• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A note of generalized shift-splitting preconditionersfor nonsymmetric saddle point problems

    2017-04-10 06:24:59張理濤谷同祥孟慧麗
    關(guān)鍵詞:鞍點(diǎn)河南師范大學(xué)非對稱

    張理濤,谷同祥,孟慧麗

    (1.鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015;2.北京應(yīng)用物理與計算數(shù)學(xué)研究所 計算物理實(shí)驗(yàn)室,北京 100088;3.河南師范大學(xué) 計算機(jī)與信息工程學(xué)院,河南 新鄉(xiāng) 453007)

    A note of generalized shift-splitting preconditionersfor nonsymmetric saddle point problems

    Recently, CAO et al introduced a generalized shift-splitting preconditioner for saddle point problems with nonsymmetric positive definite (1,1)-block. In this paper, we establish a parameterized shift-splitting preconditioner for solving the large sparse augmented systems of linear equations. Furthermore, we obtain some useful properties of the new preconditioned saddle point matrix, which has the intersection with the generalized shift-splitting preconditioner.

    nonsymmetric saddle point problem; parameterized shift-splitting; convergence; preconditioner; eigenvalue

    0 Introduction

    Consider the following 2×2 block saddle point problems

    (1)

    In recent years, there has been a surge of interest in the saddle point problem of the form (1), and a large number of stationary iterative methods have been proposed. For example, SANTOS et al[6]studied preconditioned iterative methods for solving the singular augmented system withA=I. YUAN et al[7-8]proposed several variants of SOR method and preconditioned conjugate gradient methods for solving general augmented system (1) arising from generalized least squares problems whereAcan be symmetric and positive semidefinite, andBcan be ranked deficiently. The SOR-like method requires less arithmetic work per iteration step than other methods, but it requires choosing an optimal iteration parameter in order to achieve a comparable rate of convergence. GOLUB et al[9]presented SOR-like algorithms for solving system (1). DARVISHI et al[10]studied SSOR method to solve the augmented systems. BAI et al[11-12,14]presented GSOR method, parameterized Uzawa (PU) and the inexact parameterized Uzawa (PIU) methods for solving systems (1). ZHANG et al[15]showed the generalized symmetric SOR method for augmented systems. PENG et al[16]studied unsymmetric block overrelaxation-type methods for saddle point. BAI et al[17-21,23]presented splitting iteration methods such as Hermitian and skew-Hermitian splitting (HSS) iteration scheme and its preconditioned variants, Krylov subspace methods such as preconditioned conjugate gradient (PCG), preconditioned MINRES (PMINRES) and restrictively preconditioned conjugate gradient (RPCG) iteration schemes, and preconditioning techniques related to Krylov subspace methods such as HSS, block-diagonal, block-triangular and constraint preconditioners and so on. WANG et al[23]and CHEN et al[13]studied some general approaches about the relaxed splitting iteration methods. WU et al[24]presented the modified SSOR (MSSOR) method for the augmented systems.

    Shift-splitting technique has been studied in many papers for solving the system of linear equations. For example, BAI et al[25]presented a regularized conjugate gradient method for symmetric positive definite system of linear equations by shifting and contracting the spectrum of the coefficient matrix. BAI et al[26]proposed a shift-splitting preconditioner for non-Hermitian positive definite matrices. The numerical results showed that the shift-splitting technique is very effective for ill-conditioned and non-Hermitian positive definite systems of linear equations. CAO et al[27]introduced a shift-splitting preconditioner and a local shift-splitting preconditioner for saddle point problems (1). Moreover, the authors studied some properties of the local shift-splitting preconditioned matrix and presented numerical experiments of a model Stokes problem to show the effectiveness of the proposed preconditioners. CHEN et al[28]presented a generalized shift-splitting preconditioner for saddle point problems with symmetric positive definite (1, 1)-block and gave theoretical analysis and numerical experiments. Recently, CAO et al[29]introduced a class of generalized shift-splitting preconditioners with two shift-parameters for nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) block, and gave theoretical analysis and numerical experiments. Moreover, both theoretical and numerical results are very interesting.

    For large, sparse or structure matrices, iterative methods are an attractive option. In particular, Krylov subspace methods apply techniques that involve orthogonal projections onto subspaces of the form

    The conjugate gradient method (CG), minimum residual method (MINRES) and generalized minimal residual method (GMRES) are common Krylov subspace methods. The CG method is used for symmetric, positive definite matrices, MINRES for symmetric and possibly indefinite matrices and GMRES for unsymmetric matrices[30].

    In this paper, based on the generalized shift-splitting preconditioners presented by CAO et al[29], we establish a parameterized shift-splitting preconditioner for saddle point problems with nonsymmetric positive definite (1,1)-block. Furthermore, the preconditioner is based on a parameterized shift-splitting of the saddle point matrix, resulting in an unconditional convergent fixed-point iteration, which has the intersection with the generalized shift-splitting preconditioner. However, the relaxed parameters of the parameterized shift-splitting methods are not optimal and only lie in the convergence region of the method.

