培養(yǎng)基、胎牛血清(FBS)購(gòu)自Hyclone公司,胰蛋白酶(Gibco公司)、免疫磁珠(CD133+)細(xì)胞分選試劑盒、免疫磁珠分選儀購(gòu)自Miltenyi Biotec公司,CO2恒溫培養(yǎng)箱、-80℃超低溫冰箱。
1.2 U251細(xì)胞復(fù)蘇及培養(yǎng)
將保存人腦 U251 細(xì)胞的凍存管從-80℃冰箱中取出,立即置于37℃恒溫水浴中,輕輕搖動(dòng)凍存管使管內(nèi)凍存液快速融化;將含U251細(xì)胞的凍存液移入15 mL無(wú)菌離心管中,加入約 5 mL含血清培養(yǎng)基,1000 r/min 離心5 min,棄掉上清液;加入約 3 mL含血清培養(yǎng)基重懸細(xì)胞,無(wú)菌透氣培養(yǎng)瓶中,置于37℃、體積分?jǐn)?shù) 5% CO2飽和濕度的培養(yǎng)箱中培養(yǎng);觀察細(xì)胞的生長(zhǎng)情況,每3日更換一次培養(yǎng)液;將U251細(xì)胞在含10%的胎牛血清、青霉素 100 U/mL和鏈霉素100 μg/mL的DMEM 完全培養(yǎng)基中進(jìn)行單層培養(yǎng),置于37℃、5% CO2飽和濕度培養(yǎng)箱中連續(xù)培養(yǎng)傳代。隔日換液1次,每次添加 4 mL培養(yǎng)基,每隔3 d進(jìn)行細(xì)胞傳代。
1.3 CD133+膠質(zhì)瘤干細(xì)胞分選
收集培養(yǎng)基中連續(xù)培養(yǎng)的球樣U251細(xì)胞,胰酶消化、離心后制備單細(xì)胞懸液,200 μm濾網(wǎng)過(guò)濾并計(jì)數(shù)。參照免疫磁珠(CD133+)細(xì)胞分選試劑盒、免疫磁珠分選儀操作說(shuō)明進(jìn)行。
1.4 CD133+膠質(zhì)瘤干細(xì)胞培養(yǎng)及鑒定
將對(duì)數(shù)生長(zhǎng)期的U251細(xì)胞用0.25%胰蛋白酶消化、離心后吹打成單細(xì)胞懸液,分別用無(wú)菌PBS液和DMEM/F12重懸細(xì)胞漂洗1遍,接種到含有EGF (20 ng/mL)、bFGF(20 ng/mL)、LIF(10 ng/mL)、B27(1×)的 DMEM/F12無(wú)血清培養(yǎng)基,置于37℃、5% CO2、飽和濕度培養(yǎng)箱中培養(yǎng)。細(xì)胞鑒定:取膠質(zhì)瘤干細(xì)胞植入包被有多聚賴氨酸的玻片上,晾干,用PBS沖洗除去殘留培養(yǎng)基;經(jīng)4%多聚甲醛固定,5%山羊血清封閉;分別加入Nestin、β-tubulin 和 GFAP一抗,4℃過(guò)夜,加入FITC標(biāo)記二抗,熒光顯微鏡鏡檢。
1.5 RT-PCR檢測(cè)MRP-1、MDR1、GST-π mRNA的表達(dá)分析
采用Primer Premier v5軟件設(shè)計(jì)MRP-1、MDR1、GST-π引物序列。MRP1 正義鏈:5'-GCAGGGCTACTTCTACACCG-3',反義鏈:5'-TCATCGCCATCACAGCATTG-3';MDR1:正義鏈:5'-CCCATCATTGCAATAGCAGG-3',反義鏈:5'-GTTCAAACTTCTGCTCCTGA-3';GST-π:正義鏈:5'-CCAATACCATCCTGCGTCAC-3',反義鏈:5'-TCACTGTTTCCCGTTGCCCAT-3'。后收集細(xì)胞,參照相應(yīng)試劑盒說(shuō)明書(shū)提取總RNA,逆轉(zhuǎn)錄提取cDNA,配制PCR 反應(yīng)體系(20 μL)進(jìn)行PCR反應(yīng)。以相同來(lái)源的β-actin為內(nèi)部參照,相對(duì)基因表達(dá)量=2-△△CT(△Ct=Ct 靶基因-Ct β-actin,△△Ct=△Ct試驗(yàn)組-△Ct 對(duì)照組),每個(gè)檢測(cè)重復(fù)3次,計(jì)算 MRP-1、MDR1、GST-π mRNA表達(dá)量。
