許振,劉志強(qiáng),郭慶枝,孫莉
(濱州醫(yī)學(xué)院附屬醫(yī)院,山東濱州256600)
maspin基因在腫瘤淋巴管生成中的調(diào)控作用機(jī)制研究進(jìn)展
許振,劉志強(qiáng),郭慶枝,孫莉
(濱州醫(yī)學(xué)院附屬醫(yī)院,山東濱州256600)
腫瘤淋巴管生成是非常復(fù)雜的過程,VEGF-C、VEGF-D、Ang、COX-2及腫瘤慢性炎癥微環(huán)境在腫瘤淋巴管生成中起重要作用。maspin基因是一種抑癌基因,近期研究表明maspin可調(diào)控腫瘤微淋巴管生成過程,可能是通過調(diào)控VEGF-C及VEGF-D表達(dá)、調(diào)控Ang表達(dá)、調(diào)控COX-2表達(dá)、調(diào)節(jié)腫瘤慢性炎癥微環(huán)境實(shí)現(xiàn)的。
maspin基因;腫瘤;淋巴結(jié)轉(zhuǎn)移;淋巴管;血管內(nèi)皮生長(zhǎng)因子
腫瘤淋巴管生成是一個(gè)十分復(fù)雜的過程。目前多數(shù)研究認(rèn)為,腫瘤組織新生淋巴管是由先前存在于組織中的淋巴管通過“出芽”的方式生成的[1],但也有學(xué)者認(rèn)為腫瘤微淋巴管及腫瘤微血管均來源于原始靜脈[2],雖然其生成方式尚有爭(zhēng)論,但具體生成過程均由多種因子參與調(diào)控,目前發(fā)現(xiàn)的因子包括VEGF-C、VEGF-D、血管內(nèi)皮生長(zhǎng)因子受體3(VEGFR-3)、成纖維細(xì)胞生長(zhǎng)因子-2(FGF-2)、肝細(xì)胞生長(zhǎng)因子(HGF)、胰島素生長(zhǎng)因子(IGFs)、血管生成素(Ang)等,其中VEGF-C及VEGF-D被認(rèn)為是腫瘤淋巴管生成中最重要的調(diào)控因子。研究[3,4]證實(shí)Ang、HGF對(duì)腫瘤新生血管形成也起到促進(jìn)作用。maspin基因是絲氨酸蛋白酶抑制劑的一員,研究發(fā)現(xiàn)其對(duì)乳腺癌、前列腺癌等腫瘤的生長(zhǎng)、侵襲、轉(zhuǎn)移有明顯抑制作用,增強(qiáng)腫瘤細(xì)胞對(duì)凋亡誘導(dǎo)的敏感性[5]。maspin基因能抑制新生血管生成,降低腫瘤新生血管密度[6~8]。已有多項(xiàng)研究[6,9,10]表明maspin是一個(gè)多功能的抑癌基因,能夠減弱腫瘤細(xì)胞的增殖和侵襲能力、抑制腫瘤血管生成。目前,maspin基因?qū)δ[瘤微淋巴生成的作用成為新的研究熱點(diǎn)[11]。隨著對(duì)腫瘤微淋巴管相關(guān)研究的不斷深入,許多學(xué)者發(fā)現(xiàn)maspin基因表達(dá)與肺小細(xì)胞癌、宮頸癌、胃癌的淋巴結(jié)轉(zhuǎn)移及預(yù)后有關(guān)[12~14]。maspin基因可能通過調(diào)控腫瘤微淋巴管形成相關(guān)因子表達(dá)及調(diào)節(jié)腫瘤慢性炎癥微環(huán)境從而調(diào)控腫瘤淋巴管生成?,F(xiàn)就maspin基因在腫瘤微淋巴管生成中的調(diào)控作用機(jī)制研究進(jìn)展做一綜述。
VEGF-C或VEGF-D與位于淋巴管內(nèi)皮細(xì)胞上的酪氨酸激酶受體VEGFR-3結(jié)合,引起VEGFR-3絡(luò)氨酸殘基磷酸化等一系列反應(yīng),最終激活A(yù)KT、JNK、Erk等信號(hào)通路,引起淋巴管內(nèi)皮細(xì)胞增殖和淋巴管生成[15]。有學(xué)者[16]用VEGF-C sh-RNA抑制VEGF-C表達(dá)后,發(fā)現(xiàn)腫瘤組織中微淋巴管密度明顯減少。Stacker等[17]利用不表達(dá)VEGF-D的293EBNA細(xì)胞系建立小鼠腫瘤模型,證明VEGF-D可促進(jìn)腫瘤微淋巴管生成。Chen等[18]通過脂質(zhì)體轉(zhuǎn)染法使maspin基因在浸潤(rùn)性膀胱癌T24及5637細(xì)胞系中過表達(dá),發(fā)現(xiàn)maspin基因可以有效抑制P-AKT、PI3K及mTOR的表達(dá)。