    1 Parameterized shift-splitting (PSS)preconditioner

    Recently, for the coefficient matrix of the augmented system (1), CAO et al[29]make the following splitting:

    (2)

    where α>0,β>0aretwoconstantsandIis the identity matrix (with appropriate dimension). Based on the iteration methods studied in [27-28], a parameterized shift-splitting of the saddle point matrix A can be constructed as follows:

    (3)

    where α>0,β>0aretwoconstantsandIis the identity matrix (with appropriate dimension). By this special splitting, the following parameterized shift-splitting method can be defined for solving the saddle point problem (1):

    Parameterized shift-splitting (PSS) method Give initial vectorsu0∈Rm+n, and two relaxed parametersα>0 andβ>0. Fork=0,1,2,… until the iteration sequence {uk} converges, we compute

    (4)

    where α>0,β>0aretwoconstants.Itiseasytoseethattheiterationmatrixoftheparameterizedshift-splittingiterationis

    (5)

    IfweuseaKrylovsubspacemethodsuchasGMRES(generalizedminimalresidual)methodoritsrestartedvarianttoapproximatethesolutionofthissystemoflinearequations,then

    (6)

    canbeservedasapreconditioner.WecallthepreconditionerPPSSthe parameterized shift-splitting preconditioner for the nonsymmetric saddle point matrix A.

    In every iteration of the parameterized shift-splitting iteration (4) or the preconditioned Krylov subspace method, we need to solve a residual equation

    (7)

    (8)

    (9)

    Hence, analogous to algorithm 2.1 in [27], we can derive the following algorithmic version of the generalized shift-splitting iteration method.

    Now, we turn to study the convergence of the parameterized shift-splitting iteration for solving nonsymmetric saddle point problems. The iteration method (4) is convergent for every initial guess, if and only ifρ(Γ)<1, whereρ(Γ) denotes the spectral radius of Γ. Letλbe an eigenvalue of Γ and [x*,y*]*be the corresponding eigenvector. Then we have

    (10)

    or equivalently,

    (11)

    To get the convergence of the parameterized shift-splitting iteration, we firstly give some lemmas.

    Lemma 1 LetAbe a nonsymmetric positive definite matrix, andBhas full row rank. Let Γ be defined as (5) withα>0 andβ>0. Ifλbe an eigenvalue of Γ, thenλ≠±1.

    Proof Let [x*,y*]*be the corresponding eigenvector ofλ. Ifλ=1, then from (11) we have

    (12)

    It is easy to get that the coefficient matrix of (12) is nonsingular. Hence x=0andy=0,whichcontradictstheassumptionthat[x*,y*]*isaneigenvectoroftheiterationmatrixΓ.Soλ≠1.

    Now,weprovethatλ≠-1.Ifλ=-1,thenfrom(11)wecanobtain

    -2αx+2αβBTy=0, -2βy=0.

    (13)

    Sinceα>0,β>0, from (13) we getx=0 andy=0, which also contradicts the assumption that [x*,y*]*is an eigenvector of the iteration matrix Γ. Soλ≠-1. This process completes the proof.

    Lemma 2 AssumeAbe a nonsymmetric positive definite matrix, andBhas full row rank. Letλbe an eigenvalue of Γ (withα>0 andβ>0) and [x*,y*]*be the corresponding eigenvector withx∈Cnandy∈Cm. Thenx≠0. Moreover, ify=0, then |λ|<1.

    Proof Ifx=0, then from (11) we have (1+αβ+λ-λαβ)BTy=0. By lemma 1, we know thatλ≠-1 andα>0,β>0. Thus we haveBTy=0. BecauseBThas full column rank, we gety=0, which contradicts with the assumption that [x*,y*]*is an eigenvector. Thusx≠0. From lemma 2[31], it’s easy to know |λ|≤‖(αI+A)-1(αI-A)‖2.

    Theorem 1 AssumeA∈Rn×nbe a nonsymmetric positive definite matrix, andB∈Rm×nhas full row rank, and letα,βbe two positive constants. Letρ(Γ) denote the spectral radius of the parameterized shift-splitting iteration matrix. Then it holds that

    ρ(Γ)<1, ?α>0,β>0,

    (14)

    i.e., the parameterized shift-splitting iteration converges to the unique solution of the nonsymmetric saddle point problem (1).

    Proof Letλbe an eigenvalue of Γ and [x*,y*]*be the corresponding eigenvector withx∈Cnandy∈Cm. By lemma 1, we obtainλ≠1. Then we can obtain from (11) that

    (15)

    IfBx=0, then we can obtainy=0. By the second part of lemma 2.3[29], we know that |λ|<1. Substituting (15) into the first equation of (11), we get

    (16)

    (17)

    Let

    (18)

    (19)

    Define

    and

    Now, according to lemma 2.4[32], we find that both roots of the complex quadratic equation (19) satisfy |λ|<1,ifandonlyif

    (20)

    Bycomputation,wehave

    (21)

    and

    (22)

    whereRe(ξ)andIm(ξ)denotetherealpartandtheimaginarypartofacomplexnumberξ,respectively.Thenweobtain

    [((αβ-βa+c+αβc)(αβ+βa+c-αβc)-β2b2)2+(2c+2αβ)2β2b2]/((αβ+βa+c-αβc)2+β2b2)2.