1.6統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS19.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料以(x±s)表示,多組樣本均數(shù)比較先進(jìn)行正態(tài)分布及方差齊性檢驗(yàn),呈正態(tài)分布及方差齊性組間比較采用獨(dú)立樣本t檢驗(yàn),呈正態(tài)分布但方差不齊組間比較采用近似t檢驗(yàn),P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1膠質(zhì)瘤干細(xì)胞的鑒定
膠質(zhì)瘤U251干細(xì)胞經(jīng)過(guò)Nestin、β-tubulin和GFAP熒光染色進(jìn)行鑒定,結(jié)果U251干細(xì)胞球顯示綠色熒光,呈強(qiáng)陽(yáng)性表達(dá)。經(jīng)過(guò)行GFAP和β-tubulin檢測(cè)結(jié)果膠質(zhì)瘤干細(xì)胞球未顯示綠色熒光,呈陰性表達(dá),經(jīng)過(guò)培養(yǎng)基中誘導(dǎo)分化7 d后,膠質(zhì)瘤U251干細(xì)胞GFAP、β-tubulin染色則細(xì)胞均顯示綠色熒光,呈強(qiáng)陽(yáng)性表達(dá),見(jiàn)封三圖6。
2.2 RT-PCR 檢測(cè)MRP-1、MDR1、GST-π mRNA的表達(dá)分析
RT-PCR研究結(jié)果顯示MRP-1、MDR1、GST-π在CD133+腫瘤干細(xì)胞中呈高度表達(dá),而在CD133-細(xì)胞中表達(dá)顯著低于CD133+細(xì)胞,差異有統(tǒng)計(jì)學(xué)意義(P<0.05).
3 討論
膠質(zhì)母細(xì)胞瘤是中樞系統(tǒng)常見(jiàn)原發(fā)性腫瘤,患者雖及時(shí)接受完整的放療和化療聯(lián)合治療,預(yù)后仍較差,生存期僅為12~18個(gè)月。盡管手術(shù)器械和手術(shù)方法已經(jīng)得到極大改進(jìn),術(shù)后放療和化療等綜合治療措施也有明顯改善,膠質(zhì)母細(xì)胞瘤患者的中位生存時(shí)間仍無(wú)明顯延長(zhǎng)[7,8]。因此對(duì)膠質(zhì)母細(xì)胞瘤的研究將具有持續(xù)的挑戰(zhàn)性。鑒于膠質(zhì)母細(xì)胞瘤是高度血管化的腫瘤,腫瘤的血管在腫瘤的侵襲和轉(zhuǎn)移中起著重要的作用,因此,對(duì)膠質(zhì)母細(xì)胞瘤的血管及其內(nèi)皮細(xì)胞進(jìn)行研究顯得非常有意義。
以往研究認(rèn)為,惡性腫瘤的生長(zhǎng)依賴于腫瘤的血管生成。據(jù)此,有學(xué)者提出研發(fā)抗腫瘤血管生成藥物達(dá)到治療腫瘤的目的。但是,臨床實(shí)踐證明,這些藥物的抗腫瘤效果非常有限并且容易獲得耐藥性[9-11]。因此,為研發(fā)更有效的抗腫瘤血管藥物,我們需要對(duì)腫瘤的內(nèi)皮細(xì)胞進(jìn)行更深入的研究。研究證實(shí)在多種實(shí)體瘤中均含有極少數(shù)干細(xì)胞樣的細(xì)胞,它們具有無(wú)限增殖、自我更新、多向分化的潛能及高致瘤性,這種干細(xì)胞樣細(xì)胞被稱為腫瘤干細(xì)胞。通過(guò)體外培養(yǎng)膠質(zhì)瘤干細(xì)胞研究發(fā)現(xiàn),膠質(zhì)瘤干細(xì)胞具有自我增殖、多元分化的潛能。國(guó)外研究人員將膠質(zhì)瘤干細(xì)胞與神經(jīng)干細(xì)胞比較,膠質(zhì)瘤干細(xì)胞的自我更新能力以及增殖能力均明顯強(qiáng)于神經(jīng)干細(xì)胞[12,13]。CD133+細(xì)胞在干細(xì)胞培養(yǎng)基中培養(yǎng)具有不斷增殖、自我更新和分化的能力。我們?cè)赨251細(xì)胞系中分選CD133+細(xì)胞,實(shí)驗(yàn)顯示其在無(wú)血清干細(xì)胞培養(yǎng)基中可以自我更新、無(wú)限增殖。經(jīng)鑒定,分選獲取的 CD133+細(xì)胞為膠質(zhì)瘤干細(xì)胞。