Zhu等[19]利用shRNA干擾技術(shù)下調(diào)膀胱癌細(xì)胞株BIU-87中maspin基因表達(dá),結(jié)果發(fā)現(xiàn)BIU-87細(xì)胞中VEGF-C mRNA及蛋白表達(dá)水平顯著升高;將maspin基因轉(zhuǎn)染BIU-87細(xì)胞后,發(fā)現(xiàn)maspin基因表達(dá)與VEGF-C表達(dá)呈負(fù)相關(guān)關(guān)系,同時(shí),maspin蛋白高表達(dá)的BIU-87細(xì)胞對(duì)順鉑的敏感性提高。Wang等[12]也發(fā)現(xiàn),低表達(dá)maspin和高表達(dá)VEGF-C與非小細(xì)胞肺癌的不良預(yù)后有關(guān),同時(shí)證明maspin基因表達(dá)與患者淋巴結(jié)轉(zhuǎn)移情況顯著相關(guān)。以上研究結(jié)果提示,maspin基因可能通過抑制VEGF-C及VEGF-D的表達(dá)、影響PI3K/Akt通路激活從而抑制腫瘤微淋巴管生成。
Ang家族包括4個(gè)配體(Ang-1、2、3、4)和兩個(gè)對(duì)應(yīng)的酪氨酸激酶受體。Ang-1與內(nèi)皮細(xì)胞表面的酪氨酸激酶受體2(Tie-2)結(jié)合后誘導(dǎo)Ang-1自磷酸化并維持血管穩(wěn)定性、完整性。Ang-1還可誘導(dǎo)淋巴管擴(kuò)大、發(fā)芽,且參與腫瘤的VEGFR-3依賴性增殖過程。Ang-2參與淋巴管的重塑和穩(wěn)定性的維持[20]。Yuen等[21]敲除了角膜炎小鼠的Ang-2基因,發(fā)現(xiàn)微淋巴管生成明顯受抑;利用siRNA干擾Ang-2基因表達(dá)后,發(fā)現(xiàn)在炎癥角膜中淋巴管內(nèi)皮和毛細(xì)血管的生成減少,從而證實(shí)Ang-2在微淋巴管生成中起重要作用。Jeon等[22]利用3,3′-二吲哚基甲烷(DIM,化療藥物)干預(yù)結(jié)腸炎小鼠模型,發(fā)現(xiàn)DIM顯著抑制小鼠結(jié)腸上皮組織中嗜中性粒細(xì)胞浸潤(rùn)、促炎細(xì)胞因子和VEGF-C、VEGF-D、VEGFR-3、Ang-2的表達(dá),并抑制微淋巴管生成。研究[23]發(fā)現(xiàn),喉鱗癌患者maspin基因表達(dá)與Ang表達(dá)呈負(fù)相關(guān)關(guān)系,maspin基因表達(dá)與喉鱗癌患者無病生存時(shí)間呈正相關(guān)關(guān)系,認(rèn)為maspin基因可抑制Ang表達(dá)從而起到抑制腫瘤細(xì)胞轉(zhuǎn)移的作用。maspin基因可能通過抑制Ang-1的表達(dá)抑制腫瘤細(xì)胞VEGFR-3依賴性增殖,調(diào)控AKT、JNK、Erk等信號(hào)通路功能,最終影響淋巴管內(nèi)皮細(xì)胞增殖和淋巴管生成;maspin基因還可通過影響Ang-2的生成從而影響腫瘤淋巴管的穩(wěn)定性,使腫瘤淋巴管脆性增加。
慢性炎癥在癌癥發(fā)生發(fā)展中起至關(guān)重要的作用[24]。COX-2在炎癥反應(yīng)中有促進(jìn)血管生成的作用,同時(shí)也是腫瘤微環(huán)境形成的重要因子[25,26]。COX-2可以誘導(dǎo)腫瘤干細(xì)胞形成并保持干細(xì)胞活力。COX-2過表達(dá)時(shí)腫瘤惡性程度增高[27]。Chuang等[27]發(fā)現(xiàn),COX-2可促進(jìn)淋巴管內(nèi)皮細(xì)胞生長(zhǎng)。Da等[28]研究也證實(shí)COX-2可上調(diào)胃癌組織中VEGF-C表達(dá),推測(cè)COX-2可激活HER-2/neu酪氨酸激酶受體,并通過前列腺素E2(PGE2)受體依賴途徑上調(diào)VEGF-C基因表達(dá),進(jìn)而影響腫瘤淋巴管生成。Chao等[13]研究表明肝素酶、COX-2表達(dá)與宮頸癌淋巴管生成有關(guān)。Wu等[29]認(rèn)為maspin基因可能通過下調(diào)COX-2的表達(dá)、調(diào)節(jié)葡萄糖調(diào)節(jié)蛋白78(GRP78)生成,進(jìn)而影響腫瘤細(xì)胞的增殖和遷移。