    (23)

    Ifc>αβ, then it holds that

    (2βa(2c-2αβ))((αβ+βa+c-αβc)2+β2b2)+

    ((αβ-βa+c+αβc)(αβ+βa+c-αβc)-β2b2)2+

    (2αβ+2c)2β2b2=

    (αβ+βa+c-αβc)2(α2β2-6αβ2a+2βac+β2a2+c2+2αβc-

    2α2β2c-αβ2ac-2αβc2-αβ2a+α2β2c2)+β4b4+

    2β2b2(α2β2-2αβ2a+2βac+β2a2+c2+2αβc-

    2α2β2c-αβ2ac-2αβc2-αβ2a+α2β2c2)<

    ((αβ+βa+c-αβc)2+2β2b2)(α2β2-2αβ2a+2βac+

    β2a2+c2+2αβc-2α2β2c-αβ2ac-2αβc2-αβ2a+α2β2c2)+

    β4b4<((αβ+βa+c-αβc)2+2β2b2)(α2β2+2αβ2a+2βac+

    β2a2+c2+2αβc-2α2β2c-αβ2ac-2αβc2-αβ2a+α2β2c2)+β4b4=

    (αβ+βa+c-αβc)4+2β2b2(αβ+βa+c-αβc)2+β4b4=

    ((αβ+βa+c-αβc)2+β2b2)2.

    (24)

    Likewise, the following inequality

    (2βa(2αβ-2c))((αβ+βa+c-αβc)2+β2b2)+

    ((αβ-βa+c+αβc)(αβ+βa+c-αβc)-β2b2)2+

    (2αβ+2c)2β2b2<((αβ+βa+c-αβc)2+β2b2)2

    (25)

    holds true in the casec<αβ. Thus, by combining (24) and (25), we can obtain that (20) holds for allα,β>0. Therefore, we have

    ρ(Γ<1), ?α,β>0,

    i.e., the generalized shift-splitting iteration (3) converges to the unique solution of the nonsymmetric saddle point problem (1).

    Remark 1 Whenα=0, the parameterized shift-splitting preconditioner reduces to the local shift-splitting preconditioner. Moreover, the parameterized shift-splitting preconditioner in this paper and the generalized shift-splitting preconditioner in [28] are two different preconditioning modes. Additionally, they have an intersection.

    Remark 2 From theorem 1, we know that the parameterized shift-splitting iteration method is unconditionally convergent.

    [1] WRIGHT S. Stability of augmented system factorizations in interior-point methods[J]. SIAM J Matrix Anal Appl,1997,18:191-222.

    [2] ELMAN H, SILVESTER D. Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations[J]. SIAM J Sci Comput,1996,17:33-46.

    [3] ELMAN H, GOLUB G H. Inexact and preconditioned Uzawa algorithms for saddle point problems[J]. SIAM J Numer Anal,1994,31:1645-1661.

    [4] FISCHER B, RAMAGE A, SILVESTER D J, et al. Minimum residual methods for augmented systems[J]. BIT,1998,38:527-543.

    [5] ARIOLI M, DUFF I S, de RIJK P P M. On the augmented system approach to sparse least-squares problems[J].Numer Math,1989,55:667-684.

    [6] SANTOS C H, SILVA B P B, YUAN Y F. Block SOR methods for rank deficient least squares problems[J]. J Comput Appl Math,1998,100:1-9.

    [7] YUAN J Y. Numerical methods for generalized least squares problems[J]. J Comput Appl Math,1996,66:571-584.

    [8] YUAN J Y, IUSEM A N. Preconditioned conjugate gradient method for generalized least squares problems[J]. J Comput Appl Math,1996,71:287-297.

    [9] GOLUB G H, WU X, YUAN J Y. SOR-like methods for augmented systems[J]. BIT,2001,55:71-85.

    [10] DARVISHI M T, HESSARI P. Symmetric SOR method for augmented systems[J]. Appl Math Comput,2006,183:409-415.

    [11] BAI Z Z, PARLETT B N, WANG Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer Math,2005,102:1-38.

    [12] BAI Z Z, WANG Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl,2008,428:2900-2932.

    [13] CHEN F, JIANG Y L. A generalization of the inexact parameterized Uzawa methods for saddle point problems[J]. Appl Math Comput,2008,206:765-771.

    [14] ZHENG B, BAI Z Z, YANG X. On semi-convergence of parameterized Uzawa methods for singular saddle point problems[J]. Linear Algebra Appl,2009,431:808-817.

    [15] ZHANG G F, LU Q H. On generalized symmetric SOR method for augmented systems[J]. J Comput Appl Math,2008,1(15):51-58.