MRP基因位于16p13.1染色體上,相關(guān)研究顯示MRP能夠通過(guò)改變胞漿和細(xì)胞器的pH值,降低藥物到達(dá)作用部位的濃度,并且能夠逆濃度梯度減少胞內(nèi)藥物濃度進(jìn)而導(dǎo)致細(xì)胞耐藥的發(fā)生,它同時(shí)也是一種ATP依賴泵,可以通過(guò)促進(jìn)谷胱甘肽結(jié)合藥物排出細(xì)胞外而減少細(xì)胞內(nèi)藥物的濃度,最終導(dǎo)致腫瘤耐藥的發(fā)生[11]。而MRP-1、MRP-3基因在膠質(zhì)瘤干細(xì)胞中的表達(dá)明顯增多,與腫瘤耐藥之間的關(guān)系相對(duì)肯定,已經(jīng)成為研究和解決腫瘤耐藥現(xiàn)象的重要靶位[14-16]。MDR1作為ABC超家族中的轉(zhuǎn)運(yùn)體多藥耐藥蛋白1能夠逃脫藥物的殺傷作用,從而導(dǎo)致化療后腫瘤的復(fù)發(fā)和轉(zhuǎn)移[17]。GST是一組與機(jī)體解毒作用有關(guān)的酶類(lèi),其中以GST-π與惡性腫瘤關(guān)系最為密切。GST-π以催化方式降解藥物,以降低抗腫瘤藥物的細(xì)胞毒作用而產(chǎn)生耐藥性[18-20]。本研究結(jié)果證實(shí)MRP-1、MDR1、GST-π在CD133+細(xì)胞中呈現(xiàn)高表達(dá),提示CD133+細(xì)胞的耐藥機(jī)制可能與MRP-1、MDR1、GST-π表達(dá)增強(qiáng)有一定的關(guān)系,有可能成為膠質(zhì)瘤干細(xì)胞治療的新靶點(diǎn),為進(jìn)一步研究腫瘤的耐藥機(jī)制以及腫瘤靶向治療藥物提供支持。
[參考文獻(xiàn)]
[1] Wang XQ,Wei F,Yan S,et al.Innovative fluorescent magnetic albumin microbead-assisted cell labeling and intracellular imaging of glioblastoma cells[J].Biosensors & amp;Bioelectronics:The International Journal for the Professional Involved with Research,Technology and Applications of Biosensers and Related Devices,2014, 54:55-63.
[2] Zhang X,Li W,Wang C,et al.Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells[J].Molecular and Cellular Biochemistry:An International Journal for Chemical Biology,2014,385(1/2):265-275.
[3] Wang LZ,Wang Z,Li J,et al. NFATc1 activation promotes the invasion of U251 human glioblastoma multiforme cells through COX-2[J]. International Journal of Molecular Medicine,2015,35(5):1333-1340.
[4] Xie J,Ma YH,Wan M,et al.Expression of dedifferentiation markers and multilineage markers in U251 glioblastoma cells with silenced EGFR and FGFR genes[J].Oncology Letters,2014,7(1):131-136.