慢性炎癥微環(huán)境中的炎癥細(xì)胞或分子對(duì)腫瘤淋巴管生成也起到不可忽視的作用。浸潤(rùn)到腫瘤的巨噬細(xì)胞稱為腫瘤相關(guān)巨噬細(xì)胞(TAM),是腫瘤微環(huán)境中炎癥因子的主要來源,更是腫瘤血管和淋巴管生成中重要的效應(yīng)細(xì)胞。TAM能表達(dá)LYVE-1,后者是淋巴管內(nèi)皮細(xì)胞建立的可靠標(biāo)志物之一。TAM不僅能促進(jìn)淋巴生成因子的分泌,還可誘導(dǎo)淋巴管內(nèi)皮細(xì)胞生成。Go等[14]發(fā)現(xiàn)TAM密度與胃癌淋巴結(jié)轉(zhuǎn)移、腫瘤微淋巴管密度有關(guān),提示TAM有助于腫瘤微淋巴管生成并可促進(jìn)腫瘤細(xì)胞發(fā)生淋巴結(jié)轉(zhuǎn)移。Dzinic等[30]將過表達(dá)maspin的人前列腺癌細(xì)胞DU-145接種在裸鼠皮下,發(fā)現(xiàn)前列腺癌移植瘤體中嗜中性粒細(xì)胞水平高于對(duì)照組,證實(shí)maspin蛋白可促進(jìn)嗜中性粒細(xì)胞成熟、活化從而增強(qiáng)對(duì)腫瘤細(xì)胞的特異性抗體反應(yīng),認(rèn)為maspin基因可通過改變腫瘤微環(huán)境中炎癥因子水平來提高人體抗腫瘤免疫功能,減少腫瘤細(xì)胞淋巴結(jié)轉(zhuǎn)移。慢性炎癥的缺氧環(huán)境也是促進(jìn)淋巴管生成的重要因素之一,缺氧誘導(dǎo)因子1α(HIF-1α)是一種氧依賴轉(zhuǎn)錄激活因子,在缺氧環(huán)境中廣泛表達(dá),其靶基因包括促紅細(xì)胞生成素、糖酵解酶、VEGF、VEGF-C等[31]。HIF-1α可誘導(dǎo)VEGF-C表達(dá),促進(jìn)淋巴管增生和淋巴內(nèi)皮細(xì)胞遷徙[32]。多項(xiàng)研究[33]證實(shí)HIF-1α可能參與腫瘤淋巴管的生成和腫瘤淋巴結(jié)轉(zhuǎn)移,機(jī)制可能與調(diào)控PI3K/AKT/mTOR信號(hào)通路功能及VEGF-C表達(dá)有關(guān)。Mckenzie等[34]研究發(fā)現(xiàn),過表達(dá)maspin的人前列腺腫瘤DU-145在缺氧環(huán)境中細(xì)胞凋亡率高于對(duì)照組,且maspin基因表達(dá)與HIF-1α、VEGF表達(dá)呈負(fù)相關(guān)關(guān)系,提示maspin基因在缺氧環(huán)境中可能通過調(diào)控HIF-1α表達(dá)從而影響靶基因VEGF-C的表達(dá),同時(shí)與VEGF-C共同調(diào)控PI3K/AKT/mTOR信號(hào)通路功能,影響腫瘤微淋巴管的增生和淋巴內(nèi)皮細(xì)胞的遷移。
近年研究表明,maspin基因具有抑制腫瘤細(xì)胞增殖、轉(zhuǎn)移的作用并能促進(jìn)腫瘤細(xì)胞凋亡,降低腫瘤細(xì)胞對(duì)放化療的耐受性,是功能較全面的抑癌基因。maspin的抗腫瘤淋巴管生成具體作用機(jī)制仍有待進(jìn)一步探討。相信隨著對(duì)maspin基因作用機(jī)制的深入研究,有望為腫瘤治療和預(yù)防提供新的方向。
[1] Kerjaschki D. The crucial role of macrophages in lymphangiogenesis[J]. J Clini Invest, 2005,115(9):2316-2319.
[2]Yulong H, Iiro R, Maritta I, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis[J]. Cancer Re, 2004,64(11):3737-3740.
[3] Fagiani E, Christofori G. Angiopoietins in angiogenesis[J]. Cancer Lett, 2013,328(1):18-26.
[4] Libetta C, Esposito P, Martinelli C, et al. Hepatocyte growth factor (HGF) and hemodialysis: physiopathology and clinical implications[J]. Clini Exp Nephrol, 2016,20(3):1-8.