    [16] PENG X F, LI W. On unsymmetric block overrelaxation-type methods for saddle point[J]. Appl Math Comput,2008,203(2):660-671.

    [17] BAI Z Z, YANG X. On HSS-based iteration methods for weakly nonlinear systems[J]. Appl Numer Math,2009,59:2923-2936.

    [18] BAI Z Z, GOLUB G H, MICHAEL K N. On inexact hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. Linear Algebra Appl,2008,428:413-440.

    [19] BAI Z Z. Several splittings for non-Hermitian linear systems[J]. Science in China(Ser A): Math,2008,51:1339-1348.

    [20] BAI Z Z, GOLUB G H, LU L Z, et al. Block-Triangular and skew-Hermitian splitting methods for positive definite linear systems[J]. SIAM J Sci Comput,2005,26:844-863.

    [21] BAI Z Z, GOLUB G H, NG M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J Matrix Anal A,2003,24:603-626.

    [22] JIANG M Q, CAO Y. On local Hermitian skew-Hermitian splitting iteration methods for generalized saddle point problems[J]. J Comput Appl Math,2009,231:973-982.

    [23] WANG L, BAI Z Z. Convergence conditions for splitting iteration methods for non-Hermitian linear systems[J]. Linear Algebra Appl,2008,428:453-468.

    [24] WU S L, HUANG T Z, ZHAO X L. A modified SSOR iterative method for augmented systems[J]. J Comput Appl Math,2009,228(1):424-433.

    [25] BAI Z Z, ZHANG S L. A regularized conjugate gradient method for symmetric positive definite system of linear equations[J]. J Comput Math,2002,20:437-448.

    [26] BAI Z Z, YIN J F, SU Y F. A shift-splitting preconditioner for non-Hermitian positive definite matrices[J]. J Comput Math,2006,24:539-552.

    [27] CAO Y, DU J, NIU Q. Shift-splitting preconditioners for saddle point problems[J]. J Comput Appl Math,2014,272:239-250.

    [28] CHEN C R, MA C F. A generalized shift-splitting preconditioner for saddle point problems[J]. Appl Math Lett,2015,43:49-55.

    [29] CAO Y, LI S, YAO L Q. A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems[J]. Math Numer Sinica,2015,49:20-27.

    [30] VAN der VIRST H A. Iterative Krylov Methods for Large Linear Systems[M]//Cambridge Monographs on Applied and Computational Mathematics. Cambridge: Cambridge University Press,2009.

    [31] CAO Y, TAO H R, JIANG M Q. Generalized shift splitting preconditioners for saddle point problems[J]. Math Numer Sinica,2014,36:16-26.

    [32] HENRICI P. Applied and Computational Complex Analysis[M]. New York: Wiley,1974.

    [33] BAI Z Z, GOLUB G H, LI G K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two by-two block matrices[J]. SIAM J Sci Comput,2006,28:583-603.

    [34] BAI Z Z, GOLUB G H, NG M K. On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations[J]. Numer Linear Algebra Appl,2007,14:319-335.

    [35] BAI Z Z, GOLUB G H, PAN J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems[J]. Numer Math,2004,98:1-32.

    [36] BAI Z Z, NG M K. On inexact preconditioners for nonsymmetric matrices[J]. SIAM J Sci Comput,2005,26:1710-1724.

    [37] BAI Z Z, NG M K, WANG Z Q. Constraint preconditioners for symmetric indefinite matrices[J]. SIAM J Matrix Anal Appl,2009,31:410-433.

    [38] BAI Z Z. Optimal parameters in the HSS-like methods for saddle-point problems[J]. Numer Linear Algebra Appl,2009,16:447-479.

    [39] BAI Z Z, GOLUB G H, PAN J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems[R]//Technical Report SCCM-02-12, Scientific Computing and Computational Mathematics Program. Stanford: Department of Computer Science, Stanford University,2002.

    [40] CAO Y, YAO L Q, JIANG M Q. A modified dimensional split preconditioner for generalized saddle point problems[J]. J Comput Appl Math,2013,250:70-82.

    [41] CAO Y, YAO L Q, JIANG M Q, et al. A relaxed HSS preconditioner for saddle point problems from meshfree discretization[J]. J Comput Math,2013,31:398-421.

    [42] YOUNG D M. Iterative Solution for Large Systems[M]. New York: Academic Press,1971.

    [43] ZHANG L T. A new preconditioner for generalized saddle matrices with highly singular(1,1) blocks[J]. Int J Comput Math,2014,91(9):2091-2101.

    [44] ZHANG L T, HUANGG T Z, CHENG S H, et al. Convergence of a generalized MSSOR method for augmented systems[J]. J Comput Appl Math,2012,236:1841-1850.