[5] Wan YY,Zhang JF,Yang ZJ,et al.Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells[J].Oncology Reports,2014,32(2):619-626.
[6] Du HQ,Wang Y,Jiang Y,et al.Silencing of the TPM1 gene induces radioresistance of glioma U251 cells[J].Oncology Reports,2015,33(6):2807-2814.
[7] Wang XQ,Wang L,Tan XR,et al.Construction of doxorubicin-loading magnetic nanocarriers for assaying apoptosis of glioblastoma cells[J]. Journal of Colloid and Interface Science,2014,436:267-275.
[8] Stepanenko AA,Kavsan VM.Karyotypically distinct U251, U373,and SNB19 glioma cell lines are of the same origin but have different drug treatment sensitivities[J].Gene:An International Journal Focusing on Gene Cloning and Gene Structure and Function,2014,540(2):263-265.
[9] Chen Z,Li D,Cheng Q,et al.MicroRNA-203 inhibits the proliferation and invasion of U251 glioblastoma cells by directly targeting PLD2[J]. Molecular Medicine Reports,2014,9(2):503-508.
[10] YasunoT,MatsumuraT,Shikata T,et al.Establishment and characterization of a cisplatin-resistant human neuroblastoma cell line[J]. Anticancer Research:International Journal of Cancer Research and Treatment,1999,19(5B):4049-4057.
[11] Miao W,Liu XD,Wang HQ,et al.p53 upregulated modulator of apoptosis sensitizes drug-resistant U251 glioblastoma stem cells to temozolomide through enhanced apoptosis[J]. Molecular Medicine Reports,2015,11(6):4165-4173.
[12] Kobayashi T,F(xiàn)ujiiT,Jo Y,et al.Possible mechanism responsible for the acquisition of resistance to cis-diamminedichloroplatinum(II)by cultured human testicular seminoma cells[J].The Journal of Urology,2004,171(5):1929-1933.
[13] Minko T,Kopeckova P,Kopecek J,et al.Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells[J].Pharmaceutical Research,1999,16(7):986-996.
[14] Huang M,Xiong C,Lu W,et al.Dual-modality micro-positron emission tomography/computed tomography and near-infrared fluorescence imaging of EphB4 in orthotopicglioblastomaxenograft models[J]. Molecular Imaging and Biology:MIB:The Official Publication of the Academy of Molecular Imaging,2014,16(1):74-84.
[15] Stephan Fischer,Mirko Pietsch,Kristin Schirmer,et al. Identification of multi-drug resistance associated proteins MRP1(ABCC1)and MRP3(ABCC3)from rainbow trout (Oncorhynchusmykiss)[J]. Marine Environmental Research,2010,69(Suppl):S7-S10.
[16] Letourneau IJ,Slot AJ,Deeley RG,et al.Mutational analysis of a highly conserved proline residue in MRP1,MRP2,and MRP3 reveals a partially conserved function[J].Drug Metabolism and Disposition:The Biological Fate of Chemicals,2007,35(8):1372-1379.
[17] Weiss J,Theile D,Ketabi-Kiyanvash N,et al.Inhibition of MRP1/ABCC1,MRP2/ABCC2, and MRP3/ABCC3 by nucleoside,nucleotide,and non-nucleoside reverse transcriptase inhibitors[J]. Drug Metabolism and Disposition:The Biological Fate of Chemicals,2007,35(3):340-344.
[18] Ren W,Zhong M,Dai J,et al.Phase change memory alloys:GST cell array characterization using picosecond ultrasonics[J]. Microelectronic Engineering,2011,88(5):822-826.
[19] Faraclas A,Bakan G,Adnane L,et al.Modeling of thermoelectric effects in phase change memory cells[J].IEEE Transactions on Electron Devices,2014,61(2):372-378.
[20] Kiouseloglou A,Navarro G,Sousa V,et al.A Novel programming technique to boost low-resistance state performance in ge-rich GST phase change memory[J]. IEEE Transactions on Electron Devices,2014,61(5):1246-1254.
(收稿日期:2016-12-14)