[5] Liu J, Yin S, Reddy N, et al. Bax mediates the apoptosis-sensitizing effect of maspin.[J]. Cancer Res, 2004,64(5):1703-1711.
[6] Ciortea CD, Jung I, Gurzu S, et al. Correlation of angiogenesis with other immunohistochemical markers in cutaneous basal and squamous cell carcinomas[J]. Roman J Morphol Embryol, 2015,56(2 Suppl):665-670.
[7] Cher ML, Biliran HR, Bhagat S, et al. Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis[J]. Proc Nat Acad Sci USA, 2003,100(13):7847-7852.
[8] Narayan M, Twining S. Focus on molecules: Maspin[J]. Exp Eye Res, 2010,90(1):2-3.
[9] Almamun MA, Farid DM, Ravenhil L, et al. An In silico Model to Demonstrate the Effects of Maspin on Cancer Cell Dynamics[J]. J Theor Bio, 2015,388:37-49.
[10] Chen WS, Yen CJ, Chen YJ, et al. miRNA-7/21/107 contribute to HBx-induced hepatocellular carcinoma progression through suppression of maspin[J]. Oncotarget, 2015,6(28):25962-25974.
[11] Tang Y, Zu X, Xiong Y, et al. Expression of Maspin in bladder carcinoma and the relationship between Maspin and lymph node metastasis[J]. J Cent South Univer, 2015,40(12):1306-1312.
[12] Wang X, Wang Y, Li S, et al. Decreased maspin combined with elevated vascular endothelial growth factor C is associated with poor prognosis in non-small cell lung cancer[J]. Thorac Cancer, 2014, 5(5):383-390.
[13] Chao Z, Lili C, Zheng Y, et al. The close correlation between heparanase and COX-2 expression in lymphangiogenesis of cervical cancer.[J]. Med Oncol, 2014,31(12):314-314.
[14] Go Y, Tanaka H, Tokumoto M, et al. Tumor-Associated Macrophages Extend Along Lymphatic Flow in the Pre-metastatic Lymph Nodes of Human Gastric Cancer[J]. Ann Surg Oncol, 2016,23(2):1-6.
[15] Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3[J]. Embo J, 2001,20(17):4762-4773.