    ZHANG Litao1, GU Tongxiang2, MENG Huili3*

    (1. College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China; 2. Laboratory of ComputationaryPhysics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3. College of Computerand Information Engineering, Henan Normal University, Xinxiang 453007, Henan Province, China)

    最近,曹等提出了解非對稱正定(1,1)-塊鞍點(diǎn)問題的廣義交替分裂預(yù)處理子.確立了一類參數(shù)交替分裂預(yù)處理子.針對新預(yù)處理鞍點(diǎn)矩陣,取得了一些有意義的性質(zhì),這與廣義交替分裂預(yù)處理子有交集.

    非對稱鞍點(diǎn)問題;參數(shù)化交替分裂;收斂性;預(yù)處理子;特征值

    TP 391.7

    A

    1008-9497(2017)02-168-07

    Foundation item:Supported by NSFC(11226337,11501525); Science Technology Innovation Talents in Universities of Henan Province(16HASTIT040);Project of Youth Backbone Teachers of Colleges and Universities in Henan Province(2013GGJS-142,2015GGJS-179); ZZIA Innovation Team Fund(2014TD02);Natural Science Foundation of Zhengzhou City(141PQYJS560).

    10.3785/j.issn.1008-9497.2017.02.008

    張理濤1,谷同祥2,孟慧麗3

    (1.鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015;2.北京應(yīng)用物理與計算數(shù)學(xué)研究所 計算物理實(shí)驗(yàn)室,北京 100088;3.河南師范大學(xué) 計算機(jī)與信息工程學(xué)院,河南 新鄉(xiāng) 453007)

    Received date:April 8, 2016.

    About the author:ZHANG Litao(1980-),ORCID:http://orcid.org/0000-0002-6087-8611, male, PhD, associate professor, the field of interest is computing mathematics, E-mail:litaozhang@163.com.

    *Corresponding author, ORCID: http://orcid.org/0000-0002-6476-3678, E-mail:menghuili93@163.com.

    解非對稱鞍點(diǎn)問題的廣義交替分裂預(yù)處理子的一個注記.浙江大學(xué)學(xué)報(理學(xué)版),2017,44(2):168-173,190

    猜你喜歡
    鞍點(diǎn)河南師范大學(xué)非對稱
    河南師范大學(xué)作品精選
    聲屏世界(2024年1期)2024-04-11 07:51:08
    河南師范大學(xué)作品精選
    聲屏世界(2023年23期)2023-03-10 04:49:28
    裳作
    炎黃地理(2022年5期)2022-06-07 03:35:41
    求解無約束函數(shù)局部鞍點(diǎn)的數(shù)值算法
    河南師范大學(xué)美術(shù)學(xué)院作品選登
    非對稱Orlicz差體
    含有二階冪零鞍點(diǎn)的雙同宿環(huán)附近的極限環(huán)分支
    SKT不變凸非線性規(guī)劃的鞍點(diǎn)特征研究
    點(diǎn)數(shù)不超過20的旗傳遞非對稱2-設(shè)計
    改進(jìn)的復(fù)制動態(tài)方程及其穩(wěn)定性分析
    亚洲av成人av| 亚洲av日韩在线播放| 高清午夜精品一区二区三区| 大话2 男鬼变身卡| kizo精华| 麻豆成人午夜福利视频| 日本av手机在线免费观看| 国产精品99久久久久久久久| 亚洲国产av新网站| 久久热精品热| 日韩欧美一区视频在线观看 | 最近中文字幕2019免费版| 精品人妻视频免费看| 日产精品乱码卡一卡2卡三| 狂野欧美白嫩少妇大欣赏| av国产久精品久网站免费入址| 一级毛片久久久久久久久女| 九九久久精品国产亚洲av麻豆| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 人人妻人人澡欧美一区二区| 久久久久久久久久人人人人人人| 人人妻人人澡人人爽人人夜夜 | 黄色配什么色好看| 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 日本午夜av视频| 亚洲国产精品专区欧美| 国产成人福利小说| av国产久精品久网站免费入址| 狂野欧美白嫩少妇大欣赏| 99热这里只有精品一区| 精品久久久噜噜| 日韩欧美一区视频在线观看 | 中文天堂在线官网| av免费观看日本| 国产亚洲最大av| av国产久精品久网站免费入址| 韩国av在线不卡| 丝瓜视频免费看黄片| 别揉我奶头 嗯啊视频| 国产人妻一区二区三区在| 一级a做视频免费观看| 听说在线观看完整版免费高清| 国产精品爽爽va在线观看网站| 嫩草影院新地址| 久久99热这里只频精品6学生| 日本wwww免费看| 亚洲av福利一区| 国产亚洲精品av在线| 亚洲三级黄色毛片| 永久网站在线| 国产精品av视频在线免费观看| 色吧在线观看| 99久久精品国产国产毛片| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 91aial.com中文字幕在线观看| 青春草亚洲视频在线观看| 午夜激情欧美在线| 高清视频免费观看一区二区 | 插阴视频在线观看视频| 亚洲三级黄色毛片| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 极品教师在线视频| 日本熟妇午夜| av免费观看日本| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 国产激情偷乱视频一区二区| 黄片无遮挡物在线观看| 亚洲精品久久午夜乱码| 精品久久久久久成人av| 寂寞人妻少妇视频99o| 五月玫瑰六月丁香| 少妇熟女欧美另类| 99热这里只有精品一区| 久99久视频精品免费| 免费看a级黄色片| 黄色日韩在线| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av| 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 亚洲自拍偷在线| 偷拍熟女少妇极品色| 建设人人有责人人尽责人人享有的 | 久久久精品免费免费高清| 在线观看av片永久免费下载| 舔av片在线| 国产精品一二三区在线看| 色5月婷婷丁香| 深夜a级毛片| 综合色丁香网| 国产久久久一区二区三区| 在线a可以看的网站| 免费av毛片视频| 插阴视频在线观看视频| 啦啦啦韩国在线观看视频| 在线观看av片永久免费下载| 女人十人毛片免费观看3o分钟| 内地一区二区视频在线| 免费观看av网站的网址| 亚洲国产欧美人成| 超碰97精品在线观看| 看免费成人av毛片| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产色片| 国产精品久久久久久av不卡| 欧美3d第一页| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 麻豆成人午夜福利视频| 成人高潮视频无遮挡免费网站| 少妇丰满av| 国模一区二区三区四区视频| 免费少妇av软件| 亚洲精品乱码久久久久久按摩| 18禁在线播放成人免费| 久久久久久久久久久丰满| 欧美日韩一区二区视频在线观看视频在线 | 男的添女的下面高潮视频| 欧美另类一区| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 欧美 日韩 精品 国产| 国产精品1区2区在线观看.| 免费电影在线观看免费观看| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 草草在线视频免费看| 插阴视频在线观看视频| 精品国内亚洲2022精品成人| 中国美白少妇内射xxxbb| 一本久久精品| 中文乱码字字幕精品一区二区三区 | 国产色爽女视频免费观看| 欧美一级a爱片免费观看看| 又黄又爽又刺激的免费视频.| 一个人看视频在线观看www免费| 欧美区成人在线视频| 男女边摸边吃奶| 免费播放大片免费观看视频在线观看| 日韩欧美三级三区| 狂野欧美激情性xxxx在线观看| 国产成人a∨麻豆精品| 日韩一区二区三区影片| 一级黄片播放器| 精品久久久久久久久亚洲| 亚洲av成人精品一二三区| 亚洲欧洲日产国产| 国产亚洲av嫩草精品影院| 韩国高清视频一区二区三区| 熟妇人妻不卡中文字幕| 成人欧美大片| 黄色配什么色好看| 午夜福利在线在线| 99九九线精品视频在线观看视频| 久久久久久久国产电影| 日韩人妻高清精品专区| 久久99热这里只频精品6学生| videos熟女内射| av网站免费在线观看视频 | 秋霞在线观看毛片| 三级男女做爰猛烈吃奶摸视频| 国产国拍精品亚洲av在线观看| 青春草国产在线视频| 色综合色国产| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的 | 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| 