[16] Yuzhen S, Mingmin T, Yuefei W, et al. VEGF-C ShRNA inhibits pancreatic cancer growth and lymphangiogenesis in an orthotopic fluorescent nude mouse model[J]. Anticancer Res, 2013,33(2):409-417.
[17] Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics[J]. Nat Med, 2001,7(2):186-191.
[18] Chen J, Long W, Tang Y, et al. Maspin enhances cisplatin chemosensitivity in bladder cancer T24 and 5637 cells and correlates with prognosis of muscle-invasive bladder cancer patients receiving cisplatin based neoadjuvant chemotherapy[J]. J Exp Clin Cancer Res, 2016,35(1):1-11.
[19] Zhu H, Yun F, Shi X, et al. VEGF-C inhibition reverses resistance of bladder cancer cells to cisplatin via upregulating maspin[J]. Mol Med Rep, 2015,12(2):3163-3169.
[20] Wu X, Liu N. The role of Ang/Tie signaling in lymphangiogenesis[J]. Lymphology, 2010,43(2):59-72.
[21] Yuen D, Grimaldo S, Sessa R, et al. Role of Angiopoietin-2 in Corneal Lymphangiogenesis[J]. Invest Ophthalmol Vis Sci, 2014,55(5):3320-3327.
[22] Jeon EJ, Davaatseren M, Hwang JT, et al. Effect of oral administration of 3,3′-Diindolylmethane on dextran sodium sulfate-induced acute colitis in mice[J]. J Agricul Food Chem, 2016[Epub ahead of print].
[23] Lovato A, Lionello M, Staffieri A, et al. A Higher Angiogenin Expression is Associated With a Nonnuclear Maspin Location in Laryngeal Carcinoma[J]. Clin Exp Otorhinolaryngol, 2015,8(3):268-274.
[24] Williams C, Mann MR. The role of cyclooxygenases in inflammation, cancer, and development[J]. Oncogene, 2000,18(55):7908-7916.
[25] Ejima K, Layne MI, Kritek P, et al. Cyclooxygenase-2-deficient mice are resistant to endotoxin-induced inflammation and death[J]. Faseb J, 2003,17(19):243.
[26] Chimalramírez GK, Espinozasánchez NA, Fuentespananá EM. A Role for the Inflammatory Mediators Cox-2 and Metalloproteinases in Cancer Stemness[J]. Anticancer Agents Med Chem, 2015,15(7):837-855.
[27] Chuang YF, Chen MC, Huang SW, et al. Protein Phosphatase 2A in Lipopolysaccharide-Induced Cyclooxygenase-2 Expression in Murine Lymphatic Endothelial Cells[J]. PLoS One, 2015, 10(8):e0137177.
[28] Da MX, Wu XT, Wang J, et al. Expression of Cyclooxygenase-2 and Vascular Endothelial Growth Factor-C Correlates with Lymphangiogenesis and Lymphatic Invasion in Human Gastric Cancer[J]. Arch Med Res, 2008,39(1):92-99.
[29] Wu CT, Wang WC, Chen MF, et al. Glucose-regulated protein 78 mediates hormone-independent prostate cancer progression and metastasis through maspin and COX-2 expression[J]. Tumour Biol, 2014,35(1):195-204.
[30] Dzinic SH, Chen K, Thakur A, et al. Maspin expression in prostate tumor elicits host anti-tumor immunity[J]. Oncotarget, 2014,5(22):11225-11236.
[31] Finger EC, Giaccia AJ. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease[J]. Cancer Metastasis Rev, 2010,29(2):285-293.
[32] Ji RC. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis[J]. Cancer Letters, 2014,346(1):6-16.
[33] Teng H, Yang Y, Wei H, et al. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma[J]. Marine Drugs, 2015,13(6):3514-3530.
[34] Mckenzie S, Sakamoto S, Kyprianou N. Maspin modulates prostate cancer cell apoptotic and angiogenic response to hypoxia via targeting AKT[J]. Oncogene, 2008,27(57):7171-7179.
10.3969/j.issn.1002-266X.2017.03.036
R730
A
1002-266X(2017)03-0111-03
2016-07-17)