成人毛片a级毛片在线播放| 日本免费a在线| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| 免费观看精品视频网站| 亚洲欧美成人综合另类久久久| 成年人午夜在线观看视频 | 一边亲一边摸免费视频| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂 | 婷婷色综合www| 亚洲精品一二三| 国产精品av视频在线免费观看| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜 | av在线老鸭窝| 精华霜和精华液先用哪个| 国产在视频线精品| 久久鲁丝午夜福利片| 亚洲av免费在线观看| 韩国高清视频一区二区三区| 成人毛片60女人毛片免费| 视频中文字幕在线观看| 91精品国产九色| 国产成人a区在线观看| 亚洲国产欧美人成| 日日摸夜夜添夜夜爱| 国产片特级美女逼逼视频| 高清毛片免费看| 欧美激情国产日韩精品一区| 国产免费一级a男人的天堂| 色吧在线观看| 婷婷色av中文字幕| 国内精品美女久久久久久| 搡老妇女老女人老熟妇| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 国产亚洲一区二区精品| 插逼视频在线观看| 国产黄色小视频在线观看| 日本一本二区三区精品| 久久久久精品久久久久真实原创| 最近2019中文字幕mv第一页| 大陆偷拍与自拍| 国产高清国产精品国产三级 | 亚洲国产欧美人成| 韩国av在线不卡| 看黄色毛片网站| 身体一侧抽搐| www.色视频.com| 丝袜美腿在线中文| 久久久久性生活片| 日韩视频在线欧美| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 大片免费播放器 马上看| 男的添女的下面高潮视频| 国产黄色免费在线视频| 亚洲综合色惰| 国产av国产精品国产| 久久久久性生活片| 精品少妇黑人巨大在线播放| 欧美精品国产亚洲| 日日啪夜夜爽| 欧美日韩在线观看h| 国产亚洲精品久久久com| 熟妇人妻久久中文字幕3abv| 激情五月婷婷亚洲| 十八禁国产超污无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 少妇人妻精品综合一区二区| 国内精品美女久久久久久| 日韩av在线大香蕉| 日韩国内少妇激情av| 国产精品三级大全| 亚洲天堂国产精品一区在线| 国产午夜精品久久久久久一区二区三区| 男插女下体视频免费在线播放| 熟妇人妻久久中文字幕3abv| 乱人视频在线观看| 日韩一区二区视频免费看| 色综合亚洲欧美另类图片| 国产乱来视频区| 免费观看在线日韩| 丰满少妇做爰视频| 少妇熟女aⅴ在线视频| 欧美另类一区| 秋霞伦理黄片| 国产精品国产三级国产av玫瑰| 欧美成人精品欧美一级黄| 国产永久视频网站| 麻豆成人午夜福利视频| 日本-黄色视频高清免费观看| 久久6这里有精品| 成人综合一区亚洲| 亚州av有码| 九九爱精品视频在线观看| 国产黄频视频在线观看| 韩国av在线不卡| 人妻夜夜爽99麻豆av| 亚洲精品影视一区二区三区av| 亚洲精品一二三| 日韩大片免费观看网站| 国产精品美女特级片免费视频播放器| 国产人妻一区二区三区在| 国产黄色小视频在线观看| 伊人久久国产一区二区| 欧美激情久久久久久爽电影| 人人妻人人澡欧美一区二区| 国产av不卡久久| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲国产精品成人久久小说| 小蜜桃在线观看免费完整版高清| 久久99蜜桃精品久久| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 我的老师免费观看完整版| 国产高清国产精品国产三级 | 免费观看a级毛片全部| 看十八女毛片水多多多| 日本午夜av视频| 亚洲欧美日韩卡通动漫| 亚洲久久久久久中文字幕| 日韩一区二区视频免费看| 大话2 男鬼变身卡| 国产黄a三级三级三级人| 51国产日韩欧美| 日韩一区二区视频免费看| 永久免费av网站大全| 亚洲美女视频黄频| videossex国产| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 亚洲综合精品二区| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 国产欧美日韩精品一区二区| 国产成人福利小说| 免费人成在线观看视频色| 爱豆传媒免费全集在线观看| 天堂网av新在线| 精品久久久久久电影网| 精品久久久久久成人av| 日本色播在线视频| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕| 人妻少妇偷人精品九色| av网站免费在线观看视频 | 亚洲一区高清亚洲精品| 国产精品国产三级专区第一集| 在线免费十八禁| 国产有黄有色有爽视频| 欧美成人一区二区免费高清观看| 成人亚洲精品一区在线观看 | 三级经典国产精品| 卡戴珊不雅视频在线播放| kizo精华| 我要看日韩黄色一级片| 在线播放无遮挡| 国产成人福利小说| 高清毛片免费看| 中文天堂在线官网| 亚洲丝袜综合中文字幕| 插逼视频在线观看| 五月玫瑰六月丁香| 久久久久网色| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 毛片一级片免费看久久久久| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 美女脱内裤让男人舔精品视频| 一个人观看的视频www高清免费观看| 不卡视频在线观看欧美| 综合色丁香网| 伊人久久精品亚洲午夜| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 一级片'在线观看视频| 99热这里只有是精品50| 免费不卡的大黄色大毛片视频在线观看 | 免费在线观看成人毛片| 一级av片app| 晚上一个人看的免费电影| 国产亚洲精品av在线| 91aial.com中文字幕在线观看| 少妇裸体淫交视频免费看高清| 男人狂女人下面高潮的视频| 网址你懂的国产日韩在线| 天堂√8在线中文| 国产单亲对白刺激| 99视频精品全部免费 在线| 丰满乱子伦码专区| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 亚洲丝袜综合中文字幕| 久久久久久伊人网av| 成年av动漫网址| 亚洲成人中文字幕在线播放| 精品久久久久久成人av| www.色视频.com| 久久精品国产鲁丝片午夜精品| 日韩伦理黄色片| 亚洲av电影不卡..在线观看| 国产不卡一卡二| 久久久久久久大尺度免费视频| 欧美bdsm另类| 极品少妇高潮喷水抽搐| 午夜激情久久久久久久| 亚洲精华国产精华液的使用体验| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 免费无遮挡裸体视频| 欧美xxxx黑人xx丫x性爽| 高清午夜精品一区二区三区| 成人av在线播放网站| 国产乱人视频| 婷婷色av中文字幕| 日本wwww免费看| 老女人水多毛片| 国产一区亚洲一区在线观看| 天堂av国产一区二区熟女人妻| 色综合站精品国产| 国产伦一二天堂av在线观看| 在线观看免费高清a一片| 黄色日韩在线| 久久久久网色| 人人妻人人澡欧美一区二区| 中文字幕免费在线视频6| 日韩中字成人| 麻豆av噜噜一区二区三区| 国产毛片a区久久久久| 国产精品.久久久| 国产一区二区三区av在线| 国产亚洲精品久久久com| 国产大屁股一区二区在线视频| 五月伊人婷婷丁香| 午夜精品在线福利| 午夜免费观看性视频| 我的老师免费观看完整版| 国产av国产精品国产| 美女被艹到高潮喷水动态| 亚洲av.av天堂| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| 五月天丁香电影| 国产白丝娇喘喷水9色精品| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品 | 成年人午夜在线观看视频 | 中文资源天堂在线| 久久鲁丝午夜福利片| 精品久久久久久久久av| 丝袜喷水一区| 国产爱豆传媒在线观看| 校园人妻丝袜中文字幕| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 亚洲精品一二三| 高清av免费在线| 日日啪夜夜爽| 日韩不卡一区二区三区视频在线| 又爽又黄无遮挡网站| 午夜日本视频在线| 久久久久网色| 精品熟女少妇av免费看| av卡一久久| 美女脱内裤让男人舔精品视频| 午夜视频国产福利| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| 少妇人妻精品综合一区二区| 大陆偷拍与自拍| 六月丁香七月| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 亚洲精华国产精华液的使用体验| 国国产精品蜜臀av免费| 天堂网av新在线| av在线蜜桃| 日韩av免费高清视频| 成年女人在线观看亚洲视频 | 26uuu在线亚洲综合色| 色视频www国产| 麻豆久久精品国产亚洲av| 国内精品宾馆在线| 精品不卡国产一区二区三区| 国产成人a∨麻豆精品| 精品酒店卫生间| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 两个人视频免费观看高清| 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| 免费看不卡的av| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 天堂√8在线中文| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 成人亚洲精品av一区二区| 日韩伦理黄色片| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄| 国产乱来视频区| 亚洲乱码一区二区免费版| 欧美丝袜亚洲另类| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看| 精品欧美国产一区二区三| 久久人人爽人人片av| 日日啪夜夜撸| 干丝袜人妻中文字幕| 中文欧美无线码| 国产精品伦人一区二区| 日韩中字成人| 久久精品国产亚洲av天美| 亚洲av国产av综合av卡| 国产黄色视频一区二区在线观看| 亚洲精品aⅴ在线观看| 熟女人妻精品中文字幕| 中文字幕av成人在线电影| 最近的中文字幕免费完整| 午夜日本视频在线| 国产精品一二三区在线看| 街头女战士在线观看网站| 国产69精品久久久久777片| 国产精品无大码| 欧美极品一区二区三区四区| 婷婷六月久久综合丁香| 日韩一区二区视频免费看| 日韩av在线大香蕉| 久久久亚洲精品成人影院| 午夜精品国产一区二区电影 | 99久久中文字幕三级久久日本| kizo精华| 亚洲精品国产av成人精品| av播播在线观看一区| 国产在线一区二区三区精| 国产亚洲最大av| 亚洲成人av在线免费| 午夜激情欧美在线| 亚洲综合色惰| 国产午夜精品论理片| 亚洲精品国产av成人精品| 亚洲自拍偷在线| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 边亲边吃奶的免费视频| 内地一区二区视频在线| 日韩强制内射视频| 精品国产一区二区三区久久久樱花 | 男人狂女人下面高潮的视频| 热99在线观看视频| 丝袜喷水一区| 国产 亚洲一区二区三区 | 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 欧美精品国产亚洲| 看黄色毛片网站| 久久99热这里只频精品6学生| 成人亚洲精品一区在线观看 | 亚洲成人av在线免费| 青春草国产在线视频| 日韩三级伦理在线观看| 人妻制服诱惑在线中文字幕| 国产美女午夜福利| 亚洲国产精品专区欧美| 亚洲欧美成人精品一区二区| 免费观看的影片在线观看| 日本午夜av视频| 国产激情偷乱视频一区二区| 欧美日韩国产mv在线观看视频 | av网站免费在线观看视频 | 97人妻精品一区二区三区麻豆| 日韩电影二区| 性插视频无遮挡在线免费观看| 亚洲精品视频女| av在线老鸭窝| 免费观看无遮挡的男女| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 丝袜美腿在线中文| 午夜福利在线在线| 99热这里只有是精品50| 日韩av在线大香蕉| 久久久午夜欧美精品| 真实男女啪啪啪动态图| 两个人视频免费观看高清| 91午夜精品亚洲一区二区三区| 日韩欧美国产在线观看| 日本av手机在线免费观看| 国产永久视频网站| 国产综合懂色| 日本爱情动作片www.在线观看| 男的添女的下面高潮视频| 极品少妇高潮喷水抽搐| 久久99热这里只频精品6学生| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 久久久精品94久久精品| 黄色一级大片看看| 欧美激情在线99| 天堂中文最新版在线下载 | 亚洲欧美清纯卡通| 神马国产精品三级电影在线观看| 国产精品蜜桃在线观看| 七月丁香在线播放| 精品久久久久久久人妻蜜臀av| av在线天堂中文字幕| 久久久欧美国